1
|
Hou R, Gao Y, Guo Y, Zhang C, Xu W. Directing Organometallic Ring-Chain Equilibrium by Electrostatic Interactions. ACS NANO 2024; 18:31478-31484. [PMID: 39474669 DOI: 10.1021/acsnano.4c12046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2024]
Abstract
Dynamic chemistry, which falls into the realm of both supramolecular and covalent chemistry, enables intriguing properties, such as structural diversity, self-healing, and adaptability. Due to robustness of covalent bonds compared to noncovalent ones, dynamic covalent chemistry has been exploited to synthesize complex molecular nanostructures at solid/liquid interfaces under ambient conditions, generally responsive to internal factors that directly regulate intermolecular covalent bonds. However, directing dynamics of covalent nanostructures, e.g., the typical ring-chain equilibria, on surface by extrinsic interactions remains elusive and challenging. Herein, we have controllably directed the ring-chain equilibrium of covalent organometallic structures by regulating intermolecular electrostatic interactions, thus achieving on-surface dynamic covalent chemistry under ultrahigh vacuum conditions. Our findings unravel the dynamic mechanism of covalent polymers governed by weak intermolecular interactions at the submolecular level, which not only bridges the gap between supramolecular and covalent chemistry but also offers great opportunities for the fabrication of adaptive polymeric nanostructures that respond to different conditions.
Collapse
Affiliation(s)
- Rujia Hou
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai 201804, People's Republic of China
| | - Yuhong Gao
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai 201804, People's Republic of China
| | - Yuan Guo
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai 201804, People's Republic of China
| | - Chi Zhang
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai 201804, People's Republic of China
| | - Wei Xu
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai 201804, People's Republic of China
| |
Collapse
|
2
|
Harismah K, Hajali N, Zandi H. 6-Thioguanine bimolecular formation for dual chelation of iron: DFT study. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
3
|
Liu X, Du Y, Peng X, Wan X, Qian Y, Zhang Y, Ji Q, Kan E, Fuchs H, Kong H. Modulation on the Iron Centers by Selective Synthesis of Organic Ligands with Stereo-Specific Conformations. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2008036. [PMID: 33797192 DOI: 10.1002/smll.202008036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/09/2021] [Indexed: 06/12/2023]
Abstract
Advanced fabrication of surface metal-organic complexes with specific coordination configuration and metal centers will facilitate to exploit novel nanomaterials with attractive electronic/magnetic properties. The precise on-surface synthesis provides an appealing strategy for in situ construction of complex organic ligands from simple precursors autonomously. In this paper, distinct organic ligands with stereo-specific conformation are separately synthesized through the well-known dehalogenative coupling. More interestingly, the exo-bent ligands promote the mono-iron chelated complexes with the Fe center significantly decoupled from the surface and of high spin, while the endo-bent ligands lead to bi-iron chelated ones instead with ferromagnetic properties.
Collapse
Affiliation(s)
- Xinbang Liu
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Yongping Du
- Department of Applied Physics and Institution of Energy and Microstructure, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Xinchen Peng
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Xinling Wan
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Yinyue Qian
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Yonghao Zhang
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Qingmin Ji
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Erjun Kan
- Department of Applied Physics and Institution of Energy and Microstructure, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Harald Fuchs
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
- Physikalisches Institute, Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany
- Center for Nanotechnology (CeNTech), Heisenbergstrasse 11, 48149, Münster, Germany
| | - Huihui Kong
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| |
Collapse
|
4
|
Wang X, Ding Y, Li D, Xie L, Xu W. Linear array of cesium atoms assisted by uracil molecules on Au(111). Chem Commun (Camb) 2019; 55:12064-12067. [DOI: 10.1039/c9cc05709a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of metal–organic U + Cs structures are achieved in which the Cs cations tend to form linear arrays.
Collapse
Affiliation(s)
- Xinyi Wang
- Interdisciplinary Materials Research Center
- College of Materials Science and Engineering
- Tongji University
- Shanghai 201804
- P. R. China
| | - Yuanqi Ding
- Interdisciplinary Materials Research Center
- College of Materials Science and Engineering
- Tongji University
- Shanghai 201804
- P. R. China
| | - Donglin Li
- Interdisciplinary Materials Research Center
- College of Materials Science and Engineering
- Tongji University
- Shanghai 201804
- P. R. China
| | - Lei Xie
- Interdisciplinary Materials Research Center
- College of Materials Science and Engineering
- Tongji University
- Shanghai 201804
- P. R. China
| | - Wei Xu
- Interdisciplinary Materials Research Center
- College of Materials Science and Engineering
- Tongji University
- Shanghai 201804
- P. R. China
| |
Collapse
|
5
|
Ding Y, Wang X, Xie L, Yao X, Xu W. Two-dimensional self-assembled nanostructures of nucleobases and their related derivatives on Au(111). Chem Commun (Camb) 2018; 54:9259-9269. [PMID: 30027963 DOI: 10.1039/c8cc03585g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The construction of two-dimensional (2D) self-assembled nanostructures has been one of the considerably interesting areas of on-surface chemistry in the past few decades, and has benefited from the rapid development and improvement of scanning probe microscopy techniques. In this research field, many attempts have been made in the controllable fabrication of well-ordered and multifunctional surface nanostructures, which attracted interest because of the prospect for artificial design of functional molecular nanodevices. DNA and RNA are considered to be programmable self-assembly systems and it is possible to use their base sequences to encode instructions for assembly in a predetermined fashion at the nanometer scale. As important constituents of nucleic acids, nucleobases, with intrinsic functional groups for hydrogen bonding, coordination bonding, and electrostatic interactions, can be employed as a potential system for the versatile construction of various biomolecular nanostructures, which may be used to structure the self-assembly of DNA-based artificial molecular constructions and play an important role in novel biosensors based on surface functionalization. In this article, we will review the recent progress of on-surface self-assembly of nucleobases and their derivatives together with different reactants (e.g., metals, halogens, salts and water), and as a result, various 2D surface nanostructures are summarized.
Collapse
Affiliation(s)
- Yuanqi Ding
- Interdisciplinary Materials Research Center, Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials, College of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China.
| | | | | | | | | |
Collapse
|
6
|
Li W, Jin J, Liu X, Wang L. Structural Transformation of Guanine Coordination Motifs in Water Induced by Metal Ions and Temperature. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:8092-8098. [PMID: 29905486 DOI: 10.1021/acs.langmuir.8b01263] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The transformation effects of metal ions and temperature on the DNA base guanine (G) metal-organic coordination motifs in water have been investigated by scanning tunneling microcopy (STM). The G molecules form an ordered hydrogen-bonded structure at the water-highly oriented pyrolytic graphite interface. The STM observations reveal that the canonical G/9H form can be transformed into the G/(3H,7H) tautomer by increasing the temperature of the G solution to 38.6 °C. Moreover, metal ions bind with G molecules to form G4Fe13+, G3Fe32+, and the heterochiral intermixed G4Na1+ metal-organic networks after the introduction of alkali-metal ions in cellular environment.
Collapse
Affiliation(s)
- Wei Li
- Department of Physics , Nanchang University , Nanchang 330031 , P. R. China
- Department of Science , Nanchang Institute of Technology , Nanchang 330099 , P. R. China
| | - Jing Jin
- Department of Physics , Nanchang University , Nanchang 330031 , P. R. China
| | - Xiaoqing Liu
- Department of Physics , Nanchang University , Nanchang 330031 , P. R. China
| | - Li Wang
- Department of Physics , Nanchang University , Nanchang 330031 , P. R. China
| |
Collapse
|
7
|
Papageorgiou AC, Li J, Oh SC, Zhang B, Sağlam Ö, Guo Y, Reichert J, Marco AB, Cortizo-Lacalle D, Mateo-Alonso A, Barth JV. Tuning the ease of formation of on-surface metal-adatom coordination polymers featuring diketones. NANOSCALE 2018; 10:9561-9568. [PMID: 29745943 DOI: 10.1039/c8nr02537a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We use pyrene-4,5,9,10-tetraketone molecules with substituents of varying bulkiness in the 2,7 positions to probe the generality and versatility of the previously reported on-surface coordination of two diketones with a single metal atom, leading to one-dimensional coordination polymers. Three different low index surfaces of group 11 metals (Cu, Ag and Au) are used to provide both the support and the metal atoms for metal-organic coordination. By real space visualisation with single molecule resolution employing scanning tunnelling microscopy we investigate the molecular self-assembly and show how this can be substantiated with the formation of metal-organic linear and cyclic oligomers, depending on the employed substrate.
Collapse
|
8
|
Zhang C, Xie L, Ding Y, Yuan C, Xu W. Hierarchical formation of Fe-9eG supramolecular networks via flexible coordination bonds. Phys Chem Chem Phys 2018; 20:3694-3698. [PMID: 29345265 DOI: 10.1039/c7cp08278a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
From the interplay between high-resolution scanning tunneling microscopy imaging/manipulations and density functional theory calculations, we display the hierarchical formation of supramolecular networks by codeposition of 9eG molecules and Fe atoms on Au(111) based on the flexible coordination bonds (the adaptability and versatility in the coordination modes). In the first step, homochiral islands composed of homochiral G4Fe2 motifs are formed; and then in the second step, thermal treatment results in the transformation into the porous networks composed of heterochiral G4Fe2 motifs with the ratio of the components being constant. In situ STM manipulations and the coexistence of some other heterochiral G4Fe2 motifs and clusters also show the flexibility of the coordination bonds involved. These studies may provide a fundamental understanding of the regulations of multilevel supramolecular structures and shed light on the formation of designed supramolecular nanostructures.
Collapse
Affiliation(s)
- Chi Zhang
- Interdisciplinary Materials Research Center, College of Materials Science and Engineering, Tongji University, Caoan Road 4800, Shanghai 201804, P. R. China.
| | | | | | | | | |
Collapse
|
9
|
Zhang Y, Ding Y, Xie L, Ma H, Yao X, Zhang C, Yuan C, Xu W. On-Surface Synthesis of Adenine Oligomers via Ullmann Reaction. Chemphyschem 2017; 18:3544-3547. [PMID: 29028154 DOI: 10.1002/cphc.201701009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/12/2017] [Indexed: 11/07/2022]
Abstract
Despite the fact that DNA bases have been well-studied on surface, the on-surface synthesis of one-dimensional DNA analogs through in situ reactions is still an interesting topic to be investigated. Herein, from the interplay of high-resolution scanning tunneling microscopy (STM) imaging and density functional theory (DFT) calculations, we have delicately designed a halogenated derivative of adenine as precursor to realize the combination of DNA bases and Ullmann reaction, and then successfully synthesized adenine oligomers on Au(111) via Ullmann coupling. This model system provides a possible bottom-up strategy of fabricating adenine oligomers on surface, which may further give access to man-made DNA strands with multiple bases.
Collapse
Affiliation(s)
- Yanmin Zhang
- Interdisciplinary Materials Research Center, Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials, College of Materials Science and Engineering, Tongji University, Caoan Road 4800, Shanghai, 201804, P. R. China
| | - Yuanqi Ding
- Interdisciplinary Materials Research Center, Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials, College of Materials Science and Engineering, Tongji University, Caoan Road 4800, Shanghai, 201804, P. R. China
| | - Lei Xie
- Interdisciplinary Materials Research Center, Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials, College of Materials Science and Engineering, Tongji University, Caoan Road 4800, Shanghai, 201804, P. R. China
| | - Honghong Ma
- Interdisciplinary Materials Research Center, Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials, College of Materials Science and Engineering, Tongji University, Caoan Road 4800, Shanghai, 201804, P. R. China
| | - Xinyi Yao
- Interdisciplinary Materials Research Center, Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials, College of Materials Science and Engineering, Tongji University, Caoan Road 4800, Shanghai, 201804, P. R. China
| | - Chi Zhang
- Interdisciplinary Materials Research Center, Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials, College of Materials Science and Engineering, Tongji University, Caoan Road 4800, Shanghai, 201804, P. R. China
| | - Chunxue Yuan
- Interdisciplinary Materials Research Center, Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials, College of Materials Science and Engineering, Tongji University, Caoan Road 4800, Shanghai, 201804, P. R. China
| | - Wei Xu
- Interdisciplinary Materials Research Center, Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials, College of Materials Science and Engineering, Tongji University, Caoan Road 4800, Shanghai, 201804, P. R. China
| |
Collapse
|
10
|
Ding Y, Xie L, Zhang C, Xu W. Real-space evidence of the formation of the GCGC tetrad and its competition with the G-quartet on the Au(111) surface. Chem Commun (Camb) 2017; 53:9846-9849. [PMID: 28825090 DOI: 10.1039/c7cc05548j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
From the interplay of high-resolution scanning tunneling microscopy (STM) imaging and density functional theory (DFT) calculations, we show the first real-space evidence of the formation of GCGC tetrad on an Au(111) surface, and further investigate its competition with the well-known G-quartet with the aid of NaCl under ultrahigh vacuum (UHV) conditions.
Collapse
Affiliation(s)
- Yuanqi Ding
- Interdisciplinary Materials Research Center, Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials, College of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China.
| | | | | | | |
Collapse
|
11
|
Xie L, Zhang C, Ding Y, E W, Yuan C, Xu W. Structural diversity of metal-organic self-assembly assisted by chlorine. Chem Commun (Camb) 2017; 53:8767-8769. [PMID: 28730208 DOI: 10.1039/c7cc04446a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
From the combination of STM imaging and DFT calculations, we show that both alkali metal and halogens interact with different sites of the target molecules resulting in structural formation in a synergistic way. The elementary metal-organic motifs are connected by Cl in a variety of fashions demonstrating structural diversity.
Collapse
Affiliation(s)
- Lei Xie
- Interdisciplinary Materials Research Center, Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials, College of Materials Science and Engineering, Tongji University, Shanghai 201804, People's Republic of China.
| | - Chi Zhang
- Interdisciplinary Materials Research Center, Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials, College of Materials Science and Engineering, Tongji University, Shanghai 201804, People's Republic of China.
| | - Yuanqi Ding
- Interdisciplinary Materials Research Center, Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials, College of Materials Science and Engineering, Tongji University, Shanghai 201804, People's Republic of China.
| | - Wenlong E
- Interdisciplinary Materials Research Center, Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials, College of Materials Science and Engineering, Tongji University, Shanghai 201804, People's Republic of China.
| | - Chunxue Yuan
- Interdisciplinary Materials Research Center, Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials, College of Materials Science and Engineering, Tongji University, Shanghai 201804, People's Republic of China.
| | - Wei Xu
- Interdisciplinary Materials Research Center, Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials, College of Materials Science and Engineering, Tongji University, Shanghai 201804, People's Republic of China.
| |
Collapse
|
12
|
Xie L, Zhang C, Ding Y, Xu W. Structural Transformation and Stabilization of Metal-Organic Motifs Induced by Halogen Doping. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201702589] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Lei Xie
- Interdisciplinary Materials Research Center, Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials; College of Materials Science and Engineering; Tongji University; Shanghai 201804 P.R. China
| | - Chi Zhang
- Interdisciplinary Materials Research Center, Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials; College of Materials Science and Engineering; Tongji University; Shanghai 201804 P.R. China
| | - Yuanqi Ding
- Interdisciplinary Materials Research Center, Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials; College of Materials Science and Engineering; Tongji University; Shanghai 201804 P.R. China
| | - Wei Xu
- Interdisciplinary Materials Research Center, Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials; College of Materials Science and Engineering; Tongji University; Shanghai 201804 P.R. China
| |
Collapse
|
13
|
Xie L, Zhang C, Ding Y, Xu W. Structural Transformation and Stabilization of Metal-Organic Motifs Induced by Halogen Doping. Angew Chem Int Ed Engl 2017; 56:5077-5081. [DOI: 10.1002/anie.201702589] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Lei Xie
- Interdisciplinary Materials Research Center, Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials; College of Materials Science and Engineering; Tongji University; Shanghai 201804 P.R. China
| | - Chi Zhang
- Interdisciplinary Materials Research Center, Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials; College of Materials Science and Engineering; Tongji University; Shanghai 201804 P.R. China
| | - Yuanqi Ding
- Interdisciplinary Materials Research Center, Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials; College of Materials Science and Engineering; Tongji University; Shanghai 201804 P.R. China
| | - Wei Xu
- Interdisciplinary Materials Research Center, Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials; College of Materials Science and Engineering; Tongji University; Shanghai 201804 P.R. China
| |
Collapse
|