1
|
Volk J, Heinz M, Guthardt R, Yadav S, Bruhn C, Holthausen MC, Siemeling U. A Strongly Ambiphilic Ferrocene-Based Cyclic (Alkyl)(amino)carbene - Specific Decomposition to an Enamine by a 1,2-Phenyl Shift. Chemistry 2024; 30:e202403028. [PMID: 39225629 DOI: 10.1002/chem.202403028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/04/2024]
Abstract
The recently described crystalline cyclic (alkyl)(amino)carbene with a 1,1'-ferrocenylene (fc) backbone fc(CPh2-C-NMes) (A, Mes=mesityl) is highly reactive due to its particularly pronounced ambiphilicity and is thermally not stable in solution due to an intramolecular insertion of the divalent carbon atom into a methyl C-H bond of the Mes substituent. The closely related congener fc(CPh2-C-N-p-C6H4-tBu) (1) cannot undergo such an insertion reaction. Nevertheless, 1 is too short-lived for isolation due to a rapid 1,2-shift of a phenyl group, furnishing the isomeric cyclic enamine fc[C(Ph)=C(Ph)-N-p-C6H4-tBu] (1') in a specific decomposition process unprecedented for CAACs. Trapping of 1 was possible with carbon monoxide, elemental selenium and with [CuBr(SMe2)], respectively affording the aminoketene 1=C=O, the selenoamide 1=Se and the homoleptic CuI complex [Cu(1)2][CuBr2]. 1 is an even stronger ambiphile than A according to NMR spectroscopic data. Similar to A, 1 does not react with H2, because the experimentally observed intramolecular process is kinetically more favourable according to DFT results.
Collapse
Affiliation(s)
- Julia Volk
- Institute of Chemistry, University of Kassel, Heinrich-Plett-Straße 40, 34132, Kassel, Germany
- Present address: Chemistry Department, Laboratory of organic reactivity and catalysis, University of Namur, Rue de Bruxelles 61, 5000, Namur, Belgium
| | - Myron Heinz
- Institut für Anorganische und Analytische Chemie, Goethe-Universität, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany
| | - Robin Guthardt
- Institute of Chemistry, University of Kassel, Heinrich-Plett-Straße 40, 34132, Kassel, Germany
| | - Suman Yadav
- Institute of Chemistry, University of Kassel, Heinrich-Plett-Straße 40, 34132, Kassel, Germany
| | - Clemens Bruhn
- Institute of Chemistry, University of Kassel, Heinrich-Plett-Straße 40, 34132, Kassel, Germany
| | - Max C Holthausen
- Institut für Anorganische und Analytische Chemie, Goethe-Universität, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany
| | - Ulrich Siemeling
- Institute of Chemistry, University of Kassel, Heinrich-Plett-Straße 40, 34132, Kassel, Germany
| |
Collapse
|
2
|
Meloni G, Morgan L, Cappelletti D, Bevilacqua M, Graiff C, Pinter P, Biffis A, Tubaro C, Baron M. Exploring the reductive CO 2 fixation with amines and hydrosilanes using readily available Cu(II) NHC-phenolate catalyst precursors. Dalton Trans 2024; 53:18128-18140. [PMID: 39474859 DOI: 10.1039/d4dt02936d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
N-Methylation of amines is of great interest in the synthesis of pharmaceuticals and valuable compounds, and the possibility to perform this reaction with an inexpensive and non-toxic substrate like CO2 and its derivatives is quite appealing. Herein, the synthesis of four novel homoleptic Cu(II) complexes with hybrid NHC-phenolate (NHC = N-Heterocyclic Carbene) ligands is reported, and their use in the catalytic N-methylation of amines with CO2 in the presence of hydrosilanes is explored. Both bidentate or tetradentate ligands can be used in the preparation of the complexes provided that the structural requirement that the two NHC and the two phenolate donors in the metal coordination sphere are mutually in trans is fulfilled. A new reaction protocol to perform the N-methylation of secondary aromatic amines and dibenzylamine in high yield under mild reaction conditions is developed, using the ionic liquid [BMMIM][NTf2] (1-butyl-2,3-dimethylimidazolium bis(trifluoromethylsulfonyl)imide) as solvent and the catalyst precursor [Cu(L2)2]. Reactivity studies indicate that the reaction follows two different pathways with different hydrosilanes, and that the starting Cu(II) complexes are reduced under the catalytic conditions.
Collapse
Affiliation(s)
- Giammarco Meloni
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, via Marzolo 1, 35131 Padova, Italy.
- Consorzio Interuniversitario per le Reattività Chimiche e la Catalisi, Unità di Ricerca di Padova, via Marzolo 1, 35131 Padova, Italy
| | - Luca Morgan
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, via Marzolo 1, 35131 Padova, Italy.
| | - David Cappelletti
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, via Marzolo 1, 35131 Padova, Italy.
| | - Matteo Bevilacqua
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, via Marzolo 1, 35131 Padova, Italy.
| | - Claudia Graiff
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università degli Studi di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | | | - Andrea Biffis
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, via Marzolo 1, 35131 Padova, Italy.
- Consorzio Interuniversitario per le Reattività Chimiche e la Catalisi, Unità di Ricerca di Padova, via Marzolo 1, 35131 Padova, Italy
| | - Cristina Tubaro
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, via Marzolo 1, 35131 Padova, Italy.
- Consorzio Interuniversitario per le Reattività Chimiche e la Catalisi, Unità di Ricerca di Padova, via Marzolo 1, 35131 Padova, Italy
| | - Marco Baron
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, via Marzolo 1, 35131 Padova, Italy.
- Consorzio Interuniversitario per le Reattività Chimiche e la Catalisi, Unità di Ricerca di Padova, via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
3
|
Maity S, Muthig AMT, Sen I, Mrózek O, Belyaev A, Hupp B, Steffen A. A [2.2]Isoindolinophanyl-Based Carbene (iPC) Ligand: Synthesis, Electronic and Photophysical Properties, and Application in Photocatalysis. Angew Chem Int Ed Engl 2024; 63:e202409115. [PMID: 38965782 DOI: 10.1002/anie.202409115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/21/2024] [Accepted: 07/03/2024] [Indexed: 07/06/2024]
Abstract
Cyclic amino(alkyl) and cyclic amino(aryl) carbenes (cAACs/cAArCs) have been established as very useful ligands for catalytic and photonic applications of transition metal complexes. Herein, we describe the synthesis of a structurally related sterically demanding, electrophilic [2.2]isoindolinophanyl-based carbene (iPC) that bears a [2.2]paracyclophane moiety. The latter leads to more delocalized frontier orbitals and intense green fluorescence of (HiPC)OTf (2) from an intra-ligand charge transfer (1ILCT) state in the solid state. Base-promoted synthesis of the free carbene led to an unusual ring expansion and subsequent dimerization reaction, but the beneficial ligand properties can be exploited by trapping in situ at a metal center. The iPC ligand is a very potent π-chromophore, which participates in low energy metal-to-ligand (ML)CT transitions in [RhCl(CO)2(iPC)] (4) and IL-"through-space"-CT transitions in [Au(iPC)2]OTf (5). The steric demand of the iPC leads to high stability of 5 against air, moisture, or solvent attack, and ultralong-lived green phosphorescence with a lifetime of 185 μs is observed in solution. The beneficial photophysical and electronic properties of the iPC ligand, including a large accessible π surface area, were exploited by employing highly efficient energy transfer (EnT) photocatalysis in a [2+2] styrene cycloaddition reaction using 5, which outperformed other established photocatalysts in comparison.
Collapse
Affiliation(s)
- Sabyasachi Maity
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - André M T Muthig
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Indranil Sen
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Ondřej Mrózek
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Andrey Belyaev
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Benjamin Hupp
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Andreas Steffen
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| |
Collapse
|
4
|
Erdélyi Á, Farkas V, Turczel G, Nagyházi M, Bényei A, Recta MLL, Nagy T, Kéki S, Osterthun O, Klankermayer J, Tuba R. Synthesis and Application of Robust Spiro [Fluorene-9] CAAC Ruthenium Alkylidene Complexes for the "One-Pot" Conversion of Allyl Acetate to Butane-1,4-diol. Chemistry 2024; 30:e202401918. [PMID: 38865343 DOI: 10.1002/chem.202401918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/14/2024]
Abstract
A series of a novel CAAC ligands featuring a spiro-fluorene group have been synthesized and complexed with ruthenium alkylidenes, yielding the corresponding Hoveyda-type derivatives as a new family of olefin metathesis catalysts. The novel complexes have been characterized by XRD, HRMS and NMR measurements. The synthetised complexes were tested in catalysis and showed good activity in olefin metathesis, as demonstrated on diethyl diallylmalonate and allyl acetate substrates. The unique backbone in the ligand with the large, yet inflexible condensed system renders interesting properties to the catalyst, exemplified by the good catalytic performance and improved Z-selectivity. In addition, the complex can also serve as a hydrogenation catalyst in a consecutive (one-pot) reaction. The latter reaction can convert allyl acetate to butane-1,4-diol, a valuable chemical intermediate for biodegradable polybutylene succinate (PBS).
Collapse
Affiliation(s)
- Ádám Erdélyi
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, Budapest, 1117, Hungary
- Research Centre for Biochemical, Environmental and Chemical Engineering, Department of MOL Hydrocarbon and Coal Processing, University of Pannonia, Egyetem u. 10, Veszprém, 8210, Hungary
| | - Vajk Farkas
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, Budapest, 1117, Hungary
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Szent Gellért tér 4, Budapest, 1111, Hungary
| | - Gábor Turczel
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, Budapest, 1117, Hungary
| | - Márton Nagyházi
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, Budapest, 1117, Hungary
- Research Centre for Biochemical, Environmental and Chemical Engineering, Department of MOL Hydrocarbon and Coal Processing, University of Pannonia, Egyetem u. 10, Veszprém, 8210, Hungary
| | - Attila Bényei
- Department of Physical Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, Debrecen, 4032, Hungary
| | - Merell Lystra Ledesma Recta
- Department of Physical Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, Debrecen, 4032, Hungary
| | - Tibor Nagy
- Department of Applied Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, Debrecen, 4032, Hungary
| | - Sándor Kéki
- Department of Applied Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, Debrecen, 4032, Hungary
| | - Ole Osterthun
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Jürgen Klankermayer
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Róbert Tuba
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, Budapest, 1117, Hungary
- Research Centre for Biochemical, Environmental and Chemical Engineering, Department of MOL Hydrocarbon and Coal Processing, University of Pannonia, Egyetem u. 10, Veszprém, 8210, Hungary
| |
Collapse
|
5
|
Li TY, Zheng SJ, Djurovich PI, Thompson ME. Two-Coordinate Thermally Activated Delayed Fluorescence Coinage Metal Complexes: Molecular Design, Photophysical Characters, and Device Application. Chem Rev 2024; 124:4332-4392. [PMID: 38546341 DOI: 10.1021/acs.chemrev.3c00761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Since the emergence of the first green light emission from a fluorescent thin-film organic light emitting diode (OLED) in the mid-1980s, a global consumer market for OLED displays has flourished over the past few decades. This growth can primarily be attributed to the development of noble metal phosphorescent emitters that facilitated remarkable gains in electrical conversion efficiency, a broadened color gamut, and vibrant image quality for OLED displays. Despite these achievements, the limited abundance of noble metals in the Earth's crust has spurred ongoing efforts to discover cost-effective electroluminescent materials. One particularly promising avenue is the exploration of thermally activated delayed fluorescence (TADF), a mechanism with the potential to fully harness excitons in OLEDs. Recently, investigations have unveiled TADF in a series of two-coordinate coinage metal (Cu, Ag, and Au) complexes. These organometallic TADF materials exhibit distinctive behavior in comparison to their organic counterparts. They offer benefits such as tunable emissive colors, short TADF emission lifetimes, high luminescent quantum yields, and reasonable stability. Impressively, both vacuum-deposited and solution-processed OLEDs incorporating these materials have achieved outstanding performance. This review encompasses various facets on two-coordinate TADF coinage metal complexes, including molecular design, photophysical characterizations, elucidation of structure-property relationships, and OLED applications.
Collapse
Affiliation(s)
- Tian-Yi Li
- Department of Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Shu-Jia Zheng
- Department of Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Peter I Djurovich
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Mark E Thompson
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
6
|
Koop S, Mrózek O, Janiak L, Belyaev A, Putscher M, Marian CM, Steffen A. Synthesis, Structural Characterization, and Phosphorescence Properties of Trigonal Zn(II) Carbene Complexes. Inorg Chem 2024; 63:891-901. [PMID: 38118184 DOI: 10.1021/acs.inorgchem.3c03915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
The sterically demanding N-heterocyclic carbene ITr (N,N'-bis(triphenylmethyl)imidazolylidene) was employed for the preparation of novel trigonal zinc(II) complexes of the type [ZnX2(ITr)] [X = Cl (1), Br (2), and I (3)], for which the low coordination mode was confirmed in both solution and solid state. Because of the atypical coordination geometry, the reactivity of 1-3 was studied in detail using partial or exhaustive halide exchange and halide abstraction reactions to access [ZnLCl(ITr)] [L = carbazolate (4), 3,6-di-tert-butyl-carbazolate (5), phenoxazine (6), and phenothiazine (7)], [Zn(bdt)(ITr)] (bdt = benzene-1,2-dithiolate) (8), and cationic [Zn(μ2-X)(ITr)]2[B(C6F5)4]2 [X = Cl (9), Br (10), and I (11)], all of which were isolated and structurally characterized. Importantly, for all complexes 4-11, the trigonal coordination environment of the ZnII ion is maintained, demonstrating a highly stabilizing effect due to the steric demand of the ITr ligand, which protects the metal center from further ligand association. In addition, complexes 1-3 and 8-11 show long-lived luminescence from triplet excited states in the solid state at room temperature, according to our photophysical studies. Our quantum chemical density functional theory/multireference configuration interaction (DFT/MRCI) calculations reveal that the phosphorescence of 8 originates from a locally excited triplet state on the bdt ligand. They further suggest that the phenyl substituents of ITr are photochemically not innocent but can coordinate to the electron-deficient metal center of this trigonal complex in the excited state.
Collapse
Affiliation(s)
- Stefan Koop
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Straße 6, Dortmund 44227, Germany
| | - Ondřej Mrózek
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Straße 6, Dortmund 44227, Germany
| | - Lars Janiak
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Straße 6, Dortmund 44227, Germany
| | - Andrey Belyaev
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Straße 6, Dortmund 44227, Germany
| | - Markus Putscher
- Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
| | - Christel M Marian
- Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
| | - Andreas Steffen
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Straße 6, Dortmund 44227, Germany
| |
Collapse
|
7
|
Ying A, Gong S. A Rising Star: Luminescent Carbene-Metal-Amide Complexes. Chemistry 2023; 29:e202301885. [PMID: 37431981 DOI: 10.1002/chem.202301885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/12/2023]
Abstract
Coinage metal (gold, silver, and copper) complexes are attractive candidates to substitute the widely studied noble metal complexes, such as, iridium(III) and platinum(II), as luminescent materials in organic light-emitting diodes (OLEDs). However, the development of coinage metal complexes exhibiting high emission quantum yields and short exciton lifetimes is still a formidable challenge. In the past few years, coinage metal complexes featuring a carbene-metal-amide (CMA) motif have emerged as a new class of luminescent materials in OLEDs. Thanks to the coinage metal-bridged linear geometry, coplanar conformation, and the formation of excited states with dominant ligand-to-ligand charge transfer character and reduced metal d-orbital participation, most CMA complexes have high radiative rates via thermally activated delayed fluorescence. Currently, the family of CMA complexes have rapidly evolved and remarkable progresses in CMA-based OLEDs have been made. Here, a Concept article on CMA complexes is presented, with a focus on molecular design principles, the correlation between molecular structure/conformation and optoelectronic properties, as well as OLED performance. The future prospects of CMA complexes are also discussed.
Collapse
Affiliation(s)
- Ao Ying
- Hubei Key Lab on Organic and, Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Shaolong Gong
- Hubei Key Lab on Organic and, Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
8
|
Powley SL, Riley C, Cho HH, Le Phuoc N, Linnolahti M, Greenham N, Romanov AS. Highly phosphorescent carbene-metal-carboranyl complexes of copper(I) and gold(I). Chem Commun (Camb) 2023; 59:12035-12038. [PMID: 37729393 DOI: 10.1039/d3cc04091g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
New phosphorescent "carbene-metal-carboranyl" (CMC) Cu(I) and Au(I) complexes based on the diamidocarbene (DAC) ligand show up to 68% photoluminescence quantum yield and microsecond range lifetimes. CMC organic light emitting diodes (OLEDs) emit sky-blue and warm white electroluminescence.
Collapse
Affiliation(s)
- Samuel L Powley
- Department of Chemistry, The University of Manchester, Oxford Rd., Manchester, M13 9PL, UK.
| | - Charlotte Riley
- Department of Chemistry, The University of Manchester, Oxford Rd., Manchester, M13 9PL, UK.
| | - Hwan-Hee Cho
- Department of Physics, Cavendish Laboratory, Cambridge University, Cambridge CB3 0HE, UK.
| | - Nguyen Le Phuoc
- Department of Chemistry, University of Eastern Finland, Joensuu Campus, FI-80101 Joensuu, Finland.
| | - Mikko Linnolahti
- Department of Chemistry, University of Eastern Finland, Joensuu Campus, FI-80101 Joensuu, Finland.
| | - Neil Greenham
- Department of Physics, Cavendish Laboratory, Cambridge University, Cambridge CB3 0HE, UK.
| | - Alexander S Romanov
- Department of Chemistry, The University of Manchester, Oxford Rd., Manchester, M13 9PL, UK.
| |
Collapse
|
9
|
Belyakov AV, Altova EP, Rykov AN, Sharanov PY, Shishkov IF, Romanov AS. The Equilibrium Molecular Structure of Cyclic (Alkyl)(Amino) Carbene Copper(I) Chloride via Gas-Phase Electron Diffraction and Quantum Chemical Calculations. Molecules 2023; 28:6897. [PMID: 37836740 PMCID: PMC10574683 DOI: 10.3390/molecules28196897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/24/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
Copper-centered carbene-metal-halides (CMHs) with cyclic (alkyl)(amino) carbenes (CAACs) are bright phosphorescent emitters and key precursors in the synthesis of the highly promising class of the materials carbene-metal-amides (CMAs) operating via thermally activated delayed fluorescence (TADF). Aiming to reveal the molecular geometry for CMH phosphors in the absence of the intermolecular contacts, we report here the equilibrium molecular structure of the (CAAC)Cu(I)Cl (1) molecule in the gas-phase. We demonstrate that linear geometry around a copper atom shows no distortions in the ground state. The structure of complex 1 has been determined using the electron diffraction method, supported by quantum chemical calculations with RI-MP2/def2-QZVPP level of theory and compared with the crystal structure determined by X-ray diffraction analysis. Mean vibrational amplitudes, uij,h1, and anharmonic vibrational corrections (rij,e • rij,a) were calculated for experimental temperature T = 20 °C, using quadratic and cubic force constants, respectively. The quantum theory of atoms in molecules (QTAIM) and natural bond order (NBO) analysis of wave function at MN15/def2TZVP level of theory revealed two Cu…H, three H…H, and one three-center H…H…H bond paths with bond critical points. NBO analysis also revealed three-center, four-electron hyperbonds, (3c4e), [π(N-C) nπ(Cu) ↔ nπ(N) π(N-Cu)], or [N-C: Cu ↔ N: C-Cu] and nπ(Cu) → π(C-N)* hyperconjugation, that is the delocalization of the lone electron pair of Cu atom into the antibonding orbital of C-N bond.
Collapse
Affiliation(s)
| | - Ekaterina P. Altova
- Department of Chemistry, Moscow State University, 119992 Moscow, Russia; (E.P.A.); (P.Y.S.)
| | - Anatoliy N. Rykov
- Department of Chemistry, Moscow State University, 119992 Moscow, Russia; (E.P.A.); (P.Y.S.)
| | - Pavel Yu. Sharanov
- Department of Chemistry, Moscow State University, 119992 Moscow, Russia; (E.P.A.); (P.Y.S.)
| | - Igor F. Shishkov
- Department of Chemistry, Moscow State University, 119992 Moscow, Russia; (E.P.A.); (P.Y.S.)
| | - Alexander S. Romanov
- Department of Chemistry, University of Manchester, Oxford Rd., Manchester M13 9PL, UK
| |
Collapse
|
10
|
Muthig AMT, Wieland J, Lenczyk C, Koop S, Tessarolo J, Clever GH, Hupp B, Steffen A. Towards Fast Circularly Polarized Luminescence in 2-Coordinate Chiral Mechanochromic Copper(I) Carbene Complexes. Chemistry 2023; 29:e202300946. [PMID: 37272620 DOI: 10.1002/chem.202300946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/15/2023] [Accepted: 06/02/2023] [Indexed: 06/06/2023]
Abstract
A series of chiral mechanochromic copper(I) cAAC (cAAC=cyclic (alkyl)(amino)carbene) complexes with a variety of amide ligands have been studied with regard to their photophysical and chiroptical properties to elucidate structure-property relationships for the design of efficient triplet exciton emitters exhibiting circularly polarized luminescence. Depending on the environment, which determines the excited state energies, either thermally activated delayed fluorescence (TADF) from 1/3 LLCT states or phosphorescence from 3 LLCT/LC states occurs. However, neither chiral moieties at the carbene nor at the carbazolate ligands provide detectable luminescence dissymmetries glum . An exception is [Cu(phenoxazinyl)(cAAC)], showing orange to deep red TADF with λmax =601-715 nm in solution, powders and in PMMA. In this case, the amide ligand can undergo distortions in the excited state. This design motif leads to the first linear, non-aggregated CPL-active copper(I) complex with glum of -3.4 ⋅ 10-3 combined with a high radiative rate constant of 6.7 ⋅ 105 s-1 .
Collapse
Affiliation(s)
- André M T Muthig
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Justin Wieland
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Carsten Lenczyk
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Stefan Koop
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Jacopo Tessarolo
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Guido H Clever
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Benjamin Hupp
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Andreas Steffen
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| |
Collapse
|
11
|
Cheng Y, Gontard G, Khatyr A, Knorr M, Amouri H. N-Heterocyclic Carbene Copper (I) Complexes Incorporating Pyrene Chromophore: Synthesis, Crystal Structure, and Luminescent Properties. Molecules 2023; 28:molecules28104025. [PMID: 37241767 DOI: 10.3390/molecules28104025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Luminescent N-heterocyclic carbene chloride copper (I) complexes incorporating pyrene chromophore (1-Pyrenyl-NHC-R)-Cu-Cl, (3, 4) have been prepared and fully characterized. Two complexes were prepared with R = methyl (3) and R = naphthyl groups (4) at the nitrogen center of the carbene unit to tune their electronic properties. The molecular structures of 3 and 4 have been elucidated by X-ray diffraction and confirm the formation of the target compounds. Preliminary results reveal that all compounds including the imidazole-pyrenyl ligand 1 are emissive in the blue region at room temperature in solution and in solid-state. All complexes display quantum yields comparable or higher when compared to the parent pyrene molecule. Interestingly replacement of the methyl by naphthyl group increases the quantum yield by almost two-folds. These compounds might show promise for applications as optical displays.
Collapse
Affiliation(s)
- Yaping Cheng
- Institut Parisien de Chimie Moléculaire (IPCM), UMR CNRS 8232, Sorbonne Université-Campus Pierre et Marie Curie, 4 Place Jussieu, CEDEX 05, 75252 Paris, France
| | - Geoffrey Gontard
- Institut Parisien de Chimie Moléculaire (IPCM), UMR CNRS 8232, Sorbonne Université-Campus Pierre et Marie Curie, 4 Place Jussieu, CEDEX 05, 75252 Paris, France
| | - Abderrahim Khatyr
- Institut UTINAM, UMR CNRS 6213, Université de Franche-Comté, 16 Route de Gray, 25030 Besançon, France
| | - Michael Knorr
- Institut UTINAM, UMR CNRS 6213, Université de Franche-Comté, 16 Route de Gray, 25030 Besançon, France
| | - Hani Amouri
- Institut Parisien de Chimie Moléculaire (IPCM), UMR CNRS 8232, Sorbonne Université-Campus Pierre et Marie Curie, 4 Place Jussieu, CEDEX 05, 75252 Paris, France
| |
Collapse
|
12
|
Sree VG, Naik S, Jana A, Kadam A, Sekar S, Im H, Kim HS, Sohn JI, Bathula C. Mechanochemically interlocked cubane copper complex interface for WOLED. J Colloid Interface Sci 2023; 633:589-597. [PMID: 36481422 DOI: 10.1016/j.jcis.2022.11.125] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022]
Abstract
In the rapid development of organic light-emitting diodes (OLEDs), phosphorescent transition metal complexes have played a crucial role as the most promising candidates for next generation display and lighting applications. However, most devices are fabricated using iridium and platinum-based complexes which are expensive and available in very limited quantities, whereas using relatively abundant organometallic complexes for fabrication results mostly in inefficient performance results. To overcome these issues, we have synthesized tetra copper iodide with tetra triphenyl cage like structure (denoted as CIPh) as an emerging class of luminescent material by mechanochemical grinding followed by thermal treatment for application in white OLED. The CIPh complex exhibits considerable quantum yield and a millisecond decay lifetime. Phosphorescent OLEDs were fabricated using CIPh complex as emitter shows a remarkable performance with external quantum efficiency and current efficiency of 5.28 % and 22.76 cd/A, with a high brightness of 4200 cd m-2, respectively. White OLEDs were also fabricated with a fluorescent blue and phosphorescent red emitted with (CIPh) as green emitter and achieved an impressive CRI of 82 with an EQE of over 3 %. This is the first ever attempt at fabricating WOLEDs using organocopper complex.
Collapse
Affiliation(s)
- Vijaya Gopalan Sree
- Division of Physics and Semiconductor Science, Dongguk University-Seoul, Seoul 04620, Republic of Korea
| | - Soniya Naik
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Atanu Jana
- Division of Physics and Semiconductor Science, Dongguk University-Seoul, Seoul 04620, Republic of Korea
| | - Abhijit Kadam
- Department of Chemistry, John Wilson Education Society's, Wilson College (Autonomous), Mumbai, Maharashtra 400007, India
| | - Sankar Sekar
- Department of Semiconductor Science, Dongguk University-Seoul, Seoul 04620, Republic of Korea; Quantum-functional Semiconductor Research Center, Dongguk University-Seoul, Seoul 04620, Republic of Korea
| | - Hyunsik Im
- Division of Physics and Semiconductor Science, Dongguk University-Seoul, Seoul 04620, Republic of Korea
| | - Hyun-Seok Kim
- Division of Electronics and Electrical Engineering, Dongguk University- Seoul, Seoul 04620, Republic of Korea
| | - Jung Inn Sohn
- Division of Physics and Semiconductor Science, Dongguk University-Seoul, Seoul 04620, Republic of Korea
| | - Chinna Bathula
- Division of Electronics and Electrical Engineering, Dongguk University- Seoul, Seoul 04620, Republic of Korea.
| |
Collapse
|
13
|
Muthig AMT, Mrózek O, Ferschke T, Rödel M, Ewald B, Kuhnt J, Lenczyk C, Pflaum J, Steffen A. Mechano-Stimulus and Environment-Dependent Circularly Polarized TADF in Chiral Copper(I) Complexes and Their Application in OLEDs. J Am Chem Soc 2023; 145:4438-4449. [PMID: 36795037 DOI: 10.1021/jacs.2c09458] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Molecular emitters that combine circularly polarized luminescence (CPL) and high radiative rate constants of the triplet exciton decay are highly attractive for electroluminescent devices (OLEDs) or next-generation photonic applications, such as spintronics, quantum computing, cryptography, or sensors. However, the design of such emitters is a major challenge because the criteria for enhancing these two properties are mutually exclusive. In this contribution, we show that enantiomerically pure {Cu(CbzR)[(S/R)-BINAP]} [R = H (1), 3,6-tBu (2)] are efficient thermally activated delayed fluorescence (TADF) emitters with high radiative rate constants of kTADF up to 3.1 × 105 s-1 from 1/3LLCT states according to our temperature-dependent time-resolved luminescence studies. The efficiency of the TADF process and emission wavelengths are highly sensitive to environmental hydrogen bonding of the ligands, which can be disrupted by grinding of the crystalline materials. The origin of this pronounced mechano-stimulus photophysical behavior is a thermal equilibrium between the 1/3LLCT states and a 3LC state of the BINAP ligand, which depends on the relative energetic order of the excited states and is prone to inter-ligand C-H···π interactions. The copper(I) complexes are also efficient CPL emitters displaying exceptional dissymmetry values glum of up to ±0.6 × 10-2 in THF solution and ±2.1 × 10-2 in the solid state. Importantly for application in electroluminescence devices, the C-H···π interactions can also be disrupted by employing sterically bulky matrices. Accordingly, we have investigated various matrix materials for successful implementation of the chiral copper(I) TADF emitters in proof-of-concept CP-OLEDs.
Collapse
Affiliation(s)
- André Martin Thomas Muthig
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| | - Ondřej Mrózek
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| | - Thomas Ferschke
- Experimental Physics VI, Julius-Maximilian University, Am Hubland, 97074 Würzburg, Germany
| | - Maximilian Rödel
- Experimental Physics VI, Julius-Maximilian University, Am Hubland, 97074 Würzburg, Germany
| | - Björn Ewald
- Experimental Physics VI, Julius-Maximilian University, Am Hubland, 97074 Würzburg, Germany
| | - Julia Kuhnt
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| | - Carsten Lenczyk
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| | - Jens Pflaum
- Experimental Physics VI, Julius-Maximilian University, Am Hubland, 97074 Würzburg, Germany
| | - Andreas Steffen
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| |
Collapse
|
14
|
Ruduss A, Belyakov S, Stucere KA, Vembris A, Traskovskis K. Light emission mechanism in dimers of carbene-metal-amide complexes. Phys Chem Chem Phys 2023; 25:3220-3231. [PMID: 36625398 DOI: 10.1039/d2cp05237g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Recently an efficient dual electroluminescence from monomers and dimers was observed among the structural examples of the emerging emitter class of carbene-metal-amides (CMAs), allowing the preparation of simple design white organic light emitting diodes (wOLEDs). Here we investigate in detail the light emission mechanism in the dimeric species of CMA emitters on the basis of a copper(I) complex TCP bearing thiazoline carbene and 10H-phenothiazine 5,5-dioxide (Ptz) ligands. The X-ray structure for crystals with dimer-only emission was obtained, revealing that emissive aggregates consist of face-to-face stacked molecular pairs with an intermolecular distance of 3.673 Å. The close packing is aided by reduced sterical bulk at the carbene ligand, as well as by a torsional twist between the carbene and amide fragments. Experimental and computational data show that the emission mechanism in aggregates is related to the formation of a persistent dimer, not the excimer. Radiative relaxation proceeds through an intermolecular charge transfer process between the carbene and amide ligands of the neighbouring molecules. In comparison to the monomer, the thermally activated delayed fluorescence (TADF) process in the dimer is characterized with significantly higher energy gaps (ΔEST) between the lowest singlet (S1) and triplet (T1) excited states. At the same time the aggregated species exhibit a significantly increased phosphorescence rate (τ = 12 μs at 10 K temperature) due to the presence of two metal atoms, resulting in a sixfold increase in the spin-orbit coupling (SOC) matrix element in comparison to the monomer.
Collapse
Affiliation(s)
- Armands Ruduss
- Institute of Applied Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena Str. 3, LV-1048, Riga, Latvia.
| | - Sergey Belyakov
- Latvian Institute of Organic Synthesis, Aizkraukles Str. 21, Riga LV-1006, Latvia
| | - Kitija A Stucere
- Institute of Solid State Physics, University of Latvia, Kengaraga Str. 8, LV-1063, Riga, Latvia
| | - Aivars Vembris
- Institute of Solid State Physics, University of Latvia, Kengaraga Str. 8, LV-1063, Riga, Latvia
| | - Kaspars Traskovskis
- Institute of Applied Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena Str. 3, LV-1048, Riga, Latvia.
| |
Collapse
|
15
|
Mrózek O, Mitra M, Hupp B, Belyaev A, Lüdtke N, Wagner D, Wang C, Wenger OS, Marian CM, Steffen A. An Air- and Moisture-stable Zinc(II) Carbene Dithiolate Dimer Showing Fast Thermally Activated Delayed Fluorescence and Dexter Energy Transfer Catalysis. Chemistry 2023; 29:e202203980. [PMID: 36637038 DOI: 10.1002/chem.202203980] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/14/2023]
Abstract
A dimeric ZnII carbene complex featuring bridging and chelating benzene-1,2-dithiolate ligands is highly stable towards air and water. The donor-Zn-acceptor structure leads to visible light emission in the solid state, solution and polymer matrices with λmax between 577-657 nm and, for zinc(II) complexes, unusually high radiative rate constants for triplet exciton decay of up to kr =1.5×105 s-1 at room temperature. Variable temperature and DFT/MRCI studies show that a small energy gap between the 1/3 LL/LMCT states of only 79 meV is responsible for efficient thermally activated delayed fluorescence (TADF). Time-resolved luminescence and transient absorption studies confirm the occurrence of long-lived, dominantly ligand-to-ligand charge transfer excited states in solution, allowing for application in Dexter energy transfer photocatalysis.
Collapse
Affiliation(s)
- Ondřej Mrózek
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Mousree Mitra
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Bejamin Hupp
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Andrey Belyaev
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Nora Lüdtke
- Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Dorothee Wagner
- Department of Chemistry, University of Basel, 4056, Basel, Switzerland
| | - Cui Wang
- Department of Chemistry, University of Basel, 4056, Basel, Switzerland
| | - Oliver S Wenger
- Department of Chemistry, University of Basel, 4056, Basel, Switzerland
| | - Christel M Marian
- Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Andreas Steffen
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| |
Collapse
|
16
|
Amouri H. Luminescent Complexes of Platinum, Iridium, and Coinage Metals Containing N-Heterocyclic Carbene Ligands: Design, Structural Diversity, and Photophysical Properties. Chem Rev 2023; 123:230-270. [PMID: 36315851 DOI: 10.1021/acs.chemrev.2c00206] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The employment of N-heterocyclic carbenes (NHCs) to design luminescent metal compounds has been the focus of recent intense investigations because of the strong σ-donor properties, which bring stability to the whole system and tend to push the d-d dark states so high in energy that they are rendered thermally inaccessible, thereby generating highly emissive complexes for useful applications such as organic light-emitting diodes (OLEDs), or featuring chiroptical properties, a field that is still in its infancy. Among the NHC complexes, those containing organic chromophores such as naphthalimide, pyrene, and carbazole exhibit rich emission behavior and thus have attracted extensive interest in the past five years, especially carbene coinage metal complexes with carbazolate ligands. In this review, the design strategies of NHC-based luminescent platinum and iridium complexes with large spin-orbit-coupling (SOC) are described first. Subsequent paragraphs illustrate the recent advances of luminescent coinage metal complexes with nucleophilic- and electrophilic-based carbenes based on silver, gold, and copper metal complexes that have the ability to display rich excited state emissions in particular via thermally activated delayed fluorescence (TADF). The luminescence mechanism and excited state dynamics are also described. We then summarize the advance of NHC-metal complexes in the aforementioned fields in recent years. Finally, we propose the development trend of this fast-growing field of luminescent NHC-metal complexes.
Collapse
Affiliation(s)
- Hani Amouri
- CNRS, IPCM (UMR 8232), Sorbonne Université-Faculté des Sciences et Ingénerie Campus Pierre et Marie Curie, 4 Place Jussieu, 75252 Paris, Cedex 05, France
| |
Collapse
|
17
|
Beaudelot J, Oger S, Peruško S, Phan TA, Teunens T, Moucheron C, Evano G. Photoactive Copper Complexes: Properties and Applications. Chem Rev 2022; 122:16365-16609. [PMID: 36350324 DOI: 10.1021/acs.chemrev.2c00033] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Photocatalyzed and photosensitized chemical processes have seen growing interest recently and have become among the most active areas of chemical research, notably due to their applications in fields such as medicine, chemical synthesis, material science or environmental chemistry. Among all homogeneous catalytic systems reported to date, photoactive copper(I) complexes have been shown to be especially attractive, not only as alternative to noble metal complexes, and have been extensively studied and utilized recently. They are at the core of this review article which is divided into two main sections. The first one focuses on an exhaustive and comprehensive overview of the structural, photophysical and electrochemical properties of mononuclear copper(I) complexes, typical examples highlighting the most critical structural parameters and their impact on the properties being presented to enlighten future design of photoactive copper(I) complexes. The second section is devoted to their main areas of application (photoredox catalysis of organic reactions and polymerization, hydrogen production, photoreduction of carbon dioxide and dye-sensitized solar cells), illustrating their progression from early systems to the current state-of-the-art and showcasing how some limitations of photoactive copper(I) complexes can be overcome with their high versatility.
Collapse
Affiliation(s)
- Jérôme Beaudelot
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/06, 1050Brussels, Belgium.,Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/08, 1050Brussels, Belgium
| | - Samuel Oger
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/06, 1050Brussels, Belgium
| | - Stefano Peruško
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/06, 1050Brussels, Belgium.,Organic Synthesis Division, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020Antwerp, Belgium
| | - Tuan-Anh Phan
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/08, 1050Brussels, Belgium
| | - Titouan Teunens
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/08, 1050Brussels, Belgium.,Laboratoire de Chimie des Matériaux Nouveaux, Université de Mons, Place du Parc 20, 7000Mons, Belgium
| | - Cécile Moucheron
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/08, 1050Brussels, Belgium
| | - Gwilherm Evano
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/06, 1050Brussels, Belgium
| |
Collapse
|
18
|
Muthig AMT, Wieland J, Koop S, Lenczyk C, Kerner F, Hupp B, Steffen A. Synthesis and Photophysical Studies of Copper(I) CAAC Half-Sandwich Complexes as a Highly Modifiable Class of Emitters. Inorg Chem 2022; 61:17427-17437. [DOI: 10.1021/acs.inorgchem.2c02073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- André M. T. Muthig
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227Dortmund, Germany
| | - Justin Wieland
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227Dortmund, Germany
| | - Stefan Koop
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227Dortmund, Germany
| | - Carsten Lenczyk
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227Dortmund, Germany
| | - Florian Kerner
- Institute of Inorganic Chemistry, University of Würzburg, Am Hubland, 97074Würzburg, Germany
| | - Benjamin Hupp
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227Dortmund, Germany
| | - Andreas Steffen
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227Dortmund, Germany
| |
Collapse
|
19
|
Kübler J, Pfund B, Wenger OS. Zinc(II) Complexes with Triplet Charge-Transfer Excited States Enabling Energy-Transfer Catalysis, Photoinduced Electron Transfer, and Upconversion. JACS AU 2022; 2:2367-2380. [PMID: 36311829 PMCID: PMC9597861 DOI: 10.1021/jacsau.2c00442] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/22/2022] [Accepted: 09/22/2022] [Indexed: 05/28/2023]
Abstract
Many CuI complexes have luminescent triplet charge-transfer excited states with diverse applications in photophysics and photochemistry, but for isoelectronic ZnII compounds, this behavior is much less common, and they typically only show ligand-based fluorescence from singlet π-π* states. We report two closely related tetrahedral ZnII compounds, in which intersystem crossing occurs with appreciable quantum yields and leads to the population of triplet excited states with intraligand charge-transfer (ILCT) character. In addition to showing fluorescence from their initially excited 1ILCT states, these new compounds therefore undergo triplet-triplet energy transfer (TTET) from their 3ILCT states and consequently can act as sensitizers for photo-isomerization reactions and triplet-triplet annihilation upconversion from the blue to the ultraviolet spectral range. The photoactive 3ILCT state furthermore facilitates photoinduced electron transfer. Collectively, our findings demonstrate that mononuclear ZnII compounds with photophysical and photochemical properties reminiscent of well-known CuI complexes are accessible with suitable ligands and that they are potentially amenable to many different applications. Our insights seem relevant in the greater context of obtaining photoactive compounds based on abundant transition metals, complementing well-known precious-metal-based luminophores and photosensitizers.
Collapse
|
20
|
Muniz CN, Schaab J, Razgoniaev A, Djurovich PI, Thompson ME. π-Extended Ligands in Two-Coordinate Coinage Metal Complexes. J Am Chem Soc 2022; 144:17916-17928. [PMID: 36126274 DOI: 10.1021/jacs.2c06948] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Two-coordinate carbene-MI-amide (cMa, MI = Cu, Ag, Au) complexes have emerged as highly efficient luminescent materials for use in a variety of photonic applications due to their extremely fast radiative rates through thermally activated delayed fluorescence (TADF) from an interligand charge transfer (ICT) process. A series of cMa derivatives was prepared to examine the variables that affect the radiative rate, with the goal of understanding the parameters that control the radiative TADF process in these materials. We find that blue-emissive complexes with high photoluminescence efficiencies (ΦPL > 0.95) and fast radiative rates (kr = 4 × 106 s-1) can be achieved by selectively extending the π-system of the carbene and amide ligands. Of note is the role played by the increased separation between the hole and electron in the ICT excited state. Analysis of temperature-dependent luminescence data and theoretical calculations indicate that the hole-electron separation exerts a primary effect on the energy gap between the lowest-energy singlet and triplet states (ΔEST) while keeping the radiative rate for the singlet state relatively unchanged. This interpretation provides guidelines for the design of new cMa derivatives with even faster radiative rates in addition to those with slower radiative rates and thus extended excited state lifetimes.
Collapse
Affiliation(s)
- Collin N Muniz
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Jonas Schaab
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Anton Razgoniaev
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Peter I Djurovich
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Mark E Thompson
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
21
|
Muthig AMT, Krumrein M, Wieland J, Gernert M, Kerner F, Pflaum J, Steffen A. Trigonal Copper(I) Complexes with Cyclic (Alkyl)(amino)carbene Ligands for Single-Photon Near-IR Triplet Emission. Inorg Chem 2022; 61:14833-14844. [PMID: 36069727 DOI: 10.1021/acs.inorgchem.2c02376] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Molecular near-IR (NIR) triplet-state emitters are of importance for the development of new, organic-electronics-based telecommunication technologies as optical fibers operating in the corresponding spectral bands allow for data transfer over much longer distances due to the significantly lower attenuation. However, achieving such low-energy triplet excited states with good radiative rate constants is very challenging, and studies regarding the single-photon emission of organometallics in this energy range are scarce. We have prepared a series of trigonal CuI CAAC complexes bearing chelating ligands with O, N, S, and Se donor atoms and studied their photophysical properties in this context. The compounds show weak low-energy absorption in solution between 400 and 500 nm due to mixed Cu → CAAC 1MLCT/LLCT states, resulting in yellow-green to orange appearance, which we have also correlated to the 15N NMR resonances of the π-accepting carbene ligand. In the solid state, phosphorescence from dominant 3(Cu → CAAC) CT states is observed at room temperature. The emission of the complexes is bathochromically shifted in comparison to structurally related linearly coordinated copper(I) CAAC complexes due to structural reorganization in the excited state to a T-shape. For [Cu(dbm)(CAACMe)], the broad phosphorescence with outstanding λmax = 760 nm tailors out to ca. 1100 nm and leads to its proof-of-concept application as a nonclassical single-photon light source, constituting key functional units for the implementation of tap-proof data transfer.
Collapse
Affiliation(s)
- André M T Muthig
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| | - Marcel Krumrein
- Experimental Physics, Experimental Physics VI, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Justin Wieland
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| | - Markus Gernert
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| | - Florian Kerner
- Institute of Inorganic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Jens Pflaum
- Experimental Physics, Experimental Physics VI, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Andreas Steffen
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| |
Collapse
|
22
|
Abstract
Nine different coinage metal (Cu, Ag) π complexes of diborenes with various anionic diborene (aryl, heteroaryl) and metal substituents (Cl, Br, C6F5, C2SiMe3), stabilizing neutral donors (N-heterocyclic carbene = NHC, phosphine), configurations (cis/trans, acyclic/cyclic diborene), and charges (neutral, cationic) were synthesized and characterized by multinuclear NMR spectroscopy and X-ray crystallographic analyses. Their optical properties were investigated by UV-vis absorption and steady-state as well as time-resolved luminescence spectroscopy in solution and the solid state to gain insights into the excited-state behavior of this unusual class of photoactive compounds and to provide structure-property relationships. The structural and electronic modification of the (B═B)···M motif greatly influences not only the visible light absorption but also the photostability and quantum yields, which can reach high values of up to f = 0.42. The lifetimes are found in the nanosecond regime, providing estimated radiative rate constants over a wide range of kr = 1.3-14 × 107 s-1, indicative of fluorescence. Intersystem crossing (ISC) is sufficiently slow for prompt emission from the S1 state to be observed, while the spin-orbit coupling in the T1 state is too weak for phosphorescence to occur at room temperature. ISC can be accelerated, however, by modifying diborene ligand substitution and the coinage metal center, hinting at the potential for exploiting the properties of long-lived triplet excited states of metal diborene complexes in the future.
Collapse
|
23
|
Mrózek O, Gernert M, Belyaev A, Mitra M, Janiak L, Marian CM, Steffen A. Ultra-Long Lived Luminescent Triplet Excited States in Cyclic (Alkyl)(amino)carbene Complexes of Zn(II) Halides. Chemistry 2022; 28:e202201114. [PMID: 35583397 PMCID: PMC9544448 DOI: 10.1002/chem.202201114] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Indexed: 01/19/2023]
Abstract
The high element abundance and d10 electron configuration make ZnII -based compounds attractive candidates for the development of novel photoactive molecules. Although a large library of purely fluorescent compounds exists, emission involving triplet excited states is a rare phenomenon for zinc complexes. We have investigated the photophysical and -chemical properties of a series of dimeric and monomeric ZnII halide complexes bearing a cyclic (alkyl)(amino)carbene (cAAC) as chromophore unit. Specifically, [(cAAC)XZn(μ-X)2 ZnX(cAAC)] (X=Cl (1), Br (2), I (3)) and [ZnX2 (cAAC)(NCMe)] (X=Br (4), I (5)) were isolated and fully characterized, showing intense visible light photoluminescence under UV irradiation at 297 K and fast photo-induced transformation. At 77 K, the compounds exhibit improved stability allowing to record ultra-long lifetimes in the millisecond regime. DFT/MRCI calculations confirm that the emission stems from 3 XCT/LEcAAC states and indicate the phototransformation to be related to asymmetric distortion of the complexes by cAAC ligand rotation. This study enhances our understanding of the excited state properties for future development and application of new classes of ZnII phosphorescent complexes.
Collapse
Affiliation(s)
- Ondřej Mrózek
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Str. 644227DortmundGermany
| | - Markus Gernert
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Str. 644227DortmundGermany
| | - Andrey Belyaev
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Str. 644227DortmundGermany
| | - Mousree Mitra
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Str. 644227DortmundGermany
| | - Lars Janiak
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Str. 644227DortmundGermany
| | - Christel M. Marian
- Institute of Theoretical and Computational ChemistryHeinrich Heine University Düsseldorf40225DüsseldorfGermany
| | - Andreas Steffen
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Str. 644227DortmundGermany
| |
Collapse
|
24
|
Das A, Elvers BJ, Nayak MK, Chrysochos N, Anga S, Kumar A, Rao DK, Narayanan TN, Schulzke C, Yildiz CB, Jana A. Realizing 1,1-Dehydration of Secondary Alcohols to Carbenes: Pyrrolidin-2-ols as a Source of Cyclic (Alkyl)(Amino)Carbenes. Angew Chem Int Ed Engl 2022; 61:e202202637. [PMID: 35362643 PMCID: PMC9400972 DOI: 10.1002/anie.202202637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Indexed: 11/30/2022]
Abstract
Herein we report secondary pyrrolidin-2-ols as a source of cyclic (alkyl)(amino)carbenes (CAAC) for the synthesis of CAAC-CuI -complexes and cyclic thiones when reacted with CuI -salts and elemental sulfur, respectively, under reductive elimination of water from the carbon(IV)-center. This result demonstrates a convenient and facile access to CAAC-based CuI -salts, which are well known catalysts for different organic transformations. It further establishes secondary alcohols to be a viable source of carbenes-realizing after 185 years Dumas' dream who tried to prepare the parent carbene (CH2 ) by 1,1-dehydration of methanol. Addressed is also the reactivity of water towards CAACs, which proceeds through an oxidative addition of the O-H bond to the carbon(II)-center. This emphasizes the ability of carbon-compounds to mimic the reactivity of transition-metal complexes: reversible oxidative addition and reductive elimination of the O-H bond to/from the C(II)/C(IV)-centre.
Collapse
Affiliation(s)
- Ayan Das
- Tata Institute of Fundamental Research Hyderabad, GopanpallyHyderabad 500046TelanganaIndia
| | - Benedict J. Elvers
- Institut für BiochemieUniversität GreifswaldFelix-Hausdorff-Straße 417489GreifswaldGermany
| | - Mithilesh Kumar Nayak
- Tata Institute of Fundamental Research Hyderabad, GopanpallyHyderabad 500046TelanganaIndia
| | - Nicolas Chrysochos
- Tata Institute of Fundamental Research Hyderabad, GopanpallyHyderabad 500046TelanganaIndia
| | - Srinivas Anga
- Tata Institute of Fundamental Research Hyderabad, GopanpallyHyderabad 500046TelanganaIndia
| | - Amar Kumar
- Tata Institute of Fundamental Research Hyderabad, GopanpallyHyderabad 500046TelanganaIndia
| | - D. Krishna Rao
- Tata Institute of Fundamental Research Hyderabad, GopanpallyHyderabad 500046TelanganaIndia
| | | | - Carola Schulzke
- Institut für BiochemieUniversität GreifswaldFelix-Hausdorff-Straße 417489GreifswaldGermany
| | - Cem B. Yildiz
- Department of Aromatic and Medicinal PlantsAksaray UniversityAksaray68100Turkey
| | - Anukul Jana
- Tata Institute of Fundamental Research Hyderabad, GopanpallyHyderabad 500046TelanganaIndia
| |
Collapse
|
25
|
Poland EM, Ho CC. Photoactive N‐Heterocyclic Carbene Transition Metal Complexes in Bond‐Forming Photocatalysis: State‐of‐the‐Art and Opportunities. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Eve M. Poland
- School of Natural Sciences – Chemistry University of Tasmania Hobart Tasmania Australia
| | - Curtis C. Ho
- School of Natural Sciences – Chemistry University of Tasmania Hobart Tasmania Australia
| |
Collapse
|
26
|
Kumar Kushvaha S, Mishra A, Roesky HW, Chandra Mondal K. Recent Advances in the Domain of Cyclic (Alkyl)(Amino) Carbenes. Chem Asian J 2022; 17:e202101301. [PMID: 34989475 PMCID: PMC9307053 DOI: 10.1002/asia.202101301] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/25/2021] [Indexed: 12/03/2022]
Abstract
Isolation of cyclic (alkyl) amino carbenes (cAACs) in 2005 has been a major achievement in the field of stable carbenes due to their better electronic properties. cAACs and bicyclic(alkyl)(amino)carbene (BicAAC) in essence are the most electrophilic as well as nucleophilic carbenes are known till date. Due to their excellent electronic properties in terms of nucleophilic and electrophilic character, cAACs have been utilized in different areas of chemistry, including stabilization of low valent main group and transition metal species, activation of small molecules, and catalysis. The applications of cAACs in catalysis have opened up new avenues of research in the field of cAAC chemistry. This review summarizes the major results of cAAC chemistry published until August 2021.
Collapse
Affiliation(s)
| | - Ankush Mishra
- Department of ChemistryIndian Institute of Technology MadrasChennai600036India
| | - Herbert W. Roesky
- Institute of Inorganic ChemistryTammannstrasse 4D-37077GöttingenGermany
| | | |
Collapse
|
27
|
Das A, Elvers BJ, Nayak MK, Chrysochos N, Anga S, Kumar A, Rao DK, Narayanan TN, Schulzke C, Yildiz CB, Jana A. Realizing the 1,1‐Dehydration of Secondary Alcohols to Carbenes: Pyrrolidin‐2‐ols as a Source of Cyclic (Alkyl)(Amino)Carbenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ayan Das
- Tata Institute of Fundamental Research Hyderabad Chemistry INDIA
| | | | | | | | - Srinivas Anga
- Tata Institute of Fundamental Research Hyderabad Chemistry INDIA
| | - Amar Kumar
- Tata Institute of Fundamental Research Hyderabad Chemistry INDIA
| | - D. Krishna Rao
- Tata Institute of Fundamental Research Hyderabad Chemistry INDIA
| | | | | | - Cem B. Yildiz
- Aksaray Universitesi Aromatic and Medicinal Plants TURKEY
| | - Anukul Jana
- TIFR Centre for Interdisciplinary Sciences Chemical Science 21, Brundavan Colony, Narsingi 500075 Hyderabad INDIA
| |
Collapse
|
28
|
Martynova EA, Scattolin T, Cavarzerani E, Peng M, Van Hecke K, Rizzolio F, Nolan SP. A simple synthetic entryway into new families of NHC-gold-amido complexes and their in vitro antitumor activity. Dalton Trans 2022; 51:3462-3471. [PMID: 35142328 DOI: 10.1039/d2dt00239f] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
A simple synthetic pathway to Au-NHC amido complexes is described. Syntheses and isolation of [Au(NHC)(NR1R2)] complexes, bearing various NHC ligands and NH-containing heterocycles under mild conditions are reported. The in vitro anticancer activity of these gold-complexes was investigated on three human cancer cell lines. A number of these show comparable or even better antiproliferative activity than cisplatin. Noteworthy is the non-toxicity of most of the complexes on normal cells.
Collapse
Affiliation(s)
- Ekaterina A Martynova
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281, S-3, 9000 Ghent, Belgium.
| | - Thomas Scattolin
- Department of Molecular Sciences and Nanosystems Università Ca' Foscari, Campus Scientifico Via Torino 155, 30174, Venezia-Mestre, Italy.
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS, via Franco Gallini 2, 33081, Aviano, Italy
| | - Enrico Cavarzerani
- Department of Molecular Sciences and Nanosystems Università Ca' Foscari, Campus Scientifico Via Torino 155, 30174, Venezia-Mestre, Italy.
| | - Min Peng
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281, S-3, 9000 Ghent, Belgium.
| | - Kristof Van Hecke
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281, S-3, 9000 Ghent, Belgium.
| | - Flavio Rizzolio
- Department of Molecular Sciences and Nanosystems Università Ca' Foscari, Campus Scientifico Via Torino 155, 30174, Venezia-Mestre, Italy.
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS, via Franco Gallini 2, 33081, Aviano, Italy
| | - Steven P Nolan
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281, S-3, 9000 Ghent, Belgium.
| |
Collapse
|
29
|
Li Q, Wang J, Wu Y, Zhao F, He H, Wang Y. Luminescent copper(I) complexes bearing benzothiazole-imidazolylidene ligand with various substituents: Synthesis, photophysical properties and computational studies. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
30
|
Cyclic (alkyl)(amino)carbene (CAAC) ligands: Electronic structure and application as chemically- and redox-non-innocent ligands and chromophores. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2022. [DOI: 10.1016/bs.adomc.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
31
|
Hölzel T, Belyaev A, Terzi M, Stenzel L, Gernert M, Marian CM, Steffen A, Ganter C. Linear Carbene Pyridine Copper Complexes with Sterically Demanding N, N'-Bis(trityl)imidazolylidene: Syntheses, Molecular Structures, and Photophysical Properties. Inorg Chem 2021; 60:18529-18543. [PMID: 34793149 DOI: 10.1021/acs.inorgchem.1c03082] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The sterically demanding carbene ITr (N,N'-bis(triphenylmethyl)imidazolylidene) was used as a ligand for the preparation of luminescent copper(I) complexes of the type [(ITr)Cu(R-pyridine/R'-quinoline)]BF4 (R = H, 4-CN, 4-CHO, 2,6-NH2, and R' = 8-Cl, 6-Me). The selective formation of linear, bis(coordinated) complexes was observed for a series of pyridine and quinoline derivatives. Only in the case of 4-cyanopyridine a one-dimensional coordination polymer was formed, in which the cyano group of the cyanopyridine ligand additionally binds to another Cu atom in a bridging manner, thus leading to a trigonal planar coordination environment. In contrast, employing sterically less demanding monotrityl-substituted carbene 3, no (NHC)Cu-pyridine complexes could be prepared. Instead, a bis-carbene complex [(3)2Cu]PF6 was obtained which showed no luminescence. All linear pyridine/quinoline coordinated complexes show weak emission in solution but intense blue to orange luminescence doped with 10% in PMMA films and in the solid state either from triplet excited states with unusually long lifetimes of up to 4.8 ms or via TADF with high radiative rate constants of up to 1.7 × 105 s-1 at room temperature. Combined density functional theory and multireference configuration interaction calculations have been performed to rationalize the involved photophysics of these complexes. They reveal a high density of low-lying electronic states with mixed MLCT, LLCT, and LC character where the electronic structures of the absorbing and emitting state are not necessarily identical.
Collapse
Affiliation(s)
- Torsten Hölzel
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Andrey Belyaev
- Fakultät für Chemie und Chemische Biologie, TU Dortmund, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany
| | - Meryem Terzi
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Laura Stenzel
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Markus Gernert
- Fakultät für Chemie und Chemische Biologie, TU Dortmund, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany
| | - Christel M Marian
- Institut für Theoretische Chemie und Computerchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Andreas Steffen
- Fakultät für Chemie und Chemische Biologie, TU Dortmund, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany
| | - Christian Ganter
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
32
|
Romanov AS, Linnolahti M, Bochmann M. Synthesis and photophysical properties of linear gold(I) complexes based on a CCC carbene. Dalton Trans 2021; 50:17156-17164. [PMID: 34781337 PMCID: PMC8631002 DOI: 10.1039/d1dt03393j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction between allenylpyridine (L1) and (Me2S)AuCl resulted in the quantitative formation of the (Indolizy)gold chloride complex 1 (Indolizy = indolizin-2-ylidene). The reaction of 1 with carbazole in the presence of KOtBu affords the corresponding (Indolizy)Au(Cz) complex 2. Both compounds show high air- and temperature stability. The crystal structure of 2 confirmed the linear co-planar geometry. Complex 1 shows an intense low energy absorption of mixed character in the UV-vis spectrum, ascribed to intraligand and (M + Hal)L charge transfer processes, and exhibits bright yellow phosphorescence with an excited state lifetime of 62.8 μs in the crystal and a luminescence quantum yield up to 65%. On the other hand, the carbazolate complex 2 in a polystyrene matrix shows bright red delayed fluorescence at 617 nm with a sub-microsecond excited state lifetime and a quantum yield of 21.6%.
Collapse
Affiliation(s)
- Alexander S Romanov
- School of Chemistry, University of East Anglia, Earlham Road, Norwich, NR4 7TJ, UK. .,School of Chemistry, University of Manchester, Manchester, M13 9PL, UK.
| | - Mikko Linnolahti
- Department of Chemistry, University of Eastern Finland, Joensuu Campus, FI-80101 Joensuu, Finland.
| | - Manfred Bochmann
- School of Chemistry, University of East Anglia, Earlham Road, Norwich, NR4 7TJ, UK.
| |
Collapse
|
33
|
Wegeberg C, Wenger OS. Luminescent First-Row Transition Metal Complexes. JACS AU 2021; 1:1860-1876. [PMID: 34841405 PMCID: PMC8611671 DOI: 10.1021/jacsau.1c00353] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Indexed: 05/25/2023]
Abstract
Precious and rare elements have traditionally dominated inorganic photophysics and photochemistry, but now we are witnessing a paradigm shift toward cheaper and more abundant metals. Even though emissive complexes based on selected first-row transition metals have long been known, recent conceptual breakthroughs revealed that a much broader range of elements in different oxidation states are useable for this purpose. Coordination compounds of V, Cr, Mn, Fe, Co, Ni, and Cu now show electronically excited states with unexpected reactivity and photoluminescence behavior. Aside from providing a compact survey of the recent conceptual key advances in this dynamic field, our Perspective identifies the main design strategies that enabled the discovery of fundamentally new types of 3d-metal-based luminophores and photosensitizers operating in solution at room temperature.
Collapse
|
34
|
Orange-red emissive N-hetercycle carbene (NHC) Cu(I) complexes bearing benzimidazolylidene-type ligands: Synthesis, structures, and photophysical properties. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
35
|
Reichenauer F, Wang C, Förster C, Boden P, Ugur N, Báez-Cruz R, Kalmbach J, Carrella LM, Rentschler E, Ramanan C, Niedner-Schatteburg G, Gerhards M, Seitz M, Resch-Genger U, Heinze K. Strongly Red-Emissive Molecular Ruby [Cr(bpmp) 2] 3+ Surpasses [Ru(bpy) 3] 2. J Am Chem Soc 2021; 143:11843-11855. [PMID: 34296865 DOI: 10.1021/jacs.1c05971] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Gaining chemical control over the thermodynamics and kinetics of photoexcited states is paramount to an efficient and sustainable utilization of photoactive transition metal complexes in a plethora of technologies. In contrast to energies of charge transfer states described by spatially separated orbitals, the energies of spin-flip states cannot straightforwardly be predicted as Pauli repulsion and the nephelauxetic effect play key roles. Guided by multireference quantum chemical calculations, we report a novel highly luminescent spin-flip emitter with a quantum chemically predicted blue-shifted luminescence. The spin-flip emission band of the chromium complex [Cr(bpmp)2]3+ (bpmp = 2,6-bis(2-pyridylmethyl)pyridine) shifted to higher energy from ca. 780 nm observed for known highly emissive chromium(III) complexes to 709 nm. The photoluminescence quantum yields climb to 20%, and very long excited state lifetimes in the millisecond range are achieved at room temperature in acidic D2O solution. Partial ligand deuteration increases the quantum yield to 25%. The high excited state energy of [Cr(bpmp)2]3+ and its facile reduction to [Cr(bpmp)2]2+ result in a high excited state redox potential. The ligand's methylene bridge acts as a Brønsted acid quenching the luminescence at high pH. Combined with a pH-insensitive chromium(III) emitter, ratiometric optical pH sensing is achieved with single wavelength excitation. The photophysical and ground state properties (quantum yield, lifetime, redox potential, and acid/base) of this spin-flip complex incorporating an earth-abundant metal surpass those of the classical precious metal [Ru(α-diimine)3]2+ charge transfer complexes, which are commonly employed in optical sensing and photo(redox) catalysis, underlining the bright future of these molecular ruby analogues.
Collapse
Affiliation(s)
- Florian Reichenauer
- Department of Chemistry, Johannes Gutenberg University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Cui Wang
- Division Biophotonics, Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Str. 11, 12489 Berlin, Germany.,Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Christoph Förster
- Department of Chemistry, Johannes Gutenberg University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Pit Boden
- Department of Chemistry and Research Center Optimas, University Kaiserslautern, Erwin-Schrödinger-Straße, 67663 Kaiserslautern, Germany
| | - Naz Ugur
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Ricardo Báez-Cruz
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Jens Kalmbach
- Institute of Inorganic Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Luca M Carrella
- Department of Chemistry, Johannes Gutenberg University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Eva Rentschler
- Department of Chemistry, Johannes Gutenberg University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Charusheela Ramanan
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Gereon Niedner-Schatteburg
- Department of Chemistry and Research Center Optimas, University Kaiserslautern, Erwin-Schrödinger-Straße, 67663 Kaiserslautern, Germany
| | - Markus Gerhards
- Department of Chemistry and Research Center Optimas, University Kaiserslautern, Erwin-Schrödinger-Straße, 67663 Kaiserslautern, Germany
| | - Michael Seitz
- Institute of Inorganic Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Ute Resch-Genger
- Division Biophotonics, Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Str. 11, 12489 Berlin, Germany
| | - Katja Heinze
- Department of Chemistry, Johannes Gutenberg University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|
36
|
|
37
|
Ferrari F, Braun J, Anson CE, Wilts BD, Moatsou D, Bizzarri C. Cyan-Emitting Cu(I) Complexes and Their Luminescent Metallopolymers. Molecules 2021; 26:2567. [PMID: 33924921 PMCID: PMC8125312 DOI: 10.3390/molecules26092567] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/19/2021] [Accepted: 04/26/2021] [Indexed: 11/16/2022] Open
Abstract
Copper complexes have shown great versatility and a wide application range across the natural and life sciences, with a particular promise as organic light-emitting diodes. In this work, four novel heteroleptic Cu(I) complexes were designed in order to allow their integration in advanced materials such as metallopolymers. We herein present the synthesis and the electrochemical and photophysical characterisation of these Cu(I) complexes, in combination with ab initio calculations. The complexes present a bright cyan emission (λem ~ 505 nm) in their solid state, both as powder and as blends in a polymer matrix. The successful synthesis of metallopolymers embedding two of the novel complexes is shown. These copolymers were also found to be luminescent and their photophysical properties were compared to those of their polymer blends. The chemical nature of the polymer backbone contributes significantly to the photoluminescence quantum yield, paving a route for the strategic design of novel luminescent Cu(I)-based polymeric materials.
Collapse
Affiliation(s)
- Federico Ferrari
- Karlsruhe Institute of Technology, Institute of Organic Chemistry, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany;
| | - Jonas Braun
- Karlsruhe Institute of Technology, Institute of Inorganic Chemistry, Engesserstrasse 15, 76131 Karlsruhe, Germany; (J.B.); (C.E.A.)
| | - Christopher E. Anson
- Karlsruhe Institute of Technology, Institute of Inorganic Chemistry, Engesserstrasse 15, 76131 Karlsruhe, Germany; (J.B.); (C.E.A.)
| | - Bodo D. Wilts
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland;
| | - Dafni Moatsou
- Karlsruhe Institute of Technology, Institute of Organic Chemistry, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany;
| | - Claudia Bizzarri
- Karlsruhe Institute of Technology, Institute of Organic Chemistry, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany;
| |
Collapse
|
38
|
Li TY, Shlian DG, Djurovich PI, Thompson ME. A Luminescent Two-Coordinate Au I Bimetallic Complex with a Tandem-Carbene Structure: A Molecular Design for the Enhancement of TADF Radiative Decay Rate. Chemistry 2021; 27:6191-6197. [PMID: 33561304 DOI: 10.1002/chem.202100512] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Indexed: 12/15/2022]
Abstract
A luminescent bimetallic AuI complex comprised of N-heterocyclic carbene (NHC) and carbazole (Cz) ligands, that is, (NHC')Au(NHC)AuCz has been synthesized and studied. Both carbene ligands in the bimetallic complex act as electron acceptors in tandem to increase the energy separation between the ground and excited state, which is higher than those found in either monometallic analogue, (NHC)AuCz and (NHC')AuCz. A coplanar geometry designed into the tandem complex ensures sufficient electronic coupling between the π-orbitals of the ligands to impart a strong oscillator strength to the singlet intra-ligand charge-transfer (1 ICT) transition. Theoretical modelling indicates that the emissive ICT excited state involves both NHC ligands. The tandem complex gives blue luminescence (λmax =480 nm) with a high photoluminescent quantum yield (ΦPL =0.80) with a short decay lifetime (τ=0.52 μs). Temperature-dependent photophysical studies indicate that emission is via thermally assisted delayed fluorescence (TADF) and give a small singlet-triplet energy difference (ΔEST =50 meV, 400 cm-1 ) consistent with the short TADF lifetime.
Collapse
Affiliation(s)
- Tian-Yi Li
- Department of Chemistry, University of Southern California, Los Angeles, California, 90089, USA
| | - Daniel G Shlian
- Department of Chemistry, Columbia University, New York, 10027, USA
| | - Peter I Djurovich
- Department of Chemistry, University of Southern California, Los Angeles, California, 90089, USA
| | - Mark E Thompson
- Department of Chemistry, University of Southern California, Los Angeles, California, 90089, USA
| |
Collapse
|
39
|
Hong G, Gan X, Leonhardt C, Zhang Z, Seibert J, Busch JM, Bräse S. A Brief History of OLEDs-Emitter Development and Industry Milestones. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005630. [PMID: 33458866 DOI: 10.1002/adma.202005630] [Citation(s) in RCA: 293] [Impact Index Per Article: 97.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/12/2020] [Indexed: 06/12/2023]
Abstract
Organic light-emitting diodes (OLEDs) have come a long way ever since their first introduction in 1987 at Eastman Kodak. Today, OLEDs are especially valued in the display and lighting industry for their promising features. As one of the research fields that equally inspires and drives development in academia and industry, OLED device technology has continuously evolved over more than 30 years. OLED devices have come forward based on three generations of emitter materials relying on fluorescence (first generation), phosphorescence (second generation), and thermally activated delayed fluorescence (third generation). Furthermore, research in academia and industry toward the fourth generation of OLEDs is in progress. Excerpts from the history of green, orange-red, and blue OLED emitter development on the side of academia and milestones achieved by key players in the industry are included in this report.
Collapse
Affiliation(s)
- Gloria Hong
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry (IOC), Fritz-Haber-Weg 6, Karlsruhe, 76131, Germany
| | - Xuemin Gan
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry (IOC), Fritz-Haber-Weg 6, Karlsruhe, 76131, Germany
| | - Céline Leonhardt
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry (IOC), Fritz-Haber-Weg 6, Karlsruhe, 76131, Germany
| | - Zhen Zhang
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry (IOC), Fritz-Haber-Weg 6, Karlsruhe, 76131, Germany
| | - Jasmin Seibert
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry (IOC), Fritz-Haber-Weg 6, Karlsruhe, 76131, Germany
| | - Jasmin M Busch
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry (IOC), Fritz-Haber-Weg 6, Karlsruhe, 76131, Germany
| | - Stefan Bräse
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry (IOC), Fritz-Haber-Weg 6, Karlsruhe, 76131, Germany
- Karlsruhe Institute of Technology (KIT), Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany
| |
Collapse
|
40
|
Copper(I) complexes with remotely functionalized phosphine ligands: Synthesis, structural variety, photophysics and effect onto the optical properties. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.119971] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
41
|
Lüdtke N, Föller J, Marian CM. Understanding the luminescence properties of Cu(i) complexes: a quantum chemical perusal. Phys Chem Chem Phys 2020; 22:23530-23544. [PMID: 33074271 DOI: 10.1039/d0cp04654j] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Electronic structures and excited-state properties of Cu(i) complexes with varying coordination numbers have been investigated by means of advanced quantum chemical methods. The computational protocol employs density functional-based methods for geometry optimizations and vibrational analyses including solvent effects through continuum models. Excitation energies, spin-orbit couplings and luminescence properties are evaluated using multireference configuration interaction methods. Rate constants of spin-allowed and spin-forbidden transitions have been determined according to the Fermi golden rule. The computational results for the 4-coordinate (DPEPhos)Cu(PyrTet), the 3-coordinate [IPr-Cu-Py2]+, and the linear CAACMe2-Cu-Cl complexes agree well with experimental absorption and emission wavelengths, intersystem crossing (ISC) time constants, and radiative lifetimes in liquid solution. Spectral shifts on the ligand-to-ligand charge transfer (LLCT) and metal-to-ligand charge transfer (MLCT) transitions caused by the polarity of the environment are well represented by the continuum models whereas the shifts caused by pseudo-Jahn-Teller distortions in the MLCT states are too pronounced in comparison to solid-state data. Systematic variation of the ligands in linear Cu(i) carbene complexes shows that only those complexes with S1 and T1 states of LLCT character possess sufficiently small singlet-triplet energy gaps ΔEST to enable thermally activated delayed fluorescence (TADF). Complexes whose S1 and T1 wavefunctions are dominated by MLCT excitations tend to emit phosphorescence instead. Unlike the situation in metal-free TADF emitters, the presence of low-lying locally excited triplet states does not promote ISC. These states rather hold the danger of trapping the excitation with nonradiative deactivation being the major deactivation channel.
Collapse
Affiliation(s)
- Nora Lüdtke
- Institute of Theoretical and Computational Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| | - Jelena Föller
- Institute of Theoretical and Computational Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| | - Christel M Marian
- Institute of Theoretical and Computational Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
42
|
Watt F, Dickmann N, Schoch R, Hohloch S. Isocyanate Insertion into a La-P Phosphide Bond: A Versatile Route to Phosphaureate-Bridged Heterobimetallic Lanthanide-Coinage-Metal Complexes. Inorg Chem 2020; 59:13621-13631. [PMID: 32885972 PMCID: PMC7509844 DOI: 10.1021/acs.inorgchem.0c01971] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Indexed: 01/01/2023]
Abstract
A new route to heterobimetallic lanthanide-coinage-metal complexes is disclosed. The selective insertion of organic substrates such as phenyl iso(thio)cyanate into the La-P bond of the primary phosphido complex (PN)2La(PHMes) (1) (with PN- = (N-(2-(diisopropylphosphanyl)-4-methylphenyl)-2,4,6-trimethylanilide) yields the phospha(thio)ureate complexes (PN)2La(OC(NPh)(PHMes)) (2) and (PN)2La(SC(NPh)(PHMes)) (3) with retention of the PH protons. Subsequent deprotonation of the phosphaureate complex 2 with potassium hexamethyldisilazide (KHMDS, K[N(SiMe3)2]) leads to the polymeric complex [K{(PN)2La(OC(NPh)(PMes))}]n (4). Complex 4 was found to be an excellent precursor for salt metathesis reactions with copper(I) and gold(I) chlorides supported by an N-heterocyclic carbene (NHC, 5 and 6) or a cyclic alkyl amino carbene (CAAC, 7 and 8). This resulted in the unprecedented formation of heterobimetallic lanthanum-coinage-metal complexes, containing the first example of a μ,κ2(O,N):κ1(P)-phosphaureate bridging ligand. For an alternative route to complex 8 a direct protonolysis protocol between a new basic gold(I) precursor, namely (MeCAAC)Au(HMDS), and 2 was also investigated. The complexes have been characterized by multinuclear NMR spectroscopy, IR spectroscopy, and X-ray crystallography (except for 8).
Collapse
Affiliation(s)
- Fabian
A. Watt
- Paderborn
University, Faculty of Science,
Department of Chemistry, Warburger Straße 100, 33098 Paderborn, Germany
| | - Nicole Dickmann
- Paderborn
University, Faculty of Science,
Department of Chemistry, Warburger Straße 100, 33098 Paderborn, Germany
| | - Roland Schoch
- Paderborn
University, Faculty of Science,
Department of Chemistry, Warburger Straße 100, 33098 Paderborn, Germany
| | - Stephan Hohloch
- University
of Innsbruck, Faculty of Chemistry
and Pharmacy, Institute of General, Inorganic and Theoretical Chemistry, Innrain 80-82, 6020 Innsbruck, Austria
| |
Collapse
|
43
|
Manar KK, Chakrabortty S, Porwal VK, Prakash D, Thakur SK, Choudhury AR, Singh S. Two‐Coordinate Cu(I) and Au(I) Complexes Supported by BICAAC and CAAC Ligands. ChemistrySelect 2020. [DOI: 10.1002/slct.202002295] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Krishna K. Manar
- Department of Chemical Sciences Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81 SAS Nagar, Mohali 140306 Punjab India
| | - Soumyadeep Chakrabortty
- Department of Chemical Sciences Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81 SAS Nagar, Mohali 140306 Punjab India
| | - Vishal Kumar Porwal
- Department of Chemical Sciences Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81 SAS Nagar, Mohali 140306 Punjab India
| | - Darsana Prakash
- Department of Chemical Sciences Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81 SAS Nagar, Mohali 140306 Punjab India
| | - Sandeep Kumar Thakur
- Department of Chemical Sciences Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81 SAS Nagar, Mohali 140306 Punjab India
| | - Angshuman Roy Choudhury
- Department of Chemical Sciences Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81 SAS Nagar, Mohali 140306 Punjab India
| | - Sanjay Singh
- Department of Chemical Sciences Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81 SAS Nagar, Mohali 140306 Punjab India
| |
Collapse
|
44
|
Zheng J, Lu Z, Wu K, Ning GH, Li D. Coinage-Metal-Based Cyclic Trinuclear Complexes with Metal-Metal Interactions: Theories to Experiments and Structures to Functions. Chem Rev 2020; 120:9675-9742. [PMID: 32786416 DOI: 10.1021/acs.chemrev.0c00011] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Among the d10 coinage metal complexes, cyclic trinuclear complexes (CTCs) or trinuclear metallocycles with intratrimer metal-metal interactions are fascinating and important metal-organic or organometallic π-acids/bases. Each CTC of characteristic planar or near-planar trimetal nine-membered rings consists of Au(I)/Ag(I)/Cu(I) cations that linearly coordinate with N and/or C atoms in ditopic anionic bridging ligands. Since the first discovery of Au(I) CTC in the 1970s, research of CTCs has involved several fundamental areas, including noncovalent and metallophilic interaction, excimer/exciplex, acid-base chemistry, metalloaromaticity, supramolecular assemblies, and host/guest chemistry. These allow CTCs to be embraced in a wide range of innovative potential applications that include chemical sensing, semiconducting, gas and liquid adsorption/separation, catalysis, full-color display, and solid-state lighting. This review aims to provide a historic and comprehensive summary on CTCs and their extension to higher nuclearity complexes and coordination polymers from the perspectives of synthesis, structure, theoretical insight, and potential applications.
Collapse
Affiliation(s)
- Ji Zheng
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, People's Republic of China
| | - Zhou Lu
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, People's Republic of China
| | - Kun Wu
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, People's Republic of China
| | - Guo-Hong Ning
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, People's Republic of China
| | - Dan Li
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, People's Republic of China
| |
Collapse
|
45
|
Azizpoor Fard M, Polgar AM, Corrigan JF. Tethered Polynuclear Copper–Chalcogenolate Assemblies Enabled via NHC Ligation. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
46
|
Matavos-Aramyan S, Soukhakian S, Jazebizadeh MH. Mononuclear Cu Complexes Based on Nitrogen Heterocyclic Carbene: A Comprehensive Review. Top Curr Chem (Cham) 2020; 378:39. [PMID: 32367181 DOI: 10.1007/s41061-020-00304-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/16/2020] [Indexed: 11/28/2022]
Abstract
During the last decade, organometallic, coordination, and catalytic chemistry of the three-dimensional metals such as copper (Cu) has been greatly affected by the emergence of nitrogen heterocyclic carbene (NHC) complexes. The NHCs, and in particular the mononuclear CuI-based ones, have been proven vastly useful in several applications such as in biosynthesis, catalysis, photochemistry, etc. This review tries to thoroughly describe a series of mononuclear CuI NHC complexes and their subcategories such as heteroleptics, and bidentate and tridentate heteroatom complexes, and give some detailed insights on their development, emergence, and applications. A brief outlook is also disclosed to enable other researchers to further develop a platform for future advances and studies in the field of CuI-based NHCs.
Collapse
Affiliation(s)
- Sina Matavos-Aramyan
- Research and Development Department, Division of Chemistry, Raazi Environmental Protection Foundation, Shiraz, Iran.
| | - Sadaf Soukhakian
- Research and Development Department, Division of Chemistry, Raazi Environmental Protection Foundation, Shiraz, Iran
| | - Mohammad Hossein Jazebizadeh
- Research and Development Department, Division of Chemistry, Raazi Environmental Protection Foundation, Shiraz, Iran
| |
Collapse
|
47
|
Gernert M, Balles-Wolf L, Kerner F, Müller U, Schmiedel A, Holzapfel M, Marian CM, Pflaum J, Lambert C, Steffen A. Cyclic (Amino)(aryl)carbenes Enter the Field of Chromophore Ligands: Expanded π System Leads to Unusually Deep Red Emitting Cu I Compounds. J Am Chem Soc 2020; 142:8897-8909. [PMID: 32302135 DOI: 10.1021/jacs.0c02234] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of copper(I) complexes bearing a cyclic (amino)(aryl)carbene (CAArC) ligand with various complex geometries have been investigated in great detail with regard to their structural, electronic, and photophysical properties. Comparison of [CuX(CAArC)] (X = Br (1), Cbz (2), acac (3), Ph2acac (4), Cp (5), and Cp* (6)) with known CuI complexes bearing cyclic (amino)(alkyl), monoamido, or diamido carbenes (CAAC, MAC, or DAC, respectively) as chromophore ligands reveals that the expanded π-system of the CAArC leads to relatively low energy absorption maxima between 350 and 550 nm in THF with high absorption coefficients of 5-15 × 103 M-1 cm-1 for 1-6. Furthermore, 1-5 show intense deep red to near-IR emission involving their triplet excited states in the solid state and in PMMA films with λemmax = 621-784 nm. Linear [Cu(Cbz)(DippCAArC)] (2) has been found to be an exceptional deep red (λmax = 621 nm, ϕ = 0.32, τav = 366 ns) thermally activated delayed fluorescence (TADF) emitter with a radiative rate constant kr of ca. 9 × 105 s-1, exceeding those of commercially employed IrIII- or PtII-based emitters. Time-resolved transient absorption and fluorescence upconversion experiments complemented by quantum chemical calculations employing Kohn-Sham density functional theory and multireference configuration interaction methods as well as temperature-dependent steady-state and time-resolved luminescence studies provide a detailed picture of the excited-state dynamics of 2. To demonstrate the potential applicability of this new class of low-energy emitters in future photonic applications, such as nonclassical light sources for quantum communication or quantum cryptography, we have successfully conducted single-molecule photon-correlation experiments of 2, showing distinct antibunching as required for single-photon emitters.
Collapse
Affiliation(s)
- Markus Gernert
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Straße 6, 44227 Dortmund, Germany
| | - Lukas Balles-Wolf
- Institute of Inorganic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Florian Kerner
- Institute of Inorganic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Ulrich Müller
- Experimental Physics VI, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Alexander Schmiedel
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Marco Holzapfel
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Christel M Marian
- Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Jens Pflaum
- Experimental Physics VI, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Christoph Lambert
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Andreas Steffen
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Straße 6, 44227 Dortmund, Germany
| |
Collapse
|
48
|
Jazzar R, Soleilhavoup M, Bertrand G. Cyclic (Alkyl)- and (Aryl)-(amino)carbene Coinage Metal Complexes and Their Applications. Chem Rev 2020; 120:4141-4168. [DOI: 10.1021/acs.chemrev.0c00043] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Rodolphe Jazzar
- UCSD-CNRS Joint Research Laboratory (UMI 3555), Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358, United States
| | - Michele Soleilhavoup
- UCSD-CNRS Joint Research Laboratory (UMI 3555), Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358, United States
| | - Guy Bertrand
- UCSD-CNRS Joint Research Laboratory (UMI 3555), Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358, United States
| |
Collapse
|
49
|
Xing LR, Lu Z, Li M, Zheng J, Li D. Revealing High-Lying Intersystem Crossing in Brightly Luminescent Cyclic Trinuclear Cu I/Ag I Complexes. J Phys Chem Lett 2020; 11:2067-2073. [PMID: 32083873 DOI: 10.1021/acs.jpclett.9b03382] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The increased attention to luminescent copper(I) complexes, mostly mononuclear and dinuclear ones, in the past few years was mainly due to the new pathways established in the intersystem crossing (ISC) for highly efficient singlet/triplet harvesting, which showed great potential in light-emitting devices. Governing the photophysical processes of planar cyclic trinuclear complexes is more challenging owing to the rich intra- and intermolecular metal-metal interactions involved, but new opportunities also accompany this. Herein reported is a hidden route to the ultra-long-lived, highly efficient phosphorescence of cyclic trinuclear two-coordinate CuI-pyrazolate complexes through pushing the unfavorable metal-to-ligand charge transfer events to the high-lying ISC pathways. Moreover, an anomaly of much higher quantum yields of a trinuclear AgI-pyrazolate complex relative to its CuI analogue is observed.
Collapse
Affiliation(s)
- Li-Rui Xing
- Department of Chemistry, Shantou University, Shantou, Guangdong 515063, P. R. China
| | - Zhou Lu
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China
| | - Mian Li
- Department of Chemistry, Shantou University, Shantou, Guangdong 515063, P. R. China
| | - Ji Zheng
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China
| | - Dan Li
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China
| |
Collapse
|
50
|
Li J, Wang L, Zhao Z, Li X, Yu X, Huo P, Jin Q, Liu Z, Bian Z, Huang C. Two‐Coordinate Copper(I)/NHC Complexes: Dual Emission Properties and Ultralong Room‐Temperature Phosphorescence. Angew Chem Int Ed Engl 2020; 59:8210-8217. [DOI: 10.1002/anie.201916379] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Jiayi Li
- Beijing National Laboratory for Molecular Sciences (BNLMS)State Key Laboratory of Rare Earth Materials Chemistry and ApplicationsBeijing Engineering Technology Research Centre of Active DisplayCollege of Chemistry and Molecular EngineeringPeking University Beijing 100871 China
| | - Liding Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS)State Key Laboratory of Rare Earth Materials Chemistry and ApplicationsBeijing Engineering Technology Research Centre of Active DisplayCollege of Chemistry and Molecular EngineeringPeking University Beijing 100871 China
| | - Zifeng Zhao
- Beijing National Laboratory for Molecular Sciences (BNLMS)State Key Laboratory of Rare Earth Materials Chemistry and ApplicationsBeijing Engineering Technology Research Centre of Active DisplayCollege of Chemistry and Molecular EngineeringPeking University Beijing 100871 China
| | - Xiaoyue Li
- Beijing National Laboratory for Molecular Sciences (BNLMS)State Key Laboratory of Rare Earth Materials Chemistry and ApplicationsBeijing Engineering Technology Research Centre of Active DisplayCollege of Chemistry and Molecular EngineeringPeking University Beijing 100871 China
| | - Xiao Yu
- Department of ChemistryCapital Normal University Beijing 100048 China
| | - Peihao Huo
- Beijing National Laboratory for Molecular Sciences (BNLMS)State Key Laboratory of Rare Earth Materials Chemistry and ApplicationsBeijing Engineering Technology Research Centre of Active DisplayCollege of Chemistry and Molecular EngineeringPeking University Beijing 100871 China
| | - Qionghua Jin
- Department of ChemistryCapital Normal University Beijing 100048 China
| | - Zhiwei Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS)State Key Laboratory of Rare Earth Materials Chemistry and ApplicationsBeijing Engineering Technology Research Centre of Active DisplayCollege of Chemistry and Molecular EngineeringPeking University Beijing 100871 China
| | - Zuqiang Bian
- Beijing National Laboratory for Molecular Sciences (BNLMS)State Key Laboratory of Rare Earth Materials Chemistry and ApplicationsBeijing Engineering Technology Research Centre of Active DisplayCollege of Chemistry and Molecular EngineeringPeking University Beijing 100871 China
| | - Chunhui Huang
- Beijing National Laboratory for Molecular Sciences (BNLMS)State Key Laboratory of Rare Earth Materials Chemistry and ApplicationsBeijing Engineering Technology Research Centre of Active DisplayCollege of Chemistry and Molecular EngineeringPeking University Beijing 100871 China
| |
Collapse
|