1
|
Xue J, Fu Y, Li H, Zhang T, Cong W, Hu H, Lu Z, Yan F, Li Y. All-hydrocarbon stapling enables improvement of antimicrobial activity and proteolytic stability of peptide Figainin 2. J Pept Sci 2024; 30:e3566. [PMID: 38271799 DOI: 10.1002/psc.3566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/21/2023] [Accepted: 12/28/2023] [Indexed: 01/27/2024]
Abstract
Figainin 2 is a cationic, hydrophobic, α-helical host-defense peptide with 28 residues, which was isolated from the skin secretions of the Chaco tree frog. It shows potent inhibitory activity against both Gram-negative and Gram-positive pathogens and has garnered considerable interest in developing novel classes of natural antibacterial agents. However, as a linear peptide, conformational flexibility and poor proteolytic stability hindered its development as antibacterial agent. To alleviate its susceptibility to proteolytic degradation and improve its antibacterial activity, a series of hydrocarbon-stable analogs of Figainin 2 were synthesized and evaluated for their secondary structure, protease stability, antimicrobial, and hemolytic activities. Among them, F2-12 showed significant improvement in protease resistance and antimicrobial activity compared to that of the template peptide. This study provides a promising strategy for the development of antimicrobial drugs.
Collapse
Affiliation(s)
- Jingwen Xue
- School of Medicine, Weifang Medical University, Weifang, Shandong, People's Republic of China
| | - Yinxue Fu
- School of Pharmaceutical Sciences and Institute of Materia Medica, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China
| | - Huang Li
- School of Medicine, Shanghai University, Shanghai, People's Republic of China
| | - Ting Zhang
- School of Pharmaceutical Sciences and Institute of Materia Medica, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China
| | - Wei Cong
- School of Medicine, Shanghai University, Shanghai, People's Republic of China
| | - Honggang Hu
- School of Medicine, Shanghai University, Shanghai, People's Republic of China
| | - Zhiyuan Lu
- School of Pharmaceutical Sciences and Institute of Materia Medica, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China
| | - Fang Yan
- School of Medicine, Weifang Medical University, Weifang, Shandong, People's Republic of China
| | - Yulei Li
- School of Pharmaceutical Sciences and Institute of Materia Medica, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China
| |
Collapse
|
2
|
Lazic J, Filipovic V, Pantelic L, Milovanovic J, Vojnovic S, Nikodinovic-Runic J. Late-stage diversification of bacterial natural products through biocatalysis. Front Bioeng Biotechnol 2024; 12:1351583. [PMID: 38807651 PMCID: PMC11130421 DOI: 10.3389/fbioe.2024.1351583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/18/2024] [Indexed: 05/30/2024] Open
Abstract
Bacterial natural products (BNPs) are very important sources of leads for drug development and chemical novelty. The possibility to perform late-stage diversification of BNPs using biocatalysis is an attractive alternative route other than total chemical synthesis or metal complexation reactions. Although biocatalysis is gaining popularity as a green chemistry methodology, a vast majority of orphan sequenced genomic data related to metabolic pathways for BNP biosynthesis and its tailoring enzymes are underexplored. In this review, we report a systematic overview of biotransformations of 21 molecules, which include derivatization by halogenation, esterification, reduction, oxidation, alkylation and nitration reactions, as well as degradation products as their sub-derivatives. These BNPs were grouped based on their biological activities into antibacterial (5), antifungal (5), anticancer (5), immunosuppressive (2) and quorum sensing modulating (4) compounds. This study summarized 73 derivatives and 16 degradation sub-derivatives originating from 12 BNPs. The highest number of biocatalytic reactions was observed for drugs that are already in clinical use: 28 reactions for the antibacterial drug vancomycin, followed by 18 reactions reported for the immunosuppressive drug rapamycin. The most common biocatalysts include oxidoreductases, transferases, lipases, isomerases and haloperoxidases. This review highlights biocatalytic routes for the late-stage diversification reactions of BNPs, which potentially help to recognize the structural optimizations of bioactive scaffolds for the generation of new biomolecules, eventually leading to drug development.
Collapse
Affiliation(s)
- Jelena Lazic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | | | | | | | | | | |
Collapse
|
3
|
Hadj Mohamed A, Pinon A, Lagarde N, Ricco C, Goya-Jorge E, Mouhsine H, Msaddek M, Liagre B, Veitía MSI. Colorectal anticancer activity of a novel class of triazolic triarylmethane derivatives. RSC Med Chem 2024; 15:660-676. [PMID: 38389891 PMCID: PMC10880923 DOI: 10.1039/d3md00467h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/30/2023] [Indexed: 02/24/2024] Open
Abstract
Triarylmethanes and triazoles constitute privileged structures extensively used in drug discovery programs. In this work, 12 novel triarylmethanes linked to a triazole ring were designed, synthesized, and chemically characterized aiming to target colorectal cancer. The synthetic strategy for triarylmethanes mono- and bi-substituted by a functionalized triazole ring involved a 1,3-dipolar cycloaddition. A preliminary screening in human colorectal cancer cells (HT-29 and HCT116) and murine primary fibroblasts (L929) allowed the selection of the best candidate 9b based on its high inhibition of cancer cell proliferation with an IC50 of 11 μM on HT-29 and 14 μM on HCT116 and its non-cytotoxic effects on murine fibroblasts (<100 μM). A deep mechanistic study on various pathways showed that compound 9b induces caspase-3 cleavage, and its inhibitory effect on PARP activity is correlated with the increase of DNA fragmentation in cancer cells. Moreover, 9b induced apoptosis promoted by the inhibition of anti-apoptotic cell survival signaling pathways demonstrated via the downregulation of phosphorylated Akt and ERK proteins. Finally, the predicted binding modes of compounds 8c and 9b to five potential biological targets (i.e., AKT, ERK-1 and ERK-2, PARP and caspase-3) was evaluated using molecular modeling, and the predictions of the SuperPred webserver identified ERK2 as the most remarkable target. Also predicted in silico, 9b displayed appropriate drug-likeness and good absorption, distribution, metabolism and excretion (ADME) profiles.
Collapse
Affiliation(s)
- Ameni Hadj Mohamed
- Laboratoire Génomique, Bioinformatique et Chimie Moléculaire (GBCM, EA 7528), Conservatoire national des arts et métiers, HESAM Université 2 rue Conté 75003 Paris France
- Laboratoire de Chimie Hétérocyclique, Produits Naturels et Réactivité (LR11ES39) Université de Monastir Avenue de l'environnement 5019 Monastir Tunisie
| | - Aline Pinon
- Université de Limoges, LABCiS, UR 22722, Faculté de Pharmacie F-87000 Limoges France
| | - Nathalie Lagarde
- Laboratoire Génomique, Bioinformatique et Chimie Moléculaire (GBCM, EA 7528), Conservatoire national des arts et métiers, HESAM Université 2 rue Conté 75003 Paris France
| | - Christophe Ricco
- Laboratoire Génomique, Bioinformatique et Chimie Moléculaire (GBCM, EA 7528), Conservatoire national des arts et métiers, HESAM Université 2 rue Conté 75003 Paris France
| | - Elizabeth Goya-Jorge
- Laboratory of Immunology-Vaccinology, Faculty of Veterinary Medicine - FARAH, University of Liège Av. Cureghem 10 4000 Liège Belgium
| | - Hadley Mouhsine
- Peptinov, Pépinière Paris Santé Cochin, Hôpital Cochin 29 rue du Faubourg Saint Jacques Paris 75014 France
| | - Moncef Msaddek
- Laboratoire de Chimie Hétérocyclique, Produits Naturels et Réactivité (LR11ES39) Université de Monastir Avenue de l'environnement 5019 Monastir Tunisie
| | - Bertrand Liagre
- Université de Limoges, LABCiS, UR 22722, Faculté de Pharmacie F-87000 Limoges France
| | - Maité Sylla-Iyarreta Veitía
- Laboratoire Génomique, Bioinformatique et Chimie Moléculaire (GBCM, EA 7528), Conservatoire national des arts et métiers, HESAM Université 2 rue Conté 75003 Paris France
| |
Collapse
|
4
|
Dhara D, Mulard LA, Hollenstein M. Expedient synthesis of l-heptose derived septacidin building blocks from l-glucose. Carbohydr Res 2023; 534:108985. [PMID: 38016254 DOI: 10.1016/j.carres.2023.108985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/07/2023] [Accepted: 11/12/2023] [Indexed: 11/30/2023]
Abstract
Bacterial natural products containing heptosides such as septacidin represent interesting scaffolds for the development of drugs to combat antimicrobial resistance. However, very few synthetic strategies have been reported to grant access to these derivatives. Here, we have devised a synthetic pathway to l-glycero-l-glucoheptoside, a key building block en route to septacidin, directly from l-glucose. Importantly, we show that carbon homologation at C6, encompassing oxidation of the C6-OH followed by methylenation, is significantly influenced by the nature of the C4-moiety. In order to observe the effect of various patterns, namely azide (N3), p-methoxybenzyloxy (OPMB), and benzyloxy (OBn), a thorough analysis was conducted on the corresponding l-glucosides. The results unveiled a distinct trend where the efficiency of methylenation followed the trend OBn > OPMB > N3. Finally, the C6-alkene was dihydroxylated in the presence of osmium tetroxide to yield the expected l/d-glycero-l-glucoheptosides. The lead building block, which features a C-4 azide, was delivered as a phenyl thioglycoside. Added to the suitable masking of the 6,7-diol, this combination enables further functionalization to achieve versatile compounds of biological interest. The study insights into the interplay between substitution at C-4 and carbon homologation at C-6 provide valuable guidance for future endeavors in the synthesis of these carbohydrate molecules.
Collapse
Affiliation(s)
- Debashis Dhara
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Chemistry of Biomolecules, 28 Rue Du Docteur Roux, 75724, Paris, Cedex 15, France; Institut Pasteur, Université Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, 28, Rue Du Docteur Roux, 75724, Paris, Cedex 15, France
| | - Laurence A Mulard
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Chemistry of Biomolecules, 28 Rue Du Docteur Roux, 75724, Paris, Cedex 15, France.
| | - Marcel Hollenstein
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, 28, Rue Du Docteur Roux, 75724, Paris, Cedex 15, France.
| |
Collapse
|
5
|
Huang Z, Liu H, Zhang X, Tang M, Lin Y, Feng L, Ye J, Zhou T, Chen L. Ceftazidime-Decorated Gold Nanoparticles: a Promising Strategy against Clinical Ceftazidime-Avibactam-Resistant Enterobacteriaceae with Different Resistance Mechanisms. Antimicrob Agents Chemother 2023; 67:e0026223. [PMID: 37358468 PMCID: PMC10353462 DOI: 10.1128/aac.00262-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/06/2023] [Indexed: 06/27/2023] Open
Abstract
Nanoparticle-based antibiotic delivery systems are essential in combating antibiotic-resistant bacterial infections arising from acquired resistance and/or biofilm formation. Here, we report that the ceftazidime-decorated gold nanoparticles (CAZ_Au NPs) can effectively kill clinical ceftazidime-avibactam-resistant Enterobacteriaceae with various resistance mechanisms. Further study of underlying antibacterial mechanisms suggests that CAZ_Au NPs can damage the bacterial cell membrane and increase the level of intracellular reactive oxygen species. Moreover, CAZ_Au NPs show great potential in inhibiting biofilm formation and eradicating mature biofilms via crystal violet and scanning electron microscope assays. In addition, CAZ_Au NPs demonstrate excellent performance in improving the survival rate in the mouse model of abdominal infection. In addition, CAZ_Au NPs show no significant toxicity at bactericidal concentrations in the cell viability assay. Thus, this strategy provides a simple way to drastically improve the potency of ceftazidime as an antibiotic and its use in further biomedical applications.
Collapse
Affiliation(s)
- Zeyu Huang
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haifeng Liu
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaotuan Zhang
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Miran Tang
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuzhan Lin
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Luozhu Feng
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianzhong Ye
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Tieli Zhou
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lijiang Chen
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
6
|
Ottonello A, Wyllie JA, Yahiaoui O, Sun S, Koelln RA, Homer JA, Johnson RM, Murray E, Williams P, Bolla JR, Robinson CV, Fallon T, Soares da Costa TP, Moses JE. Shapeshifting bullvalene-linked vancomycin dimers as effective antibiotics against multidrug-resistant gram-positive bacteria. Proc Natl Acad Sci U S A 2023; 120:e2208737120. [PMID: 37011186 PMCID: PMC10104512 DOI: 10.1073/pnas.2208737120] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 02/24/2023] [Indexed: 04/05/2023] Open
Abstract
The alarming rise in superbugs that are resistant to drugs of last resort, including vancomycin-resistant enterococci and staphylococci, has become a significant global health hazard. Here, we report the click chemistry synthesis of an unprecedented class of shapeshifting vancomycin dimers (SVDs) that display potent activity against bacteria that are resistant to the parent drug, including the ESKAPE pathogens, vancomycin-resistant Enterococcus (VRE), methicillin-resistant Staphylococcus aureus (MRSA), as well as vancomycin-resistant S. aureus (VRSA). The shapeshifting modality of the dimers is powered by a triazole-linked bullvalene core, exploiting the dynamic covalent rearrangements of the fluxional carbon cage and creating ligands with the capacity to inhibit bacterial cell wall biosynthesis. The new shapeshifting antibiotics are not disadvantaged by the common mechanism of vancomycin resistance resulting from the alteration of the C-terminal dipeptide with the corresponding d-Ala-d-Lac depsipeptide. Further, evidence suggests that the shapeshifting ligands destabilize the complex formed between the flippase MurJ and lipid II, implying the potential for a new mode of action for polyvalent glycopeptides. The SVDs show little propensity for acquired resistance by enterococci, suggesting that this new class of shapeshifting antibiotic will display durable antimicrobial activity not prone to rapidly acquired clinical resistance.
Collapse
Affiliation(s)
- Alessandra Ottonello
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC3086, Australia
| | - Jessica A. Wyllie
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC3086, Australia
| | - Oussama Yahiaoui
- Department of Chemistry, School of Physical Sciences, The University of Adelaide, Adelaide, SA5005, Australia
| | - Shoujun Sun
- Cancer Center, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY11724
| | - Rebecca A. Koelln
- Cancer Center, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY11724
| | - Joshua A. Homer
- Cancer Center, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY11724
| | - Robert M. Johnson
- Cancer Center, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY11724
| | - Ewan Murray
- National Biofilms Innovation Centre, Biodiscovery Institute and School of Life Sciences, University of Nottingham, University Park, NottinghamNG7 2RD, U.K.
| | - Paul Williams
- National Biofilms Innovation Centre, Biodiscovery Institute and School of Life Sciences, University of Nottingham, University Park, NottinghamNG7 2RD, U.K.
| | - Jani R. Bolla
- Department of Biology, University of Oxford, OxfordOX1 3RB, U.K.
- The Kavli Institute for Nanoscience Discovery, University of Oxford, OxfordOX1 3QU, U.K.
| | - Carol V. Robinson
- The Kavli Institute for Nanoscience Discovery, University of Oxford, OxfordOX1 3QU, U.K.
- Physical and Theoretical Chemistry Laboratory, University of Oxford, OxfordOX1 3QZ, U.K.
| | - Thomas Fallon
- Department of Chemistry, School of Physical Sciences, The University of Adelaide, Adelaide, SA5005, Australia
| | | | - John E. Moses
- Cancer Center, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY11724
| |
Collapse
|
7
|
Guan D, Chen F, Shi W, Lan L, Huang W. Single Modification at the N-Terminus of Norvancomycin to Combat Drug-Resistant Gram-Positive Bacteria. ChemMedChem 2023; 18:e202200708. [PMID: 36823383 DOI: 10.1002/cmdc.202200708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 02/25/2023]
Abstract
In the arsenal of glycopeptide antibiotics, norvancomycin, which differs from vancomycin by a single methyl group, has received much less attention. Facing the risks of serious antibiotic resistance and even the collapse of last-line defenses, we designed and synthesized 40 novel norvancomycin derivatives to combat the threat. 32 compounds are single N-terminally modified derivatives generated through simple and efficient methods. Diversity at the N-terminus was greatly enriched, mainly by lipophilic attachment and strategies for the introduction of lipo-sulfonium moieties for extensive structure-activity relationship analysis. The first incorporation of a sulfonium moiety into the norvancomycin structure gave rise to compounds that exhibited 4- to 2048-fold higher activity against vancomycin-resistant bacteria VISA and VRE. This N-terminal modification for norvancomycin provides an alternatively useful and promising strategy to restore the antibacterial activity of glycopeptide antibiotics against resistant bacteria, highlighting the same importance of the N-terminal site as well as the vancosamine position, which is worth further study and development.
Collapse
Affiliation(s)
- Dongliang Guan
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai, 201203, P. R. China.,Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yanta, Shandong, 264117, P. R. China
| | - Feifei Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China
| | - Wei Shi
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai, 201203, P. R. China.,Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China
| | - Lefu Lan
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, P. R. China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China.,University of Chinese Academy of Sciences, No.19 A Yuquan Road, Beijing, 100049, P. R. China
| | - Wei Huang
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai, 201203, P. R. China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, P. R. China.,University of Chinese Academy of Sciences, No.19 A Yuquan Road, Beijing, 100049, P. R. China.,Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China
| |
Collapse
|
8
|
Hast K, Stone MRL, Jia Z, Baci M, Aggarwal T, Izgu EC. Bioorthogonal Functionalization of Material Surfaces with Bioactive Molecules. ACS APPLIED MATERIALS & INTERFACES 2023; 15:4996-5009. [PMID: 36649474 PMCID: PMC10069157 DOI: 10.1021/acsami.2c20942] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The functionalization of material surfaces with biologically active molecules is crucial for enabling technologies in life sciences, biotechnology, and medicine. However, achieving biocompatibility and bioorthogonality with current synthetic methods remains a challenge. We report herein a novel surface functionalization method that proceeds chemoselectively and without a free transition metal catalyst. In this method, a coating is first formed via the tyrosinase-catalyzed putative polymerization of a tetrazine-containing catecholamine (DOPA-Tet). One or more types of molecule of interest containing trans-cyclooctene are then grafted onto the coating via tetrazine ligation. The entire process proceeds under physiological conditions and is suitable for grafting bioactive molecules with diverse functions and structural complexities. Utilizing this method, we functionalized material surfaces with enzymes (alkaline phosphatase, glucose oxidase, and horseradish peroxidase), a cyclic peptide (cyclo[Arg-Gly-Asp-D-Phe-Lys], or c(RGDfK)), and an antibiotic (vancomycin). Colorimetric assays confirmed the maintenance of the biocatalytic activities of the grafted enzymes on the surface. We established the mammalian cytocompatibility of the functionalized materials with fibroblasts. Surface functionalization with c(RGDfK) showed improved fibroblast cell morphology and cytoskeletal organization. Microbiological studies with Staphylococcus aureus indicated that surfaces coated using DOPA-Tet inhibit the formation of biofilms. Vancomycin-grafted surfaces additionally display significant inhibition of planktonic S. aureus growth.
Collapse
Affiliation(s)
- Kern Hast
- Department of Chemistry and Chemical Biology, Rutgers University, New Brunswick, New Jersey 08854, United States
| | - M Rhia L Stone
- Department of Chemistry and Chemical Biology, Rutgers University, New Brunswick, New Jersey 08854, United States
| | - Zhaojun Jia
- Department of Chemistry and Chemical Biology, Rutgers University, New Brunswick, New Jersey 08854, United States
| | - Melih Baci
- Department of Chemistry and Chemical Biology, Rutgers University, New Brunswick, New Jersey 08854, United States
| | - Tushar Aggarwal
- Department of Chemistry and Chemical Biology, Rutgers University, New Brunswick, New Jersey 08854, United States
| | - Enver Cagri Izgu
- Department of Chemistry and Chemical Biology, Rutgers University, New Brunswick, New Jersey 08854, United States
- Cancer Pharmacology Program, Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey 08901, United States
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey 08901, United States
| |
Collapse
|
9
|
Vujcic B, Wyllie J, Tania, Burns J, White KF, Cromwell S, Lupton DW, Dutton JL, Soares da Costa TP, Houston SD. Cage hydrocarbons as linkers in dimeric drug design: Case studies with trimethoprim and tedizolid. Bioorg Med Chem Lett 2023; 80:129086. [PMID: 36423825 DOI: 10.1016/j.bmcl.2022.129086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/17/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022]
Abstract
The looming threat of a "post-antibiotic era" has been caused by a rapid rise in antibacterial resistance and subsequent depletion of effective antibiotic agents in the clinic. An efficient strategy to address this shortfall lies in the reengineering of pre-existing and commercially available antibiotic drugs. This is exemplified by dimerization, a design concept in which two pharmacophores are covalently linked to form a new chemical entity. The cage hydrocarbons cubane (1), bicyclo[2.2.2]octane (BCO) (2), adamantane (3), and bicyclo[1.1.1]pentane (BCP) (4) present themselves as an attractive family of linkers in this regard. In this report, all four hydrocarbon cages were employed as linkers in a series of dimers based on the commercially available antibiotics trimethoprim and tedizolid. A detailed synthetic roadmap for the protection and deprotection of each pharmacophore is outlined. Several members of the trimethoprim series showed activity on par with that of their trimethoprim progenitor, although this was not the case for the tedizolid series. The design strategy outlined herein highlights the utility of the group as a platform for the rapid and modular construction of future novel antibiotics.
Collapse
Affiliation(s)
- Biljana Vujcic
- Department of Biochemistry and Chemistry, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Jessica Wyllie
- Department of Biochemistry and Chemistry, La Trobe University, Melbourne, Victoria 3086, Australia; School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Adelaide 5063, South Australia, Australia
| | - Tania
- Department of Biochemistry and Chemistry, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Jed Burns
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Queensland, Australia
| | - Keith F White
- Department of Biochemistry and Chemistry, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Simon Cromwell
- School of Chemistry, Monash University, Clayton 3800, Victoria, Australia
| | - David W Lupton
- School of Chemistry, Monash University, Clayton 3800, Victoria, Australia
| | - Jason L Dutton
- Department of Biochemistry and Chemistry, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Tatiana P Soares da Costa
- Department of Biochemistry and Chemistry, La Trobe University, Melbourne, Victoria 3086, Australia; School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Adelaide 5063, South Australia, Australia
| | - Sevan D Houston
- Department of Biochemistry and Chemistry, La Trobe University, Melbourne, Victoria 3086, Australia; Almac Sciences Ltd, 20 Seagoe Industrial Estate, Craigavon BT63 5QD, United Kingdom.
| |
Collapse
|
10
|
Gribble GW. Naturally Occurring Organohalogen Compounds-A Comprehensive Review. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2023; 121:1-546. [PMID: 37488466 DOI: 10.1007/978-3-031-26629-4_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The present volume is the third in a trilogy that documents naturally occurring organohalogen compounds, bringing the total number-from fewer than 25 in 1968-to approximately 8000 compounds to date. Nearly all of these natural products contain chlorine or bromine, with a few containing iodine and, fewer still, fluorine. Produced by ubiquitous marine (algae, sponges, corals, bryozoa, nudibranchs, fungi, bacteria) and terrestrial organisms (plants, fungi, bacteria, insects, higher animals) and universal abiotic processes (volcanos, forest fires, geothermal events), organohalogens pervade the global ecosystem. Newly identified extraterrestrial sources are also documented. In addition to chemical structures, biological activity, biohalogenation, biodegradation, natural function, and future outlook are presented.
Collapse
Affiliation(s)
- Gordon W Gribble
- Department of Chemistry, Dartmouth College, Hanover, NH, 03755, USA.
| |
Collapse
|
11
|
Tian L, Shi S, Zhang X, Han F, Dong H. Newest perspectives of glycopeptide antibiotics: biosynthetic cascades, novel derivatives, and new appealing antimicrobial applications. World J Microbiol Biotechnol 2023; 39:67. [PMID: 36593427 PMCID: PMC9807434 DOI: 10.1007/s11274-022-03512-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023]
Abstract
Glycopeptide antibiotics (GPAs) are a family of non-ribosomal peptide natural products with polypeptide skeleton characteristics, which are considered the last resort for treating severe infections caused by multidrug-resistant Gram-positive pathogens. Over the past few years, an increasing prevalence of Gram-positive resistant strain "superbugs" has emerged. Therefore, more efforts are needed to study and modify the GPAs to overcome the challenge of superbugs. In this mini-review, we provide an overview of the complex biosynthetic gene clusters (BGCs), the ingenious crosslinking and tailoring modifications, the new GPA derivatives, the discoveries of new natural GPAs, and the new applications of GPAs in antivirus and anti-Gram-negative bacteria. With the development and interdisciplinary integration of synthetic biology, next-generation sequencing (NGS), and artificial intelligence (AI), more GPAs with new chemical structures and action mechanisms will constantly be emerging.
Collapse
Affiliation(s)
- Li Tian
- School of Pharmaceutical Sciences, Liaocheng University, 252000 Liaocheng, China
| | - Shi Shi
- School of Pharmaceutical Sciences, Liaocheng University, 252000 Liaocheng, China
| | - Xiangmei Zhang
- School of Pharmaceutical Sciences, Liaocheng University, 252000 Liaocheng, China
| | - Fubo Han
- School of Pharmaceutical Sciences, Liaocheng University, 252000 Liaocheng, China
| | - Huijun Dong
- School of Pharmaceutical Sciences, Liaocheng University, 252000 Liaocheng, China
| |
Collapse
|
12
|
Enzymatic Synthesis of Vancomycin-Modified DNA. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248927. [PMID: 36558056 PMCID: PMC9782525 DOI: 10.3390/molecules27248927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
Many potent antibiotics fail to treat bacterial infections due to emergence of drug-resistant strains. This surge of antimicrobial resistance (AMR) calls in for the development of alternative strategies and methods for the development of drugs with restored bactericidal activities. In this context, we surmised that identifying aptamers using nucleotides connected to antibiotics will lead to chemically modified aptameric species capable of restoring the original binding activity of the drugs and hence produce active antibiotic species that could be used to combat AMR. Here, we report the synthesis of a modified nucleoside triphosphate equipped with a vancomycin moiety on the nucleobase. We demonstrate that this nucleotide analogue is suitable for polymerase-mediated synthesis of modified DNA and, importantly, highlight its compatibility with the SELEX methodology. These results pave the way for bacterial-SELEX for the identification of vancomycin-modified aptamers.
Collapse
|
13
|
van Groesen E, Innocenti P, Martin NI. Recent Advances in the Development of Semisynthetic Glycopeptide Antibiotics: 2014-2022. ACS Infect Dis 2022; 8:1381-1407. [PMID: 35895325 PMCID: PMC9379927 DOI: 10.1021/acsinfecdis.2c00253] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The accelerated appearance of drug-resistant bacteria poses an ever-growing threat to modern medicine's capacity to fight infectious diseases. Gram-positive species such as methicillin-resistant Staphylococcus aureus (MRSA) and Streptococcus pneumoniae continue to contribute significantly to the global burden of antimicrobial resistance. For decades, the treatment of serious Gram-positive infections relied upon the glycopeptide family of antibiotics, typified by vancomycin, as a last line of defense. With the emergence of vancomycin resistance, the semisynthetic glycopeptides telavancin, dalbavancin, and oritavancin were developed. The clinical use of these compounds is somewhat limited due to toxicity concerns and their unusual pharmacokinetics, highlighting the importance of developing next-generation semisynthetic glycopeptides with enhanced antibacterial activities and improved safety profiles. This Review provides an updated overview of recent advancements made in the development of novel semisynthetic glycopeptides, spanning the period from 2014 to today. A wide range of approaches are covered, encompassing innovative strategies that have delivered semisynthetic glycopeptides with potent activities against Gram-positive bacteria, including drug-resistant strains. We also address recent efforts aimed at developing targeted therapies and advances made in extending the activity of the glycopeptides toward Gram-negative organisms.
Collapse
Affiliation(s)
- Emma van Groesen
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University 2333 BE Leiden, The Netherlands
| | - Paolo Innocenti
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University 2333 BE Leiden, The Netherlands
| | - Nathaniel I Martin
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University 2333 BE Leiden, The Netherlands
| |
Collapse
|
14
|
The First Dimeric Derivatives of the Glycopeptide Antibiotic Teicoplanin. Pharmaceuticals (Basel) 2022; 15:ph15010077. [PMID: 35056134 PMCID: PMC8779952 DOI: 10.3390/ph15010077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/31/2021] [Accepted: 01/05/2022] [Indexed: 01/10/2023] Open
Abstract
Various dimeric derivatives of the glycopeptide antibiotic teicoplanin were prepared with the aim of increasing the activity of the parent compound against glycopeptide-resistant bacteria, primarily vancomycin-resistant enterococci. Starting from teicoplanin, four covalent dimers were prepared in two orientations, using an α,ω-bis-isothiocyanate linker. Formation of a dimeric cobalt coordination complex of an N-terminal L-histidyl derivative of teicoplanin pseudoaglycone has been detected and its antibacterial activity evaluated. The Co(III)-induced dimerization of the histidyl derivative was demonstrated by DOSY experiments. Both the covalent and the complex dimeric derivatives showed high activity against VanA teicoplanin-resistant enterococci, but their activity against other tested bacterial strains did not exceed that of the monomeric compounds.
Collapse
|
15
|
Guffey AA, Loll PJ. Regulation of Resistance in Vancomycin-Resistant Enterococci: The VanRS Two-Component System. Microorganisms 2021; 9:2026. [PMID: 34683347 PMCID: PMC8541618 DOI: 10.3390/microorganisms9102026] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 01/20/2023] Open
Abstract
Vancomycin-resistant enterococci (VRE) are a serious threat to human health, with few treatment options being available. New therapeutics are urgently needed to relieve the health and economic burdens presented by VRE. A potential target for new therapeutics is the VanRS two-component system, which regulates the expression of vancomycin resistance in VRE. VanS is a sensor histidine kinase that detects vancomycin and in turn activates VanR; VanR is a response regulator that, when activated, directs expression of vancomycin-resistance genes. This review of VanRS examines how the expression of vancomycin resistance is regulated, and provides an update on one of the field's most pressing questions: How does VanS sense vancomycin?
Collapse
Affiliation(s)
| | - Patrick J. Loll
- Department of Biochemistry & Molecular Biology, College of Medicine, Drexel University, Philadelphia, PA 19102, USA;
| |
Collapse
|
16
|
van Groesen E, Slingerland CJ, Innocenti P, Mihajlovic M, Masereeuw R, Martin NI. Vancomyxins: Vancomycin-Polymyxin Nonapeptide Conjugates That Retain Anti-Gram-Positive Activity with Enhanced Potency against Gram-Negative Strains. ACS Infect Dis 2021; 7:2746-2754. [PMID: 34387988 PMCID: PMC8438664 DOI: 10.1021/acsinfecdis.1c00318] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
![]()
Vancomycin functions
by binding to lipid II, the penultimate bacterial
cell wall building block used by both Gram-positive and Gram-negative
species. However, vancomycin is generally only able to exert its antimicrobial
effect against Gram-positive strains as it cannot pass the outer membrane
(OM) of Gram-negative bacteria. To address this challenge, we here
describe efforts to conjugate vancomycin to the OM disrupting polymyxin
E nonapeptide (PMEN) to yield the hybrid “vancomyxins”.
In designing these hybrid antibiotics, different spacers and conjugation
sites were explored for connecting vancomycin and PMEN. The vancomyxins
show improved activity against Gram-negative strains compared with
the activity of vancomycin or vancomycin supplemented with PMEN separately.
In addition, the vancomyxins maintain the antimicrobial effect of
vancomycin against Gram-positive strains and, in some cases, show
enhanced activity against vancomycin-resistant strains. The hybrid
antibiotics described here have reduced nephrotoxicity when compared
with clinically used polymyxin antibiotics. This study demonstrates
that covalent conjugation to an OM disruptor contributes to sensitizing
Gram-negative strains to vancomycin while retaining anti-Gram-positive
activity.
Collapse
Affiliation(s)
- Emma van Groesen
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Cornelis J. Slingerland
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Paolo Innocenti
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Milos Mihajlovic
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Nathaniel I. Martin
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| |
Collapse
|
17
|
Wood TM, Slingerland CJ, Martin NI. A Convenient Chemoenzymatic Preparation of Chimeric Macrocyclic Peptide Antibiotics with Potent Activity against Gram-Negative Pathogens. J Med Chem 2021; 64:10890-10899. [PMID: 34283589 PMCID: PMC8365600 DOI: 10.1021/acs.jmedchem.1c00176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
![]()
The continuing rise
of antibiotic resistance, particularly among
Gram-negative pathogens, threatens to undermine many aspects of modern
medical practice. To address this threat, novel antibiotics that utilize
unexploited bacterial targets are urgently needed. Over the past decade,
a number of studies have highlighted the antibacterial potential of
macrocyclic peptides that target Gram-negative outer membrane proteins
(OMPs). Recently, it was reported that the antibacterial activities
of OMP-targeting macrocyclic peptidomimetics of the antimicrobial
peptide protegrin-1 are dramatically enhanced upon linking to polymyxin
E nonapeptide (PMEN). In this study, we describe a convergent, chemoenzymatic
route for the convenient preparation of such conjugates. Specifically,
we investigated the use of both amide bond formation and azide-alkyne
ligation for connecting an OMP-targeting macrocyclic peptide to a
PMEN building block (obtained by enzymatic degradation of polymyxin
E). The conjugates obtained via both approaches display potent antibacterial
activity against a range of Gram-negative pathogens including multi-drug-resistant
isolates.
Collapse
Affiliation(s)
- Thomas M Wood
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, Sylviusweg 72, Leiden 2333 BE, The Netherlands.,Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, Utrecht 3584 CG, The Netherlands
| | - Cornelis J Slingerland
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, Sylviusweg 72, Leiden 2333 BE, The Netherlands
| | - Nathaniel I Martin
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, Sylviusweg 72, Leiden 2333 BE, The Netherlands
| |
Collapse
|
18
|
Antibacterial Optimization of Highly Deformed Titanium Alloys for Spinal Implants. Molecules 2021; 26:molecules26113145. [PMID: 34074062 PMCID: PMC8197332 DOI: 10.3390/molecules26113145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 12/31/2022] Open
Abstract
The goal of the work was to develop materials dedicated to spine surgery that minimized the potential for infection originating from the transfer of bacteria during long surgeries. The bacteria form biofilms, causing implant loosening, pain and finally, a risk of paralysis for patients. Our strategy focused both on improvement of antibacterial properties against bacteria adhesion and on wear and corrosion resistance of tools for spine surgery. Further, a ~35% decrease in implant and tool dimensions was expected by introducing ultrahigh-strength titanium alloys for less-invasive surgeries. The tested materials, in the form of thin, multi-layered coatings, showed nanocrystalline microstructures. Performed direct-cytotoxicity studies (including lactate dehydrogenase activity measurement) showed that there was a low probability of adverse effects on surrounding SAOS-2 (Homo sapiens bone osteosarcoma) cells. The microbiological studies (e.g., ISO 22196 contact tests) showed that implanting Ag nanoparticles into Ti/TixN coatings inhibited the growth of E. coli and S. aureus cells and reduced their adhesion to the material surface. These findings suggest that Ag-nanoparticles present in implant coatings may potentially minimize infection risk and lower inherent stress.
Collapse
|
19
|
Payne JAE, Kulkarni K, Izore T, Fulcher AJ, Peleg AY, Aguilar MI, Cryle MJ, Del Borgo MP. Staphylococcus aureus entanglement in self-assembling β-peptide nanofibres decorated with vancomycin. NANOSCALE ADVANCES 2021; 3:2607-2616. [PMID: 36134162 PMCID: PMC9419598 DOI: 10.1039/d0na01018a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/23/2021] [Indexed: 06/16/2023]
Abstract
The increasing resistance of pathogenic microbes to antimicrobials and the shortage of antibiotic drug discovery programs threaten the clinical use of antibiotics. This threat calls for the development of new methods for control of drug-resistant microbial pathogens. We have designed, synthesised and characterised an antimicrobial material formed via the self-assembly of a population of two distinct β-peptide monomers, a lipidated tri-β-peptide (β3-peptide) and a novel β3-peptide conjugated to a glycopeptide antibiotic, vancomycin. The combination of these two building blocks resulted in fibrous assemblies with distinctive structures determined by atomic force microscopy and electron microscopy. These fibres inhibited the growth of methicillin resistant Staphylococcus aureus (MRSA) and associated directly with the bacteria, acting as a peptide nanonet with fibre nucleation sites on the bacteria observed by electron microscopy and confocal microscopy. Our results provide insights into the design of peptide based supramolecular assemblies with antibacterial activity and establish an innovative strategy to develop self-assembled antimicrobial materials for future biomedical application.
Collapse
Affiliation(s)
- Jennifer A E Payne
- Infection and Immunity Program, The Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University Clayton Victoria 3800 Australia
- EMBL Australia, Monash University Clayton Victoria 3800 Australia
- The ARC Centre of Excellence for Innovations in Peptide and Protein Science, Monash University Clayton Victoria 3800 Australia
| | - Ketav Kulkarni
- Department of Biochemistry and Molecular Biology, Monash University Clayton Victoria 3800 Australia
| | - Thierry Izore
- Infection and Immunity Program, The Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University Clayton Victoria 3800 Australia
- EMBL Australia, Monash University Clayton Victoria 3800 Australia
| | - Alex J Fulcher
- Monash Micro Imaging, Monash University Clayton Victoria 3800 Australia
| | - Anton Y Peleg
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University Clayton Victoria 3800 Australia
- Department of Infectious Diseases, The Alfred Hospital, Central Clinical School, Monash University Melbourne Victoria 3004 Australia
| | - Marie-Isabel Aguilar
- Department of Biochemistry and Molecular Biology, Monash University Clayton Victoria 3800 Australia
| | - Max J Cryle
- Infection and Immunity Program, The Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University Clayton Victoria 3800 Australia
- EMBL Australia, Monash University Clayton Victoria 3800 Australia
- The ARC Centre of Excellence for Innovations in Peptide and Protein Science, Monash University Clayton Victoria 3800 Australia
| | - Mark P Del Borgo
- Department of Pharmacology, Monash University Clayton Victoria 3800 Australia
| |
Collapse
|
20
|
Xu M, Li L, Hu Q. The recent progress in photothermal-triggered bacterial eradication. Biomater Sci 2021; 9:1995-2008. [PMID: 33564803 DOI: 10.1039/d0bm02057e] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Increasing evidence suggested that bacterial infection diseases posed a great threat to human health and became the leading cause of mortality. However, the abuse of antibiotics and their residues in the environment result in the emergence and prevalence of drug-resistant bacteria. Photothermal therapy (PTT) has received considerable attention owing to its noninvasiveness, and proved to be promising in preventing bacterial infection diseases. In this review, we first surveyed the recent progress of PTT-based responsive targeting strategies for bacterial killing. We then highlighted the PTT-based smart designs of bio-films, hydrogels and synergistic methods for treating bacterial infections. Existing challenges and perspectives are also discussed to inspire the future development of a PTT-based platform for the efficient therapy of bacterial infections.
Collapse
Affiliation(s)
- Minjie Xu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China.
| | | | | |
Collapse
|
21
|
Appa RM, Lakshmidevi J, Naidu BR, Venkateswarlu K. Pd-catalyzed oxidative homocoupling of arylboronic acids in WEPA: A sustainable access to symmetrical biaryls under added base and ligand-free ambient conditions. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2020.111366] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
22
|
Mela I, Kaminski CF. Nano-vehicles give new lease of life to existing antimicrobials. Emerg Top Life Sci 2020; 4:555-566. [PMID: 33258900 PMCID: PMC7752037 DOI: 10.1042/etls20200153] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 02/04/2023]
Abstract
Antibiotic resistance has become one of the greatest challenges for modern medicine, and new approaches for the treatment of bacterial infections are urgently needed to avoid widespread vulnerability again to infections that have so far been easily treatable with existing drugs. Among the many approaches investigated to overcome this challenge is the use of engineered nanostructures for the precise and targeted delivery of existing antimicrobial agents in a fashion that will potentiate their effect. This idea leans on lessons learned from pioneering research in cancer, where the targeted delivery of anti-cancer drugs to mammalian cells has been a topic for some time. In particular, new research has demonstrated that nanomaterials can be functionalised with active antimicrobials and, in some cases, with targeting molecules that potentiate the efficiency of the antimicrobials. In this mini-review, we summarise results that demonstrate the potential for nanoparticles, dendrimers and DNA nanostructures for use in antimicrobial delivery. We consider material aspects of the delivery vehicles and ways in which they can be functionalised with antibiotics and antimicrobial peptides, and we review evidence for their efficacy to kill bacteria both in vitro and in vivo. We also discuss the advantages and limitations of these materials and highlight the benefits of DNA nanostructures specifically for their versatile potential in the present context.
Collapse
Affiliation(s)
- Ioanna Mela
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Clemens F Kaminski
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| |
Collapse
|
23
|
Li D, Kumari B, Makabenta JM, Tao B, Qian K, Mei X, Rotello VM. Development of coinage metal nanoclusters as antimicrobials to combat bacterial infections. J Mater Chem B 2020; 8:9466-9480. [PMID: 32955539 PMCID: PMC7606613 DOI: 10.1039/d0tb00549e] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Infections from antibiotic-resistant bacteria have caused huge economic loss and numerous deaths over the past decades. Researchers are exploring multiple strategies to combat these bacterial infections. Metal nanomaterials have been explored as therapeutics against these infections owing to their relatively low toxicity, broad-spectrum activity, and low bacterial resistance development. Some coinage metal nanoclusters, such as gold, silver, and copper nanoclusters, can be readily synthesized. These nanoclusters can feature multiple useful properties, including ultra-small size, high catalytic activity, unique photoluminescent properties, and photothermal effect. Coinage metal nanoclusters have been investigated as antimicrobials, but more research is required to tap their full potential. In this review, we discuss multiple advantages and the prospect of using gold/silver/copper nanoclusters as antimicrobials.
Collapse
Affiliation(s)
- Dan Li
- Department of Basic Science, Jinzhou Medal University, 40 Songpo Road, Jinzhou 121001, China
| | - Beena Kumari
- Department of Chemistry, Indian Institute of Technology Gandhinagar, India
| | - Jessa Marie Makabenta
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, USA.
| | - Bailong Tao
- College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Kun Qian
- Department of Basic Science, Jinzhou Medal University, 40 Songpo Road, Jinzhou 121001, China
| | - Xifan Mei
- Department of Basic Science, Jinzhou Medal University, 40 Songpo Road, Jinzhou 121001, China
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, USA.
| |
Collapse
|
24
|
1,2,3-Triazole-containing hybrids with potential antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA). Eur J Med Chem 2020; 206:112686. [PMID: 32795773 DOI: 10.1016/j.ejmech.2020.112686] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 01/10/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA), as a classic reason for genuine skin and flimsy tissues diseases, is a worldwide general wellbeing risk and has already tormented humanity for a long history, creating a critical need for the development of new classes of antibacterials. 1,2,3-Triazole moiety, readily interact with diverse enzymes and receptors in organisms through weak bond interaction, is among the most common frameworks present in the bioactive molecules. 1,2,3-Triazole derivatives, especially 1,2,3-triazole-containing hybrids, possess broad-spectrum activity against a panel of clinically important bacteria including drug-resistant pathogens, so rational design of 1,2,3-triazole derivatives may open a door for the opportunities on the development of novel anti-MRSA agents. This review is an endeavour to highlight the current scenario of 1,2,3-triazole-containing hybrids with potential anti-MRSA activity, covering articles published between 2010 and 2020.
Collapse
|
25
|
Guo X, Cao B, Wang C, Lu S, Hu X. In vivo photothermal inhibition of methicillin-resistant Staphylococcus aureus infection by in situ templated formulation of pathogen-targeting phototheranostics. NANOSCALE 2020; 12:7651-7659. [PMID: 32207761 DOI: 10.1039/d0nr00181c] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Bacterial infection has caused a serious threat to human public health. Methicillin-resistant Staphylococcus aureus (MRSA) is a representative drug-resistant bacterium, which is difficult to eradicate completely, resulting in high infection probability with severe mortality. Herein, pathogen-targeting phototheranostic nanoparticles, Van-OA@PPy, are developed for efficient elimination of MRSA infection. Van-OA@PPy nanoparticles are fabricated from the in situ templated formation of polypyrrole (PPy) in the presence of ferric ions (Fe3+) and a polymer template, hydrophilic poly(2-hydroxyethyl methacrylate-co-N,N-dimethyl acrylamide), P(HEMA-co-DMA). PPy nanoparticles are further coated with vancomycin conjugated oleic acid (Van-OA) to afford the resultant pathogen-targeting Van-OA@PPy. A high photothermal conversion efficiency of ∼49.4% is achieved. MRSA can be efficiently killed due to sufficient nanoparticle adhesion and fusion with MRSA, followed by photothermal therapy upon irradiation with an 808 nm laser. Remarkable membrane damage of MRSA is observed, which contributes greatly to the inhibition of MRSA infection. Furthermore, the nanoparticles have high stability and good biocompatibility without causing any detectable side effects. On the other hand, residual Fe3+ and PPy moieties in Van-OA@PPy endow the nanoparticles with magnetic resonance (MR) imaging and photoacoustic (PA) imaging potency, respectively. The current strategy has the potential to inspire further advances in precise diagnosis and efficient elimination of MRSA infection in biomedicine.
Collapse
Affiliation(s)
- Xujuan Guo
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| | | | | | | | | |
Collapse
|
26
|
Samaszko-Fiertek J, Szulc M, Dmochowska B, Jaśkiewicz M, Kamysz W, Ślusarz R, Madaj J. Influence of Carbohydrate Residues on Antibacterial Activity of Vancomycin. LETT ORG CHEM 2020. [DOI: 10.2174/1570178616666190329225748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This paper presents synthesis of vancomycin derivatives modified with selected 1- and
2-aminoalditols to carboxylic function and 2,5-anhydro-D-mannose and D-talose to amino function of
vancosamine via reductive alkylation. MIC and MBC of these derivatives were determined for reference
strains of bacteria: Staphylococcus aureus ATCC 25923, ATCC 6538, ATCC 6538/P, S. epidemidis
ATCC 14490, E. faecium PCM 1859, E. faecalis PCM 2673, S. pyogenes PCM 465, and
S. pneumonia ATCC 49619 and compared with the activity of vancomycin and its aglycone. Our findings
confirm that sugar fragments can play an important role in the mechanism of interaction of vancomycin
with bacterial cell wall peptidoglycan.
Collapse
Affiliation(s)
| | - Monika Szulc
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Barbara Dmochowska
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Maciej Jaśkiewicz
- Faculty of Pharmacy, Medical University of Gdansk, Al. Gen. Hallera 107, 80-416 Gdansk, Poland
| | - Wojciech Kamysz
- Faculty of Pharmacy, Medical University of Gdansk, Al. Gen. Hallera 107, 80-416 Gdansk, Poland
| | - Rafał Ślusarz
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Janusz Madaj
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| |
Collapse
|
27
|
Li D, Kumari B, Makabenta JM, Gupta A, Rotello V. Effective detection of bacteria using metal nanoclusters. NANOSCALE 2019; 11:22172-22181. [PMID: 31746916 PMCID: PMC8582014 DOI: 10.1039/c9nr08510f] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Antibiotic-resistant bacterial infections cause more than 700 000 deaths each year worldwide. Detection of bacteria is critical in limiting infection-based damage. Nanomaterials provide promising sensing platforms owing to their ability to access new interaction modalities. Nanoclusters feature sizes smaller than traditional nanomaterials, providing great sensitive ability for detecting analytes. The distinct optical and catalytic properties of nanoclusters combined with their biocompatibility enables them as efficient biosensors. In this review, we summarize multiple strategies that utilize nanoclusters for detection of pathogenic bacteria.
Collapse
Affiliation(s)
- Dan Li
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, USA.
| | | | | | | | | |
Collapse
|
28
|
Gao W, He J, Xiao F, Yang R. Synthesis of Propargyl‐Terminated Polybutadiene and Properties of Polytriazole Elastomers. PROPELLANTS EXPLOSIVES PYROTECHNICS 2019. [DOI: 10.1002/prep.201800345] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Wenbo Gao
- School of Materials, School of Materials Beijing Institute of Technology 5 South Zhongguancun Street, Haidian District Beijing 100081 P. R. China
| | - Jiyu He
- School of Materials, School of Materials Beijing Institute of Technology 5 South Zhongguancun Street, Haidian District Beijing 100081 P. R. China
| | - Fei Xiao
- School of Materials, School of Materials Beijing Institute of Technology 5 South Zhongguancun Street, Haidian District Beijing 100081 P. R. China
| | - Rongjie Yang
- School of Materials, School of Materials Beijing Institute of Technology 5 South Zhongguancun Street, Haidian District Beijing 100081 P. R. China
| |
Collapse
|
29
|
Silva SWC, Monção NBN, Araújo BQ, Arcanjo DDR, Ferreira JHL, Lima Neto JS, Citó AMGL, de Siqueira Júnior JP, Kaatz GW, Barreto HM. Antimicrobial activity of Mimosa caesalpiniifolia Benth and its interaction with antibiotics against Staphylococcus aureus strains overexpressing efflux pump genes. Lett Appl Microbiol 2019; 69:57-63. [PMID: 31002429 DOI: 10.1111/lam.13163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 04/15/2019] [Accepted: 04/15/2019] [Indexed: 02/06/2023]
Abstract
This study aimed to evaluate the antimicrobial activity of the dichloromethane fraction (DCMF) from the stem bark of Mimosa caesalpiniifolia and its effect on the activity of conventional antibiotics against Staphylococcus aureus strains overexpressing specific efflux pump genes. DCMF showed activity against S. aureus, Staphylococcus epidermidis and Candida albicans. Addition of DCMF at subinhibitory concentrations to the growth media enhanced the activity of norfloxacin, ciprofloxacin and ethidium bromide against S. aureus strains overexpressing norA suggesting the presence of efflux pump inhibitors in its composition. Similar results were verified for tetracycline against S. aureus overexpressing tetK, as well as, for ethidium bromide against S. aureus overexpressing qacC. These results indicate that M. caesalpiniifolia is a source of molecules able to modulate the fluoroquinolone- and tetracycline-resistance in S. aureus probably by inhibition of NorA, TetK and QacC respectively. SIGNIFICANCE AND IMPACT OF THE STUDY: Drug resistance is a common problem in patients with infectious diseases. Dichloromethane fraction from the stem bark of Mimosa caesalpiniifolia showed antimicrobial activity against Gram-positive bacterium Staphylococcus aureus and against Candida albicans, but did not show activity against Gram-negative specie Escherichia coli. Moreover, this fraction was able to potentiate the action of norfloxacin, ciprofloxacin and tetracycline against S. aureus strains overexpressing different efflux pump genes. Thus, Mimosa caesalpiniifolia is a source of efflux pump inhibitors which could be used in combination with fluoroquinolones or tetracycline in the treatment of infectious diseases caused by S. aureus strains overexpressing efflux pump genes.
Collapse
Affiliation(s)
- S W C Silva
- Laboratory of Research in Microbiology, Federal University of Piauí, Teresina, Brazil
| | - N B N Monção
- Agricultural College of Floriano, Federal University of Piauí (UFPI), Floriano, Brazil
| | - B Q Araújo
- Laboratory of Natural Products, Federal University of Piauí, Teresina, Brazil
| | - D D R Arcanjo
- Department of Biophysics and Physiology, Federal University of Piauí (UFPI), Teresina, Brazil
| | - J H L Ferreira
- Laboratory of Research in Microbiology, Federal University of Piauí, Teresina, Brazil
| | - J S Lima Neto
- Laboratory of Natural Products, Federal University of Piauí, Teresina, Brazil
| | - A M G L Citó
- Laboratory of Natural Products, Federal University of Piauí, Teresina, Brazil
| | - J P de Siqueira Júnior
- Laboratory of Genetics of Microorganisms, Federal University of Paraiba (UFPB), João Pessoa, Brazil
| | - G W Kaatz
- Department of Medicine, Division of Infectious Diseases, Wayne State University School of Medicine, Detroit, MI, USA
| | - H M Barreto
- Laboratory of Research in Microbiology, Federal University of Piauí, Teresina, Brazil
| |
Collapse
|
30
|
Watanabe S, Ario A, Iwasawa N. Re(I)-catalyzed hydropropargylation of enamides: a useful method for the preparation of 4-pentynylamine derivatives. J Antibiot (Tokyo) 2019; 72:490-493. [PMID: 30846847 DOI: 10.1038/s41429-019-0162-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/17/2019] [Accepted: 01/21/2019] [Indexed: 11/09/2022]
Abstract
Hydropropargylation of enamides was achieved in good yields through the 1,4-addition of enamides to the α,β-unsaturated carbene complex intermediate, followed by intramolecular hydrogen transfer to the iminium carbon. This method is useful for the synthesis of 4-pentynylamine derivatives from enamides and easily available propargyl ether. Moreover, tandem cyclization reaction was achieved to afford a pyrrolidine derivative in a single operation by using a secondary enamide.
Collapse
Affiliation(s)
- Shoya Watanabe
- Department of Chemistry, School of Science, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Akane Ario
- Department of Chemistry, School of Science, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Nobuharu Iwasawa
- Department of Chemistry, School of Science, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8551, Japan.
| |
Collapse
|
31
|
Dhanda G, Sarkar P, Samaddar S, Haldar J. Battle against Vancomycin-Resistant Bacteria: Recent Developments in Chemical Strategies. J Med Chem 2018; 62:3184-3205. [DOI: 10.1021/acs.jmedchem.8b01093] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Geetika Dhanda
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka, India
| | - Paramita Sarkar
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka, India
| | - Sandip Samaddar
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka, India
| | - Jayanta Haldar
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka, India
| |
Collapse
|
32
|
Guan D, Chen F, Liu J, Li J, Lan L, Huang W. Design and Synthesis of Pyrophosphate-Targeting Vancomycin Derivatives for Combating Vancomycin-Resistant Enterococci. ChemMedChem 2018; 13:1644-1657. [PMID: 29920964 DOI: 10.1002/cmdc.201800252] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/13/2018] [Indexed: 12/12/2022]
Abstract
As the last resort for intractable Gram-positive bacterial infections, vancomycin is losing efficacy with the emergence of vancomycin-resistant bacteria, especially vancomycin-resistant Enterococci (VRE). To combat this threat, we rationally designed and synthesized 39 novel vancomycin derivatives by respective or combined modifications using metal-chelating, lipophilic, and galactose-attachment strategies for extensive structure-activity relationship (SAR) analysis. In a proposed mechanism, the conjugation of dipicolylamine on the seventh amino acid resorcinol position or C-terminus endowed the vancomycin backbone with binding capacity for the pyrophosphate moiety in lipid II while maintaining the intrinsic binding affinity for the dipeptide terminus of the bacterial cell wall peptidoglycan precursor. The in vitro antibacterial activities were evaluated, and the optimal compounds indicated 16- to 1024-fold higher activity against VRE than that of vancomycin. Compound 11 b (3',5'-bis(dipicolylaminomethyl)tyrosine [1,2,3]triazolylmethoxylethyoxyl ethylaminomethyl-N-decylvancomycin) was found to have particularly potent activity against VRE through synergistic effects brought about by combining two peripheral modifications.
Collapse
Affiliation(s)
- Dongliang Guan
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai, 201203, P.R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, P.R. China
| | - Feifei Chen
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai, 201203, P.R. China
| | - Junjie Liu
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai, 201203, P.R. China
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, P.R. China
| | - Jian Li
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai, 201203, P.R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, P.R. China
| | - Lefu Lan
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai, 201203, P.R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, P.R. China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P.R. China
| | - Wei Huang
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai, 201203, P.R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, P.R. China
- Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P.R. China
| |
Collapse
|
33
|
Design, synthesis and biological activity of novel demethylvancomycin dimers against vancomycin-resistant enterococcus faecalis. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.04.091] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
34
|
Abstract
![]()
Glycopeptide
antibiotics (GPAs) are a key weapon in the fight against drug resistant
bacteria, with vancomycin still a mainstream therapy against serious
Gram-positive infections more than 50 years after it was first introduced.
New, more potent semisynthetic derivatives that have entered the clinic,
such as dalbavancin and oritavancin, have superior pharmacokinetic
and target engagement profiles that enable successful treatment of
vancomycin-resistant infections. In the face of resistance development,
with multidrug resistant (MDR) S. pneumoniae and methicillin-resistant Staphylococcus aureus (MRSA) together causing 20-fold more infections than all MDR Gram-negative
infections combined, further improvements are desirable to ensure
the Gram-positive armamentarium is adequately maintained for future
generations. A range of modified glycopeptides has been generated
in the past decade via total syntheses, semisynthetic modifications
of natural products, or biological engineering. Several of these
have undergone extensive characterization with demonstrated in vivo efficacy, good PK/PD profiles, and no reported preclinical
toxicity; some may be suitable for formal preclinical development.
The natural product monobactam, cephalosporin, and β-lactam
antibiotics all spawned multiple generations of commercially and clinically
successful semisynthetic derivatives. Similarly, next-generation glycopeptides
are now technically well positioned to advance to the clinic, if sufficient
funding and market support returns to antibiotic development.
Collapse
Affiliation(s)
- Mark A. T. Blaskovich
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, Brisbane, Queensland 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Chemistry Building 68, Cooper Road, Brisbane, Queensland 4072, Australia
| | - Karl A. Hansford
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, Brisbane, Queensland 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Chemistry Building 68, Cooper Road, Brisbane, Queensland 4072, Australia
| | - Mark S. Butler
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, Brisbane, Queensland 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Chemistry Building 68, Cooper Road, Brisbane, Queensland 4072, Australia
| | - ZhiGuang Jia
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, Brisbane, Queensland 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Chemistry Building 68, Cooper Road, Brisbane, Queensland 4072, Australia
| | - Alan E. Mark
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, Brisbane, Queensland 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Chemistry Building 68, Cooper Road, Brisbane, Queensland 4072, Australia
| | - Matthew A. Cooper
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, Brisbane, Queensland 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Chemistry Building 68, Cooper Road, Brisbane, Queensland 4072, Australia
| |
Collapse
|
35
|
Abdel Monaim SAH, Jad YE, El-Faham A, de la Torre BG, Albericio F. Teixobactin as a scaffold for unlimited new antimicrobial peptides: SAR study. Bioorg Med Chem 2017; 26:2788-2796. [PMID: 29029900 DOI: 10.1016/j.bmc.2017.09.040] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/22/2017] [Accepted: 09/29/2017] [Indexed: 11/26/2022]
Abstract
It looks that a new era of antimicrobial peptides (AMPs) started with the discovery of teixobactin, which is a "head to side-chain" cyclodepsipeptide. It was isolated from a soil gram-negative b-proteobacteria by means of a revolutionary technique. Since there, several groups have developed synthetic strategies for efficient synthesis of this peptide and its analogues as well. Herein, all chemistries reported as well as the biological activity of the analogues are analyzed. Finally, some inputs regarding new trends for the next generation of analogues are discussed.
Collapse
Affiliation(s)
- Shimaa A H Abdel Monaim
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Yahya E Jad
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Ayman El-Faham
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426, Ibrahimia, Alexandria 12321, Egypt
| | - Beatriz G de la Torre
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban 4001, South Africa; KRISP, College of Health Sciences, University of KwaZulu-Natal, Durban 4001, South Africa.
| | - Fernando Albericio
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban 4001, South Africa; Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa; Department of Organic Chemistry, University of Barcelona, Barcelona 08028, Spain; CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Barcelona Science Park, Barcelona 08028, Spain.
| |
Collapse
|
36
|
Yang L, Chumsae C, Kaplan JB, Moulton KR, Wang D, Lee DH, Zhou ZS. Detection of Alkynes via Click Chemistry with a Brominated Coumarin Azide by Simultaneous Fluorescence and Isotopic Signatures in Mass Spectrometry. Bioconjug Chem 2017; 28:2302-2309. [DOI: 10.1021/acs.bioconjchem.7b00354] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Lihua Yang
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, Massachusetts 01605, United States
- Barnett
Institute of Chemical and Biological Analysis, Department of Chemistry
and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Chris Chumsae
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, Massachusetts 01605, United States
| | - Jenifer B. Kaplan
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, Massachusetts 01605, United States
| | - Kevin Ryan Moulton
- Barnett
Institute of Chemical and Biological Analysis, Department of Chemistry
and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Dongdong Wang
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, Massachusetts 01605, United States
| | - David H. Lee
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, Massachusetts 01605, United States
| | - Zhaohui Sunny Zhou
- Barnett
Institute of Chemical and Biological Analysis, Department of Chemistry
and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| |
Collapse
|
37
|
Abstract
A chemoselective Staudinger reduction/sulfur(VI) fluoride exchange cascade has been developed to join two chemical segments through an aryl sulfamate ester (RNH-SO2-OAr) linkage. Aryl fluorosulfate is exploited in this work as the first tetrahedral electrophilic trap for the in situ generated iminophosphorane. Ten examples using azide-containing compounds are presented.
Collapse
Affiliation(s)
- Gerui Ren
- Department of Applied Chemistry, School of Food Science and Biotechnology, Zhejiang Gongshang University , Hangzhou 310035, China
| | | | | |
Collapse
|
38
|
Weng W, Nie W, Zhou Q, Zhou X, Cao L, Ji F, Cui J, He C, Su J. Controlled release of vancomycin from 3D porous graphene-based composites for dual-purpose treatment of infected bone defects. RSC Adv 2017. [DOI: 10.1039/c6ra26062d] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A vancomycin-loaded reduced graphene oxide/nano-hydroxyapatite (RGO–nHA) 3D porous composite for eradication of bone infection and facilitation of bone regeneration.
Collapse
Affiliation(s)
- Weizong Weng
- Department of Orthopaedics Trauma
- Changhai Hospital
- Second Military Medical University
- Shanghai 200433
- China
| | - Wei Nie
- College of Chemistry
- Chemical Engineering and Biotechnology
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- Donghua University
- Shanghai 201620
| | - Qirong Zhou
- Department of Orthopaedics Trauma
- Changhai Hospital
- Second Military Medical University
- Shanghai 200433
- China
| | - Xiaojun Zhou
- College of Chemistry
- Chemical Engineering and Biotechnology
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- Donghua University
- Shanghai 201620
| | - Liehu Cao
- Department of Orthopaedics Trauma
- Changhai Hospital
- Second Military Medical University
- Shanghai 200433
- China
| | - Fang Ji
- Department of Orthopaedics Trauma
- Changhai Hospital
- Second Military Medical University
- Shanghai 200433
- China
| | - Jin Cui
- Department of Orthopaedics Trauma
- Changhai Hospital
- Second Military Medical University
- Shanghai 200433
- China
| | - Chuanglong He
- College of Chemistry
- Chemical Engineering and Biotechnology
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- Donghua University
- Shanghai 201620
| | - Jiacan Su
- Department of Orthopaedics Trauma
- Changhai Hospital
- Second Military Medical University
- Shanghai 200433
- China
| |
Collapse
|