1
|
Nagata M, Watanabe M, Doi R, Uemura M, Ochiai N, Ichinose W, Fujiwara K, Sato Y, Kameda T, Takeuchi K, Shuto S. Helix-forming aliphatic homo-δ-peptide foldamers based on the conformational restriction effects of cyclopropane. Org Biomol Chem 2023; 21:970-980. [PMID: 36426637 DOI: 10.1039/d2ob01715f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Considerable effort has been directed toward developing artificial peptide-based foldamers. However, detailed structural analysis of δ-peptide foldamers consisting of only aliphatic δ-amino acids has not been reported. Herein, we rationally designed and stereoselectively synthesized aliphatic homo-δ-peptides forming a stable helical structure by using a chiral cyclopropane δ-amino acid as a monomer unit. Structural analysis of the homo-δ-peptides using circular dichroism, infrared, and NMR spectroscopy indicated that they form a stable 14-helical structure in solution. Furthermore, we successfully conducted X-ray crystallographic analysis of the homo-δ-peptides, demonstrating a right-handed 14-helical structure. This helical structure of the crystal was consistent with those predicted by theoretical calculations and those obtained based on NMR spectroscopy in solution. This stable helical structure is due to the effective restriction of the backbone conformation by the structural characteristics of cyclopropane. This work reports the first example of aliphatic homo-δ-peptide foldamers having a stable helical structure both in the solution and crystal states.
Collapse
Affiliation(s)
- Makoto Nagata
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| | - Mizuki Watanabe
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| | - Ryohei Doi
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| | - Mai Uemura
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| | - Nanase Ochiai
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| | - Wataru Ichinose
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| | - Koichi Fujiwara
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| | - Yoshihiro Sato
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| | - Tomoshi Kameda
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Koh Takeuchi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Satoshi Shuto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
2
|
Optimization of cyclic peptide property using chromatographic capacity factor on permeability of passive cell membrane and human induced pluripotent stem cell-derived intestinal membrane. J Pharm Sci 2022; 111:1879-1886. [DOI: 10.1016/j.xphs.2022.03.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 11/21/2022]
|
3
|
Tamura T, Inoue M, Yoshimitsu Y, Hashimoto I, Ohashi N, Tsumura K, Suzuki K, Watanabe T, Hohsaka T. Chemical Synthesis and Cell-Free Expression of Thiazoline Ring-Bridged Cyclic Peptides and Their Properties on Biomembrane Permeability. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20210409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Takashi Tamura
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1211, Japan
- Synthetic Organic Chemistry Laboratories, FUJIFILM Corporation, 577 Ushijima, Kaisei-machi, Ashigarakami-gun, Kanagawa 258-8577, Japan
| | - Masaaki Inoue
- Synthetic Organic Chemistry Laboratories, FUJIFILM Corporation, 577 Ushijima, Kaisei-machi, Ashigarakami-gun, Kanagawa 258-8577, Japan
| | - Yuji Yoshimitsu
- Synthetic Organic Chemistry Laboratories, FUJIFILM Corporation, 577 Ushijima, Kaisei-machi, Ashigarakami-gun, Kanagawa 258-8577, Japan
| | - Ichihiko Hashimoto
- Analysis Technology Center, FUJIFILM Corporation, 210 Nakanuma, Minamiashigara, Kanagawa 258-0123, Japan
| | - Noriyuki Ohashi
- Analysis Technology Center, FUJIFILM Corporation, 210 Nakanuma, Minamiashigara, Kanagawa 258-0123, Japan
| | - Kyosuke Tsumura
- Analysis Technology Center, FUJIFILM Corporation, 210 Nakanuma, Minamiashigara, Kanagawa 258-0123, Japan
| | - Koo Suzuki
- Analysis Technology Center, FUJIFILM Corporation, 210 Nakanuma, Minamiashigara, Kanagawa 258-0123, Japan
| | - Takayoshi Watanabe
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1211, Japan
| | - Takahiro Hohsaka
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1211, Japan
| |
Collapse
|
4
|
Chen R, Zhou C, Dong L, Feng T, Wang G, Wang J, Gu Y, Xu Z, Cheng J, Shao X, Xu X, Li Z. Diamides conformationally restricted with central amino acid: design, synthesis and biological activities. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Rui‐Jia Chen
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy East China University of Science and Technology Shanghai China
| | - Cong Zhou
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy East China University of Science and Technology Shanghai China
| | - Le‐Feng Dong
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy East China University of Science and Technology Shanghai China
| | - Ting‐Ting Feng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy East China University of Science and Technology Shanghai China
| | - Gang‐Ao Wang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy East China University of Science and Technology Shanghai China
| | - Jun‐Jie Wang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy East China University of Science and Technology Shanghai China
| | - Yu‐Cheng Gu
- Syngenta Jealott's Hill International Research Centre, RG42 6EY UK
| | - Zhi‐Ping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy East China University of Science and Technology Shanghai China
| | - Jia‐Gao Cheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy East China University of Science and Technology Shanghai China
| | - Xu‐Sheng Shao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy East China University of Science and Technology Shanghai China
| | - Xiao‐Yong Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy East China University of Science and Technology Shanghai China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy East China University of Science and Technology Shanghai China
| |
Collapse
|
5
|
Chen R, Zhou C, Pang X, Liu J, Gu Y, Liu J, Li Z. Design, Synthesis, Anti-cancer Activities and Computational Analysis of Novel Diamides Conformationally Restricted by Cyclopropane. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202106053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Neckebroeck A, Kelly SM, Smith BO, Clark JS. Synthesis of the Prototypical Cyclopropyl Dipeptide Mimic and Evaluation of Its Turn-Inducing Capability. J Org Chem 2021; 87:258-270. [PMID: 34913698 DOI: 10.1021/acs.joc.1c02344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The (+) and (-) enantiomers of a new turn-inducing cyclopropyl dipeptide mimic have been synthesized and evaluated. The mimic derives its turn-inducing capabilities solely from the cyclopropyl group and without the conformational biasing that would be provided by side-chain substituents. The mimic and peptide-mimic hybrids prepared from it have been studied using a combination of spectroscopic techniques (NMR, IR, and CD). The dipeptide mimic itself displays intramolecular hydrogen bonding in organic solvents, which differs from that observed in natural peptide turns. In contrast, more elaborate peptide-mimic hybrids exhibit hydrogen bonding characteristics that vary with solvent but are consistent with structures found in the tetrapeptide portion (i → i + 3) of a native β-turn.
Collapse
Affiliation(s)
- Albane Neckebroeck
- School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, Glasgow G12 8QQ, United Kingdom
| | - Sharon M Kelly
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Joseph Black Building, University Avenue, Glasgow G12 8QQ, United Kingdom
| | - Brian O Smith
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Joseph Black Building, University Avenue, Glasgow G12 8QQ, United Kingdom
| | - J Stephen Clark
- School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|
7
|
A cyclic peptide inhibitor of the SARS-CoV-2 main protease. Eur J Med Chem 2021; 221:113530. [PMID: 34023738 PMCID: PMC8096527 DOI: 10.1016/j.ejmech.2021.113530] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/26/2021] [Accepted: 04/30/2021] [Indexed: 12/19/2022]
Abstract
This paper presents the design and study of a first-in-class cyclic peptide inhibitor against the SARS-CoV-2 main protease (Mpro). The cyclic peptide inhibitor is designed to mimic the conformation of a substrate at a C-terminal autolytic cleavage site of Mpro. The cyclic peptide contains a [4-(2-aminoethyl)phenyl]-acetic acid (AEPA) linker that is designed to enforce a conformation that mimics a peptide substrate of Mpro. In vitro evaluation of the cyclic peptide inhibitor reveals that the inhibitor exhibits modest activity against Mpro and does not appear to be cleaved by the enzyme. Conformational searching predicts that the cyclic peptide inhibitor is fairly rigid, adopting a favorable conformation for binding to the active site of Mpro. Computational docking to the SARS-CoV-2 Mpro suggests that the cyclic peptide inhibitor can bind the active site of Mpro in the predicted manner. Molecular dynamics simulations provide further insights into how the cyclic peptide inhibitor may bind the active site of Mpro. Although the activity of the cyclic peptide inhibitor is modest, its design and study lays the groundwork for the development of additional cyclic peptide inhibitors against Mpro with improved activities.
Collapse
|
8
|
Sugita M, Sugiyama S, Fujie T, Yoshikawa Y, Yanagisawa K, Ohue M, Akiyama Y. Large-Scale Membrane Permeability Prediction of Cyclic Peptides Crossing a Lipid Bilayer Based on Enhanced Sampling Molecular Dynamics Simulations. J Chem Inf Model 2021; 61:3681-3695. [PMID: 34236179 DOI: 10.1021/acs.jcim.1c00380] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Membrane permeability is a significant obstacle facing the development of cyclic peptide drugs. However, membrane permeation mechanisms are poorly understood. To investigate common features of permeable (and nonpermeable) designs, it is necessary to reproduce the membrane permeation process of cyclic peptides through the lipid bilayer. We simulated the membrane permeation process of 100 six-residue cyclic peptides across the lipid bilayer based on steered molecular dynamics (MD) and replica-exchange umbrella sampling simulations and predicted membrane permeability using the inhomogeneous solubility-diffusion model and a modified version of it. Furthermore, we confirmed the effectiveness of this protocol by predicting the membrane permeability of 56 eight-residue cyclic peptides with diverse chemical structures, including some confidential designs from a pharmaceutical company. As a result, a reasonable correlation between experimentally assessed and calculated membrane permeability of cyclic peptides was observed for the peptide libraries, except for strongly hydrophobic peptides. Our analysis of the MD trajectory demonstrated that most peptides were stabilized in the boundary region between bulk water and membrane and that for most peptides, the process of crossing the center of the membrane is the main obstacle to membrane permeation. The height of this barrier is well correlated with the electrostatic interaction between the peptide and the surrounding media. The structural and energetic features of the representative peptide at each vertical position within the membrane were also analyzed, revealing that peptides permeate the membrane by changing their orientation and conformation according to the surrounding environment.
Collapse
Affiliation(s)
- Masatake Sugita
- Department of Computer Science, School of Computing, Tokyo Institute of Technology, W8-76, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.,Middle-Molecule IT-based Drug Discovery Laboratory (MIDL), Tokyo Institute of Technology, RGBT2-A-1C, 3-25-10 Tonomachi, Kawasaki-ku, Kawasaki City, Kanagawa 210-0821, Japan
| | - Satoshi Sugiyama
- Department of Computer Science, School of Computing, Tokyo Institute of Technology, W8-76, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.,AIST-TokyoTech Real World Big-Data Computation Open Innovation Laboratory (RWBC-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8560, Japan
| | - Takuya Fujie
- Department of Computer Science, School of Computing, Tokyo Institute of Technology, W8-76, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.,Middle-Molecule IT-based Drug Discovery Laboratory (MIDL), Tokyo Institute of Technology, RGBT2-A-1C, 3-25-10 Tonomachi, Kawasaki-ku, Kawasaki City, Kanagawa 210-0821, Japan
| | - Yasushi Yoshikawa
- Department of Computer Science, School of Computing, Tokyo Institute of Technology, W8-76, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.,Middle-Molecule IT-based Drug Discovery Laboratory (MIDL), Tokyo Institute of Technology, RGBT2-A-1C, 3-25-10 Tonomachi, Kawasaki-ku, Kawasaki City, Kanagawa 210-0821, Japan
| | - Keisuke Yanagisawa
- Department of Computer Science, School of Computing, Tokyo Institute of Technology, W8-76, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.,Middle-Molecule IT-based Drug Discovery Laboratory (MIDL), Tokyo Institute of Technology, RGBT2-A-1C, 3-25-10 Tonomachi, Kawasaki-ku, Kawasaki City, Kanagawa 210-0821, Japan
| | - Masahito Ohue
- Department of Computer Science, School of Computing, Tokyo Institute of Technology, W8-76, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.,Middle-Molecule IT-based Drug Discovery Laboratory (MIDL), Tokyo Institute of Technology, RGBT2-A-1C, 3-25-10 Tonomachi, Kawasaki-ku, Kawasaki City, Kanagawa 210-0821, Japan
| | - Yutaka Akiyama
- Department of Computer Science, School of Computing, Tokyo Institute of Technology, W8-76, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.,Middle-Molecule IT-based Drug Discovery Laboratory (MIDL), Tokyo Institute of Technology, RGBT2-A-1C, 3-25-10 Tonomachi, Kawasaki-ku, Kawasaki City, Kanagawa 210-0821, Japan
| |
Collapse
|
9
|
Miyachi H, Kanamitsu K, Ishii M, Watanabe E, Katsuyama A, Otsuguro S, Yakushiji F, Watanabe M, Matsui K, Sato Y, Shuto S, Tadokoro T, Kita S, Matsumaru T, Matsuda A, Hirose T, Iwatsuki M, Shigeta Y, Nagano T, Kojima H, Ichikawa S, Sunazuka T, Maenaka K. Structure, solubility, and permeability relationships in a diverse middle molecule library. Bioorg Med Chem Lett 2021; 37:127847. [PMID: 33571648 DOI: 10.1016/j.bmcl.2021.127847] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/07/2021] [Accepted: 01/30/2021] [Indexed: 10/22/2022]
Abstract
To develop methodology to predict the potential druggability of middle molecules, we examined the structure, solubility, and permeability relationships of a diverse library (HKDL ver.1) consisting of 510 molecules (359 natural product derivatives, 76 non-natural products, 46 natural products, and 29 non-natural product derivatives). The library included peptides, depsipeptides, macrolides, and lignans, and 476 of the 510 compounds had a molecular weight in the range of 500-2000 Da. The solubility and passive diffusion velocity of the middle molecules were assessed using the parallel artificial membrane permeability assay (PAMPA). Quantitative values of solubility of 471 molecules and passive diffusion velocity of 287 molecules were obtained, and their correlations with the structural features of the molecules were examined. Based on the results, we propose a method to predict the passive diffusion characteristics of middle molecules from their three-dimensional structural features.
Collapse
Affiliation(s)
- Hiroyuki Miyachi
- Lead Exploration Unit, Drug Discovery Initiative, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Kayoko Kanamitsu
- Lead Exploration Unit, Drug Discovery Initiative, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Mayumi Ishii
- Lead Exploration Unit, Drug Discovery Initiative, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Eri Watanabe
- Lead Exploration Unit, Drug Discovery Initiative, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Akira Katsuyama
- Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Science, Hokkaido University, Kita 12, Nishi 6, Kita ku, Sapporo 060 0812, Japan; Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Satoko Otsuguro
- Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Science, Hokkaido University, Kita 12, Nishi 6, Kita ku, Sapporo 060 0812, Japan
| | - Fumika Yakushiji
- Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Science, Hokkaido University, Kita 12, Nishi 6, Kita ku, Sapporo 060 0812, Japan; Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Mizuki Watanabe
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Kouhei Matsui
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Yukina Sato
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Satoshi Shuto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Takashi Tadokoro
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Shunsuke Kita
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Takanori Matsumaru
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Akira Matsuda
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Tomoyasu Hirose
- Ōmura Satoshi Memorial Research Institute, Kitasato University, Shirokane 5-9-1, Minato-ku, Tokyo 108-8641, Japan
| | - Masato Iwatsuki
- Ōmura Satoshi Memorial Research Institute, Kitasato University, Shirokane 5-9-1, Minato-ku, Tokyo 108-8641, Japan
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Tetsuo Nagano
- Drug Discovery Initiative, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hirotatsu Kojima
- Drug Discovery Initiative, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Satoshi Ichikawa
- Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Science, Hokkaido University, Kita 12, Nishi 6, Kita ku, Sapporo 060 0812, Japan; Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| | - Toshiaki Sunazuka
- Ōmura Satoshi Memorial Research Institute, Kitasato University, Shirokane 5-9-1, Minato-ku, Tokyo 108-8641, Japan.
| | - Katsumi Maenaka
- Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Science, Hokkaido University, Kita 12, Nishi 6, Kita ku, Sapporo 060 0812, Japan; Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Kita 12, Nishi 6, Kita ku, Sapporo 060 0812, Japan.
| |
Collapse
|
10
|
Hosseini SJ, Emamian S, Hassani H, Hamzehzadeh ND. Stereoselective Cyclopropanation of
Arylmethylidenemalononitriles by 2,6-Dimethylquinoline: A Molecular Electron Density
Theory Study. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1070428020120209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Buckton LK, Rahimi MN, McAlpine SR. Cyclic Peptides as Drugs for Intracellular Targets: The Next Frontier in Peptide Therapeutic Development. Chemistry 2020; 27:1487-1513. [PMID: 32875673 DOI: 10.1002/chem.201905385] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 08/26/2020] [Indexed: 12/18/2022]
Abstract
Developing macrocyclic peptides that can reach intracellular targets is a significant challenge. This review discusses the most recent strategies used to develop cell permeable cyclic peptides that maintain binding to their biological target inside the cell. Macrocyclic peptides are unique from small molecules because traditional calculated physical properties are unsuccessful for predicting cell membrane permeability. Peptide synthesis and experimental membrane permeability is the only strategy that effectively differentiates between cell permeable and cell impermeable molecules. Discussed are chemical strategies, including backbone N-methylation and stereochemical changes, which have produced molecular scaffolds with improved cell permeability. However, these improvements often come at the expense of biological activity as chemical modifications alter the peptide conformation, frequently impacting the compound's ability to bind to the target. Highlighted is the most promising approach, which involves side-chain alterations that improve cell permeability without impact binding events.
Collapse
Affiliation(s)
- Laura K Buckton
- Department of Chemistry, University of New South Wales, Sydney, Gate 2 High Street, SEB 701, Kensington, NSW, 2052, Australia
| | - Marwa N Rahimi
- Department of Chemistry, University of New South Wales, Sydney, Gate 2 High Street, SEB 701, Kensington, NSW, 2052, Australia
| | - Shelli R McAlpine
- Department of Chemistry, University of New South Wales, Sydney, Gate 2 High Street, SEB 701, Kensington, NSW, 2052, Australia
| |
Collapse
|
12
|
Shuto S. [Medicinal Chemical Studies Based on the Theoretical Design of Bioactive Compounds]. YAKUGAKU ZASSHI 2020; 140:329-344. [PMID: 32115550 DOI: 10.1248/yakushi.19-00208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
I have engaged in medicinal chemical studies based on the theoretical design of bioactive compounds. First, I present a three-dimensional structural diversity-oriented conformational restriction strategy for developing bioactive compounds based on the characteristic steric and stereoelectronic features of cyclopropane. Using this strategy, various biologically active small molecule compounds, such as receptor agonists/antagonists and enzyme inhibitors, were effectively developed. The strategy was also applied to develop versatile peptidomimetics and membrane-permeable cyclic peptides. Next, studies on Ca2+-mobilizing second messengers, cyclic ADP-ribose (cADPR) and myo-inositol trisphosphates (IP3), are described. In these studies, stable equivalents of cADPR were developed, since biological studies of cADPR have been limited due to its instability. Various potent IP3 receptor ligands, which were designed using the d-glucose structure as a bioisostere of the myo-inositol moiety of IP3, have been identified. Organic chemistry studies have also been extensively performed, because excellent organic chemistry is essential for promoting high-level medicinal chemical studies. For examples, new methods for the synthesis of chiral cyclopropanes, new radical reactions with silicon tethers, and kinetic anomeric effect-dependent stereoselective glycosidations have been developed.
Collapse
Affiliation(s)
- Satoshi Shuto
- Faculty of Pharmaceutical Sciences, Hokkaido University
| |
Collapse
|
13
|
Watanabe M, Kobayashi T, Ito Y, Yamada S, Shuto S. Conformational Restriction of Histamine with a Rigid Bicyclo[3.1.0]hexane Scaffold Provided Selective H 3 Receptor Ligands. Molecules 2020; 25:molecules25163562. [PMID: 32764432 PMCID: PMC7463632 DOI: 10.3390/molecules25163562] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 07/30/2020] [Accepted: 08/04/2020] [Indexed: 01/12/2023] Open
Abstract
We designed and synthesized conformationally rigid histamine analogues with a bicyclo[3.1.0]hexane scaffold. All the compounds were selectively bound to the H3 receptor subtype over the H4 receptor subtype. Notably, compound 7 showed potent binding affinity and over 100-fold selectivity for the H3 receptors (Ki = 5.6 nM for H3 and 602 nM for H4). These results suggest that the conformationally rigid bicyclo[3.1.0]hexane structure can be a useful scaffold for developing potent ligands selective for the target biomolecules.
Collapse
Affiliation(s)
- Mizuki Watanabe
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060–0812, Japan;
- Correspondence: (M.W.); (S.S.)
| | - Takaaki Kobayashi
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060–0812, Japan;
| | - Yoshihiko Ito
- Center for Pharma-Food Research (CPFR), Graduate School of Pharmaceutical Sciences, University of Shizuoka, 52-1, Yada, Suruga-ku, Shizuoka 422–8526, Japan; (Y.I.); (S.Y.)
| | - Shizuo Yamada
- Center for Pharma-Food Research (CPFR), Graduate School of Pharmaceutical Sciences, University of Shizuoka, 52-1, Yada, Suruga-ku, Shizuoka 422–8526, Japan; (Y.I.); (S.Y.)
| | - Satoshi Shuto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060–0812, Japan;
- Center for Research and Education on Drug Discovery, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060–0812, Japan
- Correspondence: (M.W.); (S.S.)
| |
Collapse
|
14
|
Jwad R, Weissberger D, Hunter L. Strategies for Fine-Tuning the Conformations of Cyclic Peptides. Chem Rev 2020; 120:9743-9789. [PMID: 32786420 DOI: 10.1021/acs.chemrev.0c00013] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cyclic peptides are promising scaffolds for drug development, attributable in part to their increased conformational order compared to linear peptides. However, when optimizing the target-binding or pharmacokinetic properties of cyclic peptides, it is frequently necessary to "fine-tune" their conformations, e.g., by imposing greater rigidity, by subtly altering certain side chain vectors, or by adjusting the global shape of the macrocycle. This review systematically examines the various types of structural modifications that can be made to cyclic peptides in order to achieve such conformational control.
Collapse
Affiliation(s)
- Rasha Jwad
- Department of Chemistry, College of Science, Al-Nahrain University, Baghdad, Iraq
| | - Daniel Weissberger
- School of Chemistry, University of New South Wales (UNSW) Sydney, New South Wales 2052, Australia
| | - Luke Hunter
- School of Chemistry, University of New South Wales (UNSW) Sydney, New South Wales 2052, Australia
| |
Collapse
|
15
|
Song H, Fahrig-Kamarauskaitè J, Matabaro E, Kaspar H, Shirran SL, Zach C, Pace A, Stefanov BA, Naismith JH, Künzler M. Substrate Plasticity of a Fungal Peptide α- N-Methyltransferase. ACS Chem Biol 2020; 15:1901-1912. [PMID: 32491837 PMCID: PMC7372559 DOI: 10.1021/acschembio.0c00237] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
The
methylation of amide nitrogen atoms can improve the stability,
oral availability, and cell permeability of peptide therapeutics.
Chemical N-methylation of peptides is challenging.
Omphalotin A is a ribosomally synthesized, macrocylic dodecapeptide
with nine backbone N-methylations. The fungal natural
product is derived from the precursor protein, OphMA, harboring both
the core peptide and a SAM-dependent peptide α-N-methyltransferase domain. OphMA forms a homodimer and its α-N-methyltransferase domain installs the methyl groups in trans on the hydrophobic core dodecapeptide and some
additional C-terminal residues of the protomers. These post-translational
backbone N-methylations occur in a processive manner
from the N- to the C-terminus of the peptide substrate. We demonstrate
that OphMA can methylate polar, aromatic, and charged residues when
these are introduced into the core peptide. Some of these amino acids
alter the efficiency and pattern of methylation. Proline, depending
on its sequence context, can act as a tunable stop signal. Crystal
structures of OphMA variants have allowed rationalization of these
observations. Our results hint at the potential to control this fungal α-N-methyltransferase for biotechnological applications.
Collapse
Affiliation(s)
- Haigang Song
- Division of Structural Biology, Wellcome Trust Centre of Human Genomics, Roosevelt Drive, Oxford OX3 7BN, United Kingdom
- Research Complex at Harwell, Rutherford Laboratory, Didcot, Oxfordshire OX11 0FA, United Kingdom
| | - Ju̅ratè Fahrig-Kamarauskaitè
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland
| | - Emmanuel Matabaro
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland
| | - Hannelore Kaspar
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland
| | - Sally L. Shirran
- Biomedical Sciences Research Complex, North Haugh, University of St. Andrews, Fife KY16 9ST, United Kingdom
| | - Christina Zach
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland
| | - Amy Pace
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland
| | - Bozhidar-Adrian Stefanov
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland
| | - James H. Naismith
- Division of Structural Biology, Wellcome Trust Centre of Human Genomics, Roosevelt Drive, Oxford OX3 7BN, United Kingdom
- Rosalind Franklin Institute, Rutherford Laboratory, Didcot, Oxfordshire OX11 0FA, United Kingdom
- Research Complex at Harwell, Rutherford Laboratory, Didcot, Oxfordshire OX11 0FA, United Kingdom
| | - Markus Künzler
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland
| |
Collapse
|
16
|
Abstract
Approximately 75% of all disease-relevant human proteins, including those involved in intracellular protein-protein interactions (PPIs), are undruggable with the current drug modalities (i.e., small molecules and biologics). Macrocyclic peptides provide a potential solution to these undruggable targets because their larger sizes (relative to conventional small molecules) endow them the capability of binding to flat PPI interfaces with antibody-like affinity and specificity. Powerful combinatorial library technologies have been developed to routinely identify cyclic peptides as potent, specific inhibitors against proteins including PPI targets. However, with the exception of a very small set of sequences, the vast majority of cyclic peptides are impermeable to the cell membrane, preventing their application against intracellular targets. This Review examines common structural features that render most cyclic peptides membrane impermeable, as well as the unique features that allow the minority of sequences to enter the cell interior by passive diffusion, endocytosis/endosomal escape, or other mechanisms. We also present the current state of knowledge about the molecular mechanisms of cell penetration, the various strategies for designing cell-permeable, biologically active cyclic peptides against intracellular targets, and the assay methods available to quantify their cell-permeability.
Collapse
Affiliation(s)
- Patrick G. Dougherty
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12 Avenue, Columbus, Ohio 43210, United States
| | - Ashweta Sahni
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12 Avenue, Columbus, Ohio 43210, United States
| | - Dehua Pei
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12 Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
17
|
Abstract
One of the most exciting facets of cyclic peptides is that they have the potential to be orally bioavailable, despite having physical properties well beyond the traditional "Rule-of-5" chemistry space (Lipinski et al., Adv Drug Deliv Rev. 23(1): 3-25, 1997). An important component of meeting this challenge is to design cyclic peptides with good intestinal permeability. Here we discuss the design principles for intestinal permeability that have been developed in recent year. These principles can be subdivided into three regimes: physical property guidelines, design strategies for the macrocyclic ring, and design strategies for side chains. The most important overall aims are to minimize solvent-exposed polarity while keeping size, flexibility, and lipophilicity within favorable ranges, thereby allowing peptide chemists to achieve intestinal permeability in addition to other important properties for their compounds, such as solubility and binding affinity. Here we describe a variety of design strategies that have been developed to help peptide chemists in this endeavor.
Collapse
|
18
|
Yamamoto K, Tamura T, Henmi K, Kuboyama T, Yanagisawa A, Matsubara M, Takahashi Y, Suzuki M, Saito JI, Ueno K, Shuto S. Development of Dihydrodibenzooxepine Peroxisome Proliferator-Activated Receptor (PPAR) Gamma Ligands of a Novel Binding Mode as Anticancer Agents: Effective Mimicry of Chiral Structures by Olefinic E/ Z-Isomers. J Med Chem 2018; 61:10067-10083. [PMID: 30351933 DOI: 10.1021/acs.jmedchem.8b01200] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A novel class of PPARγ ligand 1 (EC50 = 197 nM) with a dibenzoazepin scaffold was identified through high-throughput screening campaign. To avoid the synthetically troublesome chiral center of 1, its conformational analysis using the MacroModel was conducted, focusing on conformational flip of the tricyclic ring and the conformational restriction by the methyl group at the chiral center. On the basis of this analysis, scaffold hopping of dibenzoazepine into dibenzo[ b, e]oxepine by replacing the chiral structures with the corresponding olefinic E/ Z isomers was performed. Consequently, dibenzo[ b, e]oxepine scaffold 9 was developed showing extremely potent PPARγ reporter activity (EC50 = 2.4 nM, efficacy = 9.5%) as well as differentiation-inducing activity against a gastric cancer cell line MKN-45 that was more potent than any other well-known PPARγ agonists in vitro (94% at 30 nM). The X-ray crystal structure analysis of 9 complexed with PPARγ showed that it had a unique binding mode to PPARγ ligand-binding domain that differed from that of any other PPARγ agonists identified thus far.
Collapse
Affiliation(s)
- Keisuke Yamamoto
- Fuji Research Park, R&D Division, Kyowa Hakko Kirin , 1188 , Shimotogari, Nagaizumi-cho, Sunto-gun, Shiuoka , Japan
| | - Tomohiro Tamura
- Fuji Research Park, R&D Division, Kyowa Hakko Kirin , 1188 , Shimotogari, Nagaizumi-cho, Sunto-gun, Shiuoka , Japan
| | - Kazuki Henmi
- Fuji Research Park, R&D Division, Kyowa Hakko Kirin , 1188 , Shimotogari, Nagaizumi-cho, Sunto-gun, Shiuoka , Japan
| | - Takeshi Kuboyama
- Fuji Research Park, R&D Division, Kyowa Hakko Kirin , 1188 , Shimotogari, Nagaizumi-cho, Sunto-gun, Shiuoka , Japan
| | - Arata Yanagisawa
- Fuji Research Park, R&D Division, Kyowa Hakko Kirin , 1188 , Shimotogari, Nagaizumi-cho, Sunto-gun, Shiuoka , Japan
| | - Masahiro Matsubara
- Fuji Research Park, R&D Division, Kyowa Hakko Kirin , 1188 , Shimotogari, Nagaizumi-cho, Sunto-gun, Shiuoka , Japan
| | - Yuichi Takahashi
- Fuji Research Park, R&D Division, Kyowa Hakko Kirin , 1188 , Shimotogari, Nagaizumi-cho, Sunto-gun, Shiuoka , Japan
| | - Michihiko Suzuki
- Fuji Research Park, R&D Division, Kyowa Hakko Kirin , 1188 , Shimotogari, Nagaizumi-cho, Sunto-gun, Shiuoka , Japan
| | - Jun-Ichi Saito
- Fuji Research Park, R&D Division, Kyowa Hakko Kirin , 1188 , Shimotogari, Nagaizumi-cho, Sunto-gun, Shiuoka , Japan
| | - Kimihisa Ueno
- Fuji Research Park, R&D Division, Kyowa Hakko Kirin , 1188 , Shimotogari, Nagaizumi-cho, Sunto-gun, Shiuoka , Japan
| | | |
Collapse
|
19
|
De Leon Rodriguez LM, Williams ET, Brimble MA. Chemical Synthesis of Bioactive Naturally Derived Cyclic Peptides Containing Ene‐Like Rigidifying Motifs. Chemistry 2018; 24:17869-17880. [DOI: 10.1002/chem.201802533] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Indexed: 12/12/2022]
Affiliation(s)
| | - Elyse T. Williams
- School of Chemical SciencesThe University of Auckland 23 Symonds St. Auckland 1142 New Zealand
| | - Margaret A. Brimble
- School of Biological SciencesThe University of Auckland 3 Symonds St. Auckland 1142 New Zealand
- School of Chemical SciencesThe University of Auckland 23 Symonds St. Auckland 1142 New Zealand
| |
Collapse
|
20
|
Räder AFB, Weinmüller M, Reichart F, Schumacher-Klinger A, Merzbach S, Gilon C, Hoffman A, Kessler H. Orally Active Peptides: Is There a Magic Bullet? Angew Chem Int Ed Engl 2018; 57:14414-14438. [DOI: 10.1002/anie.201807298] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Andreas F. B. Räder
- Technische Universität München; Department Chemie; Institute for Advanced Study; Lichtenbergstrasse 4 85748 Garching Germany
| | - Michael Weinmüller
- Technische Universität München; Department Chemie; Institute for Advanced Study; Lichtenbergstrasse 4 85748 Garching Germany
| | - Florian Reichart
- Technische Universität München; Department Chemie; Institute for Advanced Study; Lichtenbergstrasse 4 85748 Garching Germany
| | | | - Shira Merzbach
- The Hebrew University of Jerusalem; Institutes of Chemistry and Drug Research; Israel
| | - Chaim Gilon
- The Hebrew University of Jerusalem; Institutes of Chemistry and Drug Research; Israel
| | - Amnon Hoffman
- The Hebrew University of Jerusalem; Institutes of Chemistry and Drug Research; Israel
| | - Horst Kessler
- Technische Universität München; Department Chemie; Institute for Advanced Study; Lichtenbergstrasse 4 85748 Garching Germany
| |
Collapse
|
21
|
Räder AFB, Weinmüller M, Reichart F, Schumacher-Klinger A, Merzbach S, Gilon C, Hoffman A, Kessler H. Oral aktive Peptide: Gibt es ein Patentrezept? Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201807298] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Andreas F. B. Räder
- Technische Universität München; Department Chemie; Institute for Advanced Study; Lichtenbergstraße 4 85748 Garching Deutschland
| | - Michael Weinmüller
- Technische Universität München; Department Chemie; Institute for Advanced Study; Lichtenbergstraße 4 85748 Garching Deutschland
| | - Florian Reichart
- Technische Universität München; Department Chemie; Institute for Advanced Study; Lichtenbergstraße 4 85748 Garching Deutschland
| | | | - Shira Merzbach
- Hebrew University of Jerusalem; Institutes of Chemistry and Drug Research; Israel
| | - Chaim Gilon
- Hebrew University of Jerusalem; Institutes of Chemistry and Drug Research; Israel
| | - Amnon Hoffman
- Hebrew University of Jerusalem; Institutes of Chemistry and Drug Research; Israel
| | - Horst Kessler
- Technische Universität München; Department Chemie; Institute for Advanced Study; Lichtenbergstraße 4 85748 Garching Deutschland
| |
Collapse
|
22
|
Peraro L, Kritzer JA. Emerging Methods and Design Principles for Cell-Penetrant Peptides. Angew Chem Int Ed Engl 2018; 57:11868-11881. [PMID: 29740917 PMCID: PMC7184558 DOI: 10.1002/anie.201801361] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/24/2018] [Indexed: 12/12/2022]
Abstract
Biomolecules such as antibodies, proteins, and peptides are important tools for chemical biology and leads for drug development. They have been used to inhibit a variety of extracellular proteins, but accessing intracellular proteins has been much more challenging. In this review, we discuss diverse chemical approaches that have yielded cell-penetrant peptides and identify three distinct strategies: masking backbone amides, guanidinium group patterning, and amphipathic patterning. We summarize a growing number of large data sets, which are starting to reveal more specific design guidelines for each strategy. We also discuss advantages and disadvantages of current methods for quantifying cell penetration. Finally, we provide an overview of best-odds approaches for applying these new methods and design principles to optimize cytosolic penetration for a given bioactive peptide.
Collapse
Affiliation(s)
- Leila Peraro
- Department of Chemistry, Tufts University, Medford, Massachusetts, 02155, USA
| | - Joshua A Kritzer
- Department of Chemistry, Tufts University, Medford, Massachusetts, 02155, USA
| |
Collapse
|
23
|
Peraro L, Kritzer JA. Neue Methoden und Designprinzipien für zellgängige Peptide. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201801361] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Leila Peraro
- Department of Chemistry Tufts University Medford Massachusetts 02155 USA
| | - Joshua A. Kritzer
- Department of Chemistry Tufts University Medford Massachusetts 02155 USA
| |
Collapse
|
24
|
Lee LLH, Buckton LK, McAlpine SR. Converting polar cyclic peptides into membrane permeable molecules using N
-methylation. Pept Sci (Hoboken) 2018. [DOI: 10.1002/pep2.24063] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Leo L. H. Lee
- Chemistry; University of New South Wales; Sydney New South Wales Australia
| | - Laura K. Buckton
- Chemistry; University of New South Wales; Sydney New South Wales Australia
| | - Shelli R. McAlpine
- Chemistry; University of New South Wales; Sydney New South Wales Australia
| |
Collapse
|
25
|
Gracia-Vitoria J, Osante I, Cativiela C, Merino P, Tejero T. Self-Regeneration of Chirality with l-Cysteine through 1,3-Dipolar Cycloadditions between Diazoalkanes and Enantiomerically Pure Thiazolines: Experimental and Computational Studies. J Org Chem 2018. [DOI: 10.1021/acs.joc.8b00312] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- J. Gracia-Vitoria
- Departamento de Química Orgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain
| | - I. Osante
- Departamento de Química Orgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain
| | - C. Cativiela
- Departamento de Química Orgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain
| | - P. Merino
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza 50009, Spain
| | - T. Tejero
- Departamento de Química Orgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain
| |
Collapse
|
26
|
Mizuno A, Matsui K, Shuto S. From Peptides to Peptidomimetics: A Strategy Based on the Structural Features of Cyclopropane. Chemistry 2017. [PMID: 28632330 DOI: 10.1002/chem.201702119] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Peptidomimetics, non-natural mimicries of bioactive peptides, comprise an important class of drug molecules. The essence of the peptidomimetic design is to mimic the key conformation assumed by the bioactive peptides upon binding to their targets. Regulation of the conformation of peptidomimetics is important not only to enhance target binding affinity and selectivity, but also to confer cell-membrane permeability for targeting protein-protein interactions in cells. The rational design of peptidomimetics with suitable three-dimensional structures is challenging, however, due to the inherent flexibility of peptides and their dynamic conformational changes upon binding to the target biomolecules. In this Minireview, a three-dimensional structural diversity-oriented strategy based on the characteristic structural features of cyclopropane to address this challenging issue in peptidomimetic chemistry is described.
Collapse
Affiliation(s)
- Akira Mizuno
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan
| | - Kouhei Matsui
- Pharmaceutical Research Center, Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka, Osaka, 561-0825, Japan
| | - Satoshi Shuto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan.,Center for Research and Education on Drug Discovery, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan
| |
Collapse
|
27
|
Ricci L, Sernissi L, Scarpi D, Bianchini F, Contini A, Occhiato EG. Synthesis and conformational analysis of peptides embodying 2,3-methanopipecolic acids. Org Biomol Chem 2017; 15:6826-6836. [DOI: 10.1039/c7ob01617d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
When 2,3-methanopipecolic acids replace a proline in peptides, a marked preference (42–92%) for thecisgeometry around the pipecolic amide bond is observed in both water and organic solvents.
Collapse
Affiliation(s)
- Luciano Ricci
- Department of Chemistry “U. Schiff”
- University of Florence
- Sesto Fiorentino
- Italy
| | - Lorenzo Sernissi
- Department of Chemistry “U. Schiff”
- University of Florence
- Sesto Fiorentino
- Italy
| | - Dina Scarpi
- Department of Chemistry “U. Schiff”
- University of Florence
- Sesto Fiorentino
- Italy
| | - Francesca Bianchini
- Department of Biomedical
- Experimental and Clinical Sciences “Mario Serio”
- University of Florence
- Florence
- Italy
| | - Alessandro Contini
- Department of Pharmaceutical Sciences
- University of Milan
- I-20133 Milan
- Italy
| | - Ernesto G. Occhiato
- Department of Chemistry “U. Schiff”
- University of Florence
- Sesto Fiorentino
- Italy
| |
Collapse
|