1
|
Talbott JM, Tessier BR, Harding EE, Walby GD, Hess KJ, Baskevics V, Katkevics M, Rozners E, MacKay JA. Improved Triplex-Forming Isoorotamide PNA Nucleobases for A-U Recognition of RNA Duplexes. Chemistry 2023; 29:e202302390. [PMID: 37647091 DOI: 10.1002/chem.202302390] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/24/2023] [Accepted: 08/30/2023] [Indexed: 09/01/2023]
Abstract
Four new isoorotamide (Io)-containing PNA nucleobases have been designed for A-U recognition of double helical RNA. New PNA monomers were prepared efficiently and incorporated into PNA nonamers for binding A-U in a PNA:RNA2 triplex. Isothermal titration calorimetry and UV thermal melting experiments revealed slightly improved binding affinity for singly modified PNA compared to known A-binding nucleobases. Molecular dynamics simulations provided further insights into binding of Io bases in the triple helix. Together, the data revealed interesting insights into binding modes including the notion that three Hoogsteen hydrogen bonds are unnecessary for strong selective binding of an extended nucleobase. Cationic monomer Io8 additionally gave the highest affinity observed for an A-binding nucleobase to date. These results will help inform future nucleobase design toward the goal of recognizing any sequence of double helical RNA.
Collapse
Affiliation(s)
- John M Talbott
- Department of Chemistry and Biochemistry, Elizabethtown College, Elizabethtown, PA 17022, USA
| | - Brandon R Tessier
- Department of Chemistry, Binghamton University, Binghamton, NY 13902, USA
| | - Emily E Harding
- Department of Chemistry and Biochemistry, Elizabethtown College, Elizabethtown, PA 17022, USA
| | - Grant D Walby
- Department of Chemistry and Biochemistry, Elizabethtown College, Elizabethtown, PA 17022, USA
| | - Kyle J Hess
- Department of Chemistry and Biochemistry, Elizabethtown College, Elizabethtown, PA 17022, USA
| | | | - Martins Katkevics
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, LV-1006, Latvia
| | - Eriks Rozners
- Department of Chemistry, Binghamton University, Binghamton, NY 13902, USA
| | - James A MacKay
- Department of Chemistry and Biochemistry, Elizabethtown College, Elizabethtown, PA 17022, USA
| |
Collapse
|
2
|
Oyaghire SN, Quijano E, Perera JDR, Mandl HK, Saltzman WM, Bahal R, Glazer PM. DNA recognition and induced genome modification by a hydroxymethyl-γ tail-clamp peptide nucleic acid. CELL REPORTS. PHYSICAL SCIENCE 2023; 4:101635. [PMID: 37920723 PMCID: PMC10621889 DOI: 10.1016/j.xcrp.2023.101635] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Peptide nucleic acids (PNAs) can target and stimulate recombination reactions in genomic DNA. We have reported that γPNA oligomers possessing the diethylene glycol γ-substituent show improved efficacy over unmodified PNAs in stimulating recombination-induced gene modification. However, this structural modification poses a challenge because of the inherent racemization risk in O-alkylation of the precursory serine side chain. To circumvent this risk and improve γPNA accessibility, we explore the utility of γPNA oligomers possessing the hydroxymethyl-γ moiety for gene-editing applications. We demonstrate that a γPNA oligomer possessing the hydroxymethyl modification, despite weaker preorganization, retains the ability to form a hybrid with the double-stranded DNA target of comparable stability and with higher affinity than that of the diethylene glycol-γPNA. When formulated into poly(lactic-co-glycolic acid) nanoparticles, the hydroxymethyl-γPNA stimulates higher frequencies (≥ 1.5-fold) of gene modification than the diethylene glycol γPNA in mouse bone marrow cells.
Collapse
Affiliation(s)
- Stanley N. Oyaghire
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
- These authors contributed equally
| | - Elias Quijano
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
- These authors contributed equally
| | - J. Dinithi R. Perera
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Hanna K. Mandl
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - W. Mark Saltzman
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
- Department of Chemical & Environmental Engineering, Yale University, New Haven, CT 06511, USA
- Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Dermatology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Raman Bahal
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Peter M. Glazer
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
- Lead contact
| |
Collapse
|
3
|
Ryan C, Rahman MM, Kumar V, Rozners E. Triplex-Forming Peptide Nucleic Acid Controls Dynamic Conformations of RNA Bulges. J Am Chem Soc 2023; 145:10497-10504. [PMID: 37155726 PMCID: PMC10198159 DOI: 10.1021/jacs.2c12488] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Indexed: 05/10/2023]
Abstract
RNA folding is driven by the formation of double-helical segments interspaced by loops of unpaired nucleotides. Among the latter, bulges formed by one or several unpaired nucleotides are one of the most common structural motifs that play an important role in stabilizing RNA-RNA, RNA-protein, and RNA-small molecule interactions. Single-nucleotide bulges can fold in alternative structures where the unpaired nucleobase is either looped-out (flexible) in a solvent or stacked-in (intercalated) between the base pairs. In the present study, we discovered that triplex-forming peptide nucleic acids (PNAs) had unusually high affinity for single-purine-nucleotide bulges in double-helical RNA. Depending on the PNA's sequence, the triplex formation shifted the equilibrium between looped-out and stacked-in conformations. The ability to control the dynamic equilibria of RNA's structure will be an important tool for studying structure-function relationships in RNA biology and may have potential in novel therapeutic approaches targeting disease-related RNAs.
Collapse
Affiliation(s)
- Christopher
A. Ryan
- Department of Chemistry, The State
University of New York, Binghamton University, Binghamton, New York 13902, United States
| | - Md Motiar Rahman
- Department of Chemistry, The State
University of New York, Binghamton University, Binghamton, New York 13902, United States
| | - Vipin Kumar
- Department of Chemistry, The State
University of New York, Binghamton University, Binghamton, New York 13902, United States
| | - Eriks Rozners
- Department of Chemistry, The State
University of New York, Binghamton University, Binghamton, New York 13902, United States
| |
Collapse
|
4
|
Bekkouche I, Shishonin AY, Vetcher AA. Recent Development in Biomedical Applications of Oligonucleotides with Triplex-Forming Ability. Polymers (Basel) 2023; 15:858. [PMID: 36850142 PMCID: PMC9964087 DOI: 10.3390/polym15040858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/12/2023] Open
Abstract
A DNA structure, known as triple-stranded DNA, is made up of three oligonucleotide chains that wind around one another to form a triple helix (TFO). Hoogsteen base pairing describes how triple-stranded DNA may be built at certain conditions by the attachment of the third strand to an RNA, PNA, or DNA, which might all be employed as oligonucleotide chains. In each of these situations, the oligonucleotides can be employed as an anchor, in conjunction with a specific bioactive chemical, or as a messenger that enables switching between transcription and replication through the triplex-forming zone. These data are also considered since various illnesses have been linked to the expansion of triplex-prone sequences. In light of metabolic acidosis and associated symptoms, some consideration is given to the impact of several low-molecular-weight compounds, including pH on triplex production in vivo. The review is focused on the development of biomedical oligonucleotides with triplexes.
Collapse
Affiliation(s)
- Incherah Bekkouche
- Nanotechnology Scientific and Educational Center, Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia (RUDN), Miklukho-Maklaya Str. 6, Moscow 117198, Russia
| | - Alexander Y. Shishonin
- Complementary and Integrative Health Clinic of Dr. Shishonin, 5, Yasnogorskaya Str., Moscow 117588, Russia
| | - Alexandre A. Vetcher
- Nanotechnology Scientific and Educational Center, Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia (RUDN), Miklukho-Maklaya Str. 6, Moscow 117198, Russia
- Complementary and Integrative Health Clinic of Dr. Shishonin, 5, Yasnogorskaya Str., Moscow 117588, Russia
| |
Collapse
|
5
|
Ryan CA, Baskevics V, Katkevics M, Rozners E. 2-Guanidyl pyridine PNA nucleobase for triple-helical Hoogsteen recognition of cytosine in double-stranded RNA. Chem Commun (Camb) 2022; 58:7148-7151. [PMID: 35666682 DOI: 10.1039/d2cc02615e] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In triplex-forming peptide nucleic acid, a novel 2-guanidyl pyridine nucleobase (V) enables recognition of up to two cytosine interruptions in polypurine tracts of dsRNA by engaging the entire Hoogsteen face of C-G base pair. Ab initio and molecular dynamics simulations provided insights into H-bonding interactions that stabilized V·C-G triplets. Our results provided insights for future design of improved nucleobases, which is an important step towards the ultimate goal of recognition of any sequence of dsRNA.
Collapse
Affiliation(s)
- Christopher A Ryan
- Department of Chemistry, Binghamton University, Binghamton, NY 13902, USA.
| | | | - Martins Katkevics
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, LV-1006, Latvia
| | - Eriks Rozners
- Department of Chemistry, Binghamton University, Binghamton, NY 13902, USA.
| |
Collapse
|
6
|
Suparpprom C, Vilaivan T. Perspectives on conformationally constrained peptide nucleic acid (PNA): insights into the structural design, properties and applications. RSC Chem Biol 2022; 3:648-697. [PMID: 35755191 PMCID: PMC9175113 DOI: 10.1039/d2cb00017b] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/17/2022] [Indexed: 11/21/2022] Open
Abstract
Peptide nucleic acid or PNA is a synthetic DNA mimic that contains a sequence of nucleobases attached to a peptide-like backbone derived from N-2-aminoethylglycine. The semi-rigid PNA backbone acts as a scaffold that arranges the nucleobases in a proper orientation and spacing so that they can pair with their complementary bases on another DNA, RNA, or even PNA strand perfectly well through the standard Watson-Crick base-pairing. The electrostatically neutral backbone of PNA contributes to its many unique properties that make PNA an outstanding member of the xeno-nucleic acid family. Not only PNA can recognize its complementary nucleic acid strand with high affinity, but it does so with excellent specificity that surpasses the specificity of natural nucleic acids and their analogs. Nevertheless, there is still room for further improvements of the original PNA in terms of stability and specificity of base-pairing, direction of binding, and selectivity for different types of nucleic acids, among others. This review focuses on attempts towards the rational design of new generation PNAs with superior performance by introducing conformational constraints such as a ring or a chiral substituent in the PNA backbone. A large collection of conformationally rigid PNAs developed during the past three decades are analyzed and compared in terms of molecular design and properties in relation to structural data if available. Applications of selected modified PNA in various areas such as targeting of structured nucleic acid targets, supramolecular scaffold, biosensing and bioimaging, and gene regulation will be highlighted to demonstrate how the conformation constraint can improve the performance of the PNA. Challenges and future of the research in the area of constrained PNA will also be discussed.
Collapse
Affiliation(s)
- Chaturong Suparpprom
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Naresuan University, Tah-Poe District, Muang Phitsanulok 65000 Thailand
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University Phayathai Road Pathumwan Bangkok 10330 Thailand
| | - Tirayut Vilaivan
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Naresuan University, Tah-Poe District, Muang Phitsanulok 65000 Thailand
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University Phayathai Road Pathumwan Bangkok 10330 Thailand
| |
Collapse
|
7
|
Aro-Heinilä A, Lepistö A, Äärelä A, Lönnberg TA, Virta P. 2-Trifluoromethyl-6-mercurianiline Nucleotide, a Sensitive 19F NMR Probe for Hg(II)-mediated Base Pairing. J Org Chem 2022; 87:137-146. [PMID: 34905374 PMCID: PMC8749955 DOI: 10.1021/acs.joc.1c02056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Indexed: 01/02/2023]
Abstract
A 2-trifluoromethylaniline C-nucleoside was synthesized, incorporated in the middle of an oligonucleotide, and mercurated. The affinity of the mercurated oligonucleotide toward complementary strands placing each of the canonical nucleobases opposite to the organomercury nucleobase analogue was examined by ultraviolet (UV), circular dichroism (CD), and 19F NMR spectroscopy analyses. According to the UV melting profile analysis, the organomercury nucleobase analogue showed increased affinities in the order T > G > C > A. The CD profiles indicated the typical B-type helix in each case. The 19F resonance signal proved sensitive for the local environmental changes, showing clearly distinct signals for the duplexes with different opposing nucleobases. Furthermore, valuable information on the mercurated oligonucleotide and its binding to complementary strands at varying temperature could be obtained by 19F NMR spectroscopy.
Collapse
Affiliation(s)
- Asmo Aro-Heinilä
- Department of Chemistry, University
of Turku, Henrikinkatu 2, 20500 Turku, Finland
| | - Assi Lepistö
- Department of Chemistry, University
of Turku, Henrikinkatu 2, 20500 Turku, Finland
| | - Antti Äärelä
- Department of Chemistry, University
of Turku, Henrikinkatu 2, 20500 Turku, Finland
| | | | - Pasi Virta
- Department of Chemistry, University
of Turku, Henrikinkatu 2, 20500 Turku, Finland
| |
Collapse
|
8
|
Zhan X, Deng L, Chen G. Mechanisms and applications of peptide nucleic acids selectively binding to double-stranded RNA. Biopolymers 2021; 113:e23476. [PMID: 34581432 DOI: 10.1002/bip.23476] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/11/2022]
Abstract
RNAs form secondary structures containing double-stranded base paired regions and single-stranded regions. Probing, detecting and modulating RNA structures and dynamics requires the development of molecular sensors that can differentiate the sequence and structure of RNAs present in viruses and cells, as well as in extracellular space. In this review, we summarize the recent progress on the development of chemically modified peptide nucleic acids (PNAs) for the selective recognition of double-stranded RNA (dsRNA) sequences over both single-stranded RNA (ssRNA) and double-stranded DNA (dsDNA) sequences. We also briefly discuss the applications of sequence-specific dsRNA-binding PNAs in sensing and stabilizing dsRNA structures and inhibiting dsRNA-protein interactions.
Collapse
Affiliation(s)
- Xuan Zhan
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, China
| | - Liping Deng
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, China
| | - Gang Chen
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
9
|
Brodyagin N, Katkevics M, Kotikam V, Ryan CA, Rozners E. Chemical approaches to discover the full potential of peptide nucleic acids in biomedical applications. Beilstein J Org Chem 2021; 17:1641-1688. [PMID: 34367346 PMCID: PMC8313981 DOI: 10.3762/bjoc.17.116] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/28/2021] [Indexed: 12/23/2022] Open
Abstract
Peptide nucleic acid (PNA) is arguably one of the most successful DNA mimics, despite a most dramatic departure from the native structure of DNA. The present review summarizes 30 years of research on PNA's chemistry, optimization of structure and function, applications as probes and diagnostics, and attempts to develop new PNA therapeutics. The discussion starts with a brief review of PNA's binding modes and structural features, followed by the most impactful chemical modifications, PNA enabled assays and diagnostics, and discussion of the current state of development of PNA therapeutics. While many modifications have improved on PNA's binding affinity and specificity, solubility and other biophysical properties, the original PNA is still most frequently used in diagnostic and other in vitro applications. Development of therapeutics and other in vivo applications of PNA has notably lagged behind and is still limited by insufficient bioavailability and difficulties with tissue specific delivery. Relatively high doses are required to overcome poor cellular uptake and endosomal entrapment, which increases the risk of toxicity. These limitations remain unsolved problems waiting for innovative chemistry and biology to unlock the full potential of PNA in biomedical applications.
Collapse
Affiliation(s)
- Nikita Brodyagin
- Department of Chemistry, Binghamton University, The State University of New York, Binghamton, New York 13902, United States
| | - Martins Katkevics
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, LV-1006, Latvia
| | - Venubabu Kotikam
- Department of Chemistry, Binghamton University, The State University of New York, Binghamton, New York 13902, United States
| | - Christopher A Ryan
- Department of Chemistry, Binghamton University, The State University of New York, Binghamton, New York 13902, United States
| | - Eriks Rozners
- Department of Chemistry, Binghamton University, The State University of New York, Binghamton, New York 13902, United States
| |
Collapse
|
10
|
Brodyagin N, Kumpina I, Applegate J, Katkevics M, Rozners E. Pyridazine Nucleobase in Triplex-Forming PNA Improves Recognition of Cytosine Interruptions of Polypurine Tracts in RNA. ACS Chem Biol 2021; 16:872-881. [PMID: 33881836 PMCID: PMC8673316 DOI: 10.1021/acschembio.1c00044] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sequence specific recognition of regulatory noncoding RNAs would open new possibilities for fundamental science and medicine. However, molecular recognition of such complex double-stranded RNA (dsRNA) structures remains a formidable problem. Recently, we discovered that peptide nucleic acids (PNAs) form an unusually stable and sequence-specific triple helix with dsRNA. Triplex-forming PNAs could become universal tools for recognition of noncoding dsRNAs but are limited by the requirement of polypurine tracts in target RNAs as only purines form stable Hoogsteen hydrogen bonded base triplets. Herein, we systematically surveyed simple nitrogen heterocycles PN as modified nucleobases for recognition of cytosine in PN*C-G triplets. We found that a 3-pyridazinyl nucleobase formed significantly more stable PN*C-G triplets than other heterocycles including the pyrimidin-2-one previously used by us and others for recognition of cytosine interruptions in polypurine tracts of PNA-dsRNA triplexes. Our results improve triple helical recognition of dsRNA and provide insights for future development of new nucleobases to expand the sequence scope of noncoding dsRNAs that can be targeted by triplex-forming PNAs.
Collapse
Affiliation(s)
- Nikita Brodyagin
- Department of Chemistry, Binghamton University, The State University of New York, Binghamton, New York 13902, United States
| | - Ilze Kumpina
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, LV-1006, Latvia
| | - Justin Applegate
- Department of Chemistry, Binghamton University, The State University of New York, Binghamton, New York 13902, United States
| | - Martins Katkevics
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, LV-1006, Latvia
| | - Eriks Rozners
- Department of Chemistry, Binghamton University, The State University of New York, Binghamton, New York 13902, United States
| |
Collapse
|
11
|
Topham CM, Smith JC. Peptide nucleic acid Hoogsteen strand linker design for major groove recognition of DNA thymine bases. J Comput Aided Mol Des 2021; 35:355-369. [PMID: 33624202 DOI: 10.1007/s10822-021-00375-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 02/03/2021] [Indexed: 10/22/2022]
Abstract
Sequence-specific targeting of double-stranded DNA and non-coding RNA via triple-helix-forming peptide nucleic acids (PNAs) has attracted considerable attention in therapeutic, diagnostic and nanotechnological fields. An E-base (3-oxo-2,3-dihydropyridazine), attached to the polyamide backbone of a PNA Hoogsteen strand by a side-chain linker molecule, is typically used in the hydrogen bond recognition of the 4-oxo group of thymine and uracil nucleic acid bases in the major groove. We report on the application of quantum chemical computational methods, in conjunction with spatial constraints derived from the experimental structure of a homopyrimidine PNA·DNA-PNA hetero-triplex, to investigate the influence of linker flexibility on binding interactions of the E-base with thymine and uracil bases in geometry-optimised model systems. Hydrogen bond formation between the N2 E-base atom and target pyrimidine base 4-oxo groups in model systems containing a β-alanine linker (J Am Chem Soc 119:11116, 1997) was found to incur significant internal strain energy and the potential disruption of intra-stand aromatic base stacking interactions in an oligomeric context. In geometry-optimised model systems containing a 3-trans olefin linker (Bioorg Med Chem Lett 14:1551, 2004) the E-base swung out away from the target pyrimidine bases into the solvent. These findings are in qualitative agreement with calorimetric measurements in hybridisation experiments at T-A and U-A inversion sites. In contrast, calculations on a novel 2-cis olefin linker design indicate that it could permit simultaneous E-base hydrogen bonding with the thymine 4-oxo group, circumvention and solvent screening of the thymine 5-methyl group, and maintenance of triplex intra-stand base stacking interactions.
Collapse
Affiliation(s)
- Christopher M Topham
- Molecular Forces Consulting, 24 Avenue Jacques Besse, 81500, Lavaur, France.
- Computational Molecular Biophysics, IWR Der Universität Heidelberg, Im Neuenheimer Feld 368, 69120, Heidelberg, Germany.
- Center for Molecular Biophysics, University of Tennessee / Oak Ridge National Laboratory, P.O.Box 2008, Oak Ridge, TN, 37831-6309, USA.
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, M407 Walters Life Sciences, 1414 Cumberland Avenue, Knoxville, TN, 37996, USA.
| | - Jeremy C Smith
- Computational Molecular Biophysics, IWR Der Universität Heidelberg, Im Neuenheimer Feld 368, 69120, Heidelberg, Germany
- Center for Molecular Biophysics, University of Tennessee / Oak Ridge National Laboratory, P.O.Box 2008, Oak Ridge, TN, 37831-6309, USA
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, M407 Walters Life Sciences, 1414 Cumberland Avenue, Knoxville, TN, 37996, USA
| |
Collapse
|
12
|
Brodyagin N, Maryniak AL, Kumpina I, Talbott JM, Katkevics M, Rozners E, MacKay JA. Extended Peptide Nucleic Acid Nucleobases Based on Isoorotic Acid for the Recognition of A-U Base Pairs in Double-Stranded RNA. Chemistry 2021; 27:4332-4335. [PMID: 33439519 DOI: 10.1002/chem.202005401] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/12/2021] [Indexed: 02/06/2023]
Abstract
Peptide nucleic acids (PNA) with extended isoorotamide containing nucleobases (Io ) were designed for binding A-U base pairs in double-stranded RNA. Isothermal titration calorimetry and UV thermal melting experiments revealed improved affinity for A-U using the Io scaffold in PNA. PNAs having four sequential Io extended nucleobases maintained high binding affinity.
Collapse
Affiliation(s)
- Nikita Brodyagin
- Department of Chemistry, Binghamton University, Binghamton, New York, 13902, USA
| | - Aubrey L Maryniak
- Department of Chemistry and Biochemistry, Elizabethtown College, Elizabethtown, Pennsylvania, 17022, USA
| | - Ilze Kumpina
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, LV-1006, Latvia
| | - John M Talbott
- Department of Chemistry and Biochemistry, Elizabethtown College, Elizabethtown, Pennsylvania, 17022, USA
| | - Martins Katkevics
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, LV-1006, Latvia
| | - Eriks Rozners
- Department of Chemistry, Binghamton University, Binghamton, New York, 13902, USA
| | - James A MacKay
- Department of Chemistry and Biochemistry, Elizabethtown College, Elizabethtown, Pennsylvania, 17022, USA
| |
Collapse
|
13
|
Kumar V, Brodyagin N, Rozners E. Triplex-Forming Peptide Nucleic Acids with Extended Backbones. Chembiochem 2020; 21:3410-3416. [PMID: 32697857 PMCID: PMC7783598 DOI: 10.1002/cbic.202000432] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/20/2020] [Indexed: 01/15/2023]
Abstract
Peptide nucleic acid (PNA) forms a triple helix with double-stranded RNA (dsRNA) stabilized by a hydrogen-bonding zipper formed by PNA's backbone amides (N-H) interacting with RNA phosphate oxygens. This hydrogen-bonding pattern is enabled by the matching ∼5.7 Å spacing (typical for A-form dsRNA) between PNA's backbone amides and RNA phosphate oxygens. We hypothesized that extending the PNA's backbone by one -CH2 - group might bring the distance between PNA amide groups closer to 7 Å, which is favourable for hydrogen bonding to the B-form dsDNA phosphate oxygens. Extension of the PNA backbone was expected to selectively stabilize PNA-DNA triplexes compared to PNA-RNA. To test this hypothesis, we synthesized triplex-forming PNAs that had the pseudopeptide backbones extended by an additional -CH2 - group in three different positions. Isothermal titration calorimetry measurements of the binding affinity of these extended PNA analogues for the matched dsDNA and dsRNA showed that, contrary to our structural reasoning, extending the PNA backbone at any position had a strong negative effect on triplex stability. Our results suggest that PNAs might have an inherent preference for A-form-like conformations when binding double-stranded nucleic acids. It appears that the original six-atom-long PNA backbone is an almost perfect fit for binding to A-form nucleic acids.
Collapse
Affiliation(s)
- Vipin Kumar
- Department of Chemistry, Binghamton University Binghamton, New York, 13902, USA
| | - Nikita Brodyagin
- Department of Chemistry, Binghamton University Binghamton, New York, 13902, USA
| | - Eriks Rozners
- Department of Chemistry, Binghamton University Binghamton, New York, 13902, USA
| |
Collapse
|
14
|
Tähtinen V, Verhassel A, Tuomela J, Virta P. γ-(S)-Guanidinylmethyl-Modified Triplex-Forming Peptide Nucleic Acids Increase Hoogsteen-Face Affinity for a MicroRNA and Enhance Cellular Uptake. Chembiochem 2019; 20:3041-3051. [PMID: 31206960 DOI: 10.1002/cbic.201900393] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Indexed: 12/14/2022]
Abstract
γ-Modified (i.e., (S)-aminomethyl, (S)-acetamidomethyl, (R)-4-(hydroxymethyl)triazol-1-ylmethyl, and (S)-guanidinylmethyl) triplex-forming peptide nucleic acids (TFPNAs) were synthesized and the effect of the backbone modifications on the binding to a miR-215 model was studied. Among the modifications, an appropriate pattern of three γ-(S)-guanidinylmethyl modifications increased the affinity and Hoogsteen-face selectivity for the miR-215 model without ternary (PNA)2 /RNA complex formation. Moreover, the γ-(S)-guanidinylmethyl groups were observed to facilitate internalization of the TFPNAs into living PC-3 prostate cancer cells.
Collapse
Affiliation(s)
- Ville Tähtinen
- Department of Chemistry, University of Turku, Vatselankatu 2, 20014, Turku, Finland
| | - Alejandra Verhassel
- FICAN West Cancer Research Laboratory, University of Turku and Turku University Hospital, Institution of Biomedicine, Medisiina D, Kiinamyllynkatu 10, 20520, Turku, Finland
| | - Johanna Tuomela
- FICAN West Cancer Research Laboratory, University of Turku and Turku University Hospital, Institution of Biomedicine, Medisiina D, Kiinamyllynkatu 10, 20520, Turku, Finland
| | - Pasi Virta
- Department of Chemistry, University of Turku, Vatselankatu 2, 20014, Turku, Finland
| |
Collapse
|
15
|
Ong AAL, Toh DFK, Krishna MS, Patil KM, Okamura K, Chen G. Incorporating 2-Thiouracil into Short Double-Stranded RNA-Binding Peptide Nucleic Acids for Enhanced Recognition of A-U Pairs and for Targeting a MicroRNA Hairpin Precursor. Biochemistry 2019; 58:3444-3453. [PMID: 31318532 DOI: 10.1021/acs.biochem.9b00521] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chemically modified short peptide nucleic acids (PNAs) recognize RNA duplexes under near physiological conditions by major-groove PNA·RNA-RNA triplex formation and show great promise for the development of RNA-targeting probes and therapeutics. Thymine (T) and uracil (U) are often incorporated into PNAs to recognize A-U pairs through major-groove T·A-U and U·A-U base triple formation. Incorporation of a modified nucleobase, 2-thiouracil (s2U), into triplex-forming oligonucleotides stabilizes both DNA and RNA triplexes. Thiolation of uracil causes a decrease in the dehydration energy penalty for triplex formation as well as a decrease in the pKa of the N3 atom, which may result in improved hydrogen bonding in addition to enhanced base stacking interactions, similar to the previously reported thiolation effect of pseudoisocytosine (J to L substitution). Here, we incorporated s2U into short PNAs, followed by binding studies of a series of s2U-modified PNAs. We demonstrated by nondenaturing polyacrylamide gel electrophoresis and thermal melting experiments that s2U and L incorporated into dsRNA-binding PNAs (dbPNAs) enhance the recognition of A-U and G-C pairs, respectively, in RNA duplexes in a position-independent manner, with no appreciable binding to the DNA duplex. Combining s2U and L modifications in dbPNAs facilitates enhanced recognition of dsRNAs and maintains selective binding to dsRNAs over ssRNAs. We further demonstrated through a cell-free assay the application of the s2U- and L-modified dbPNAs (8-mer, with a molecular mass of ∼2.3 kDa) in the inhibition of the pre-microRNA-198 maturation in a substrate-specific manner. Thus, s2U-modified dbPNAs may be generally useful for the enhanced and selective recognition of RNA duplexes and for the regulation of RNA functions.
Collapse
Affiliation(s)
- Alan Ann Lerk Ong
- NTU Institute for Health Technologies (HeathTech NTU), Interdisciplinary Graduate School , Nanyang Technological University , 50 Nanyang Drive , Singapore 637553.,Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371
| | - Desiree-Faye Kaixin Toh
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371
| | - Manchugondanahalli S Krishna
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371
| | - Kiran M Patil
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371
| | - Katsutomo Okamura
- Division of Biological Sciences , Nara Institute of Science and Technology , 8916-5 Takayama , Ikoma , Nara 630-0192 , Japan
| | - Gang Chen
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371
| |
Collapse
|
16
|
Aro-Heinilä A, Lönnberg T, Virta P. 3-Fluoro-2-mercuri-6-methylaniline Nucleotide as a High-Affinity Nucleobase-Specific Hybridization Probe. Bioconjug Chem 2019; 30:2183-2190. [PMID: 31246432 DOI: 10.1021/acs.bioconjchem.9b00405] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A 3-fluoro-6-methylaniline nucleoside was synthesized and incorporated into an oligonucleotide, and its ability to form mercury-mediated base pairs was studied. UV melting experiments revealed increased duplex stability with thymine, guanine, and cytosine opposite to the probe and a clear nucleobase-specific binding preference (T > G > C > A). Moreover, the 3-fluoro group was utilized as a spin label that showed distinct 19F NMR resonance shifts depending on the complementary nucleobase, providing more detailed information on Hg(II)-mediated base pairing.
Collapse
Affiliation(s)
- Asmo Aro-Heinilä
- Department of Chemistry , University of Turku , Vatselankatu 2 , 20014 Turku , Finland
| | - Tuomas Lönnberg
- Department of Chemistry , University of Turku , Vatselankatu 2 , 20014 Turku , Finland
| | - Pasi Virta
- Department of Chemistry , University of Turku , Vatselankatu 2 , 20014 Turku , Finland
| |
Collapse
|
17
|
Krishna MS, Toh DFK, Meng Z, Ong AAL, Wang Z, Lu Y, Xia K, Prabakaran M, Chen G. Sequence- And Structure-Specific Probing of RNAs by Short Nucleobase-Modified dsRNA-Binding PNAs Incorporating a Fluorescent Light-up Uracil Analog. Anal Chem 2019; 91:5331-5338. [PMID: 30873827 DOI: 10.1021/acs.analchem.9b00280] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
RNAs are emerging as important biomarkers and therapeutic targets. The strategy of directly targeting double-stranded RNA (dsRNA) by triplex-formation is relatively underexplored mainly due to the weak binding at physiological conditions for the traditional triplex-forming oligonucleotides (TFOs). Compared to DNA and RNA, peptide nucleic acids (PNAs) are chemically stable and have a neutral peptide-like backbone, and thus, they show significantly enhanced binding to natural nucleic acids. We have successfully developed nucleobase-modified dsRNA-binding PNAs (dbPNAs) to facilitate structure-specific and selective recognition of dsRNA over single-stranded RNA (ssRNA) and dsDNA regions at near-physiological conditions. The triplex formation strategy facilitates the targeting of not only the sequence but also the secondary structure of RNA. Here, we report the development of novel dbPNA-based fluorescent light-up probes through the incorporation of A-U pair-recognizing 5-benzothiophene uracil (btU). The incorporation of btU into dbPNAs does not affect the binding affinity toward dsRNAs significantly, in most cases, as evidenced by our nondenaturing gel shift assay data. The blue fluorescence emission intensity of btU-modified dbPNAs is sequence- and structure-specifically enhanced by dsRNAs, including the influenza viral RNA panhandle duplex and HIV-1-1 ribosomal frameshift-inducing RNA hairpin, but not ssRNAs or DNAs, at 200 mM NaCl, pH 7.5. Thus, dbPNAs incorporating btU-modified and other further modified fluorescent nucleobases will be useful biochemical tools for probing and detecting RNA structures, interactions, and functions.
Collapse
Affiliation(s)
- Manchugondanahalli S Krishna
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 , Singapore
| | - Desiree-Faye Kaixin Toh
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 , Singapore
| | - Zhenyu Meng
- Division of Mathematical Sciences, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 , Singapore
| | - Alan Ann Lerk Ong
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 , Singapore
| | - Zhenzhang Wang
- Temasek Life Science Laboratory , 1 Research Link, National University of Singapore , 117604 , Singapore
| | - Yunpeng Lu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 , Singapore
| | - Kelin Xia
- Division of Mathematical Sciences, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 , Singapore
| | - Mookkan Prabakaran
- Temasek Life Science Laboratory , 1 Research Link, National University of Singapore , 117604 , Singapore
| | - Gang Chen
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 , Singapore
| |
Collapse
|
18
|
Kotikam V, Kennedy SD, MacKay JA, Rozners E. Synthetic, Structural, and RNA Binding Studies on 2-Aminopyridine-Modified Triplex-Forming Peptide Nucleic Acids. Chemistry 2019; 25:4367-4372. [PMID: 30746843 DOI: 10.1002/chem.201806293] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Indexed: 12/21/2022]
Abstract
The development of new RNA-binding ligands is attracting increasing interest in fundamental science and the pharmaceutical industry. The goal of this study was to improve the RNA binding properties of triplex-forming peptide nucleic acids (PNAs) by further increasing the pKa of 2-aminopyridine (M). Protonation of M was the key for enabling triplex formation at physiological pH in earlier studies. Substitution on M by an electron-donating 4-methoxy substituent resulted in slight destabilization of the PNA-dsRNA triplex, contrary to the expected stabilization due to more favorable protonation. To explain this unexpected result, the first NMR structural studies were performed on an M-modified PNA-dsRNA triplex which, combined with computational modeling identified unfavorable steric and electrostatic repulsion between the 4-methoxy group of M and the oxygen of the carbonyl group connecting the adjacent nucleobase to PNA backbone. The structural studies also provided insights into hydrogen-bonding interactions that might be responsible for the high affinity and unusual RNA-binding preference of PNAs.
Collapse
Affiliation(s)
- Venubabu Kotikam
- Department of Chemistry, Binghamton University, Binghamton, New York, 13902, USA
| | - Scott D Kennedy
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York, 14642, USA
| | - James A MacKay
- Department of Chemistry and Biochemistry, Elizabethtown College, Elizabethtown, Pennsylvania, 17022, USA
| | - Eriks Rozners
- Department of Chemistry, Binghamton University, Binghamton, New York, 13902, USA
| |
Collapse
|
19
|
Abstract
While <2% of DNA encodes for functional proteins, >70% is transcribed into RNA. Although the function of most RNA transcripts is unknown, such non-coding RNAs are attractive targets for molecular recognition because of the potentially important roles they play in regulation of gene expression and development of disease. In this chapter, we describe peptide nucleic acids (PNAs) that form sequence-specific triple helices with double-stranded RNA (dsRNA). We provide protocols for sequence design and biophysical characterization of PNAs and discuss first examples where such PNAs have been used for functional modulation of dsRNA. The triplex-forming PNAs represent a new approach for RNA recognition that may find future applications in fundamental science, biotechnology and medicine.
Collapse
|
20
|
Patil KM, Toh DFK, Yuan Z, Meng Z, Shu Z, Zhang H, Ong A, Krishna MS, Lu L, Lu Y, Chen G. Incorporating uracil and 5-halouracils into short peptide nucleic acids for enhanced recognition of A-U pairs in dsRNAs. Nucleic Acids Res 2018; 46:7506-7521. [PMID: 30011039 PMCID: PMC6125629 DOI: 10.1093/nar/gky631] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 06/09/2018] [Accepted: 07/03/2018] [Indexed: 01/16/2023] Open
Abstract
Double-stranded RNA (dsRNA) structures form triplexes and RNA-protein complexes through binding to single-stranded RNA (ssRNA) regions and proteins, respectively, for diverse biological functions. Hence, targeting dsRNAs through major-groove triplex formation is a promising strategy for the development of chemical probes and potential therapeutics. Short (e.g., 6-10 mer) chemically-modified Peptide Nucleic Acids (PNAs) have been developed that bind to dsRNAs sequence specifically at physiological conditions. For example, a PNA incorporating a modified base thio-pseudoisocytosine (L) has an enhanced recognition of a G-C pair in an RNA duplex through major-groove L·G-C base triple formation at physiological pH, with reduced pH dependence as observed for C+·G-C base triple formation. Currently, an unmodified T base is often incorporated into PNAs to recognize a Watson-Crick A-U pair through major-groove T·A-U base triple formation. A substitution of the 5-methyl group in T by hydrogen and halogen atoms (F, Cl, Br, and I) causes a decrease of the pKa of N3 nitrogen atom, which may result in improved hydrogen bonding in addition to enhanced base stacking interactions. Here, we synthesized a series of PNAs incorporating uracil and halouracils, followed by binding studies by non-denaturing polyacrylamide gel electrophoresis, circular dichroism, and thermal melting. Our results suggest that replacing T with uracil and halouracils may enhance the recognition of an A-U pair by PNA·RNA2 triplex formation in a sequence-dependent manner, underscoring the importance of local stacking interactions. Incorporating bromouracils and chlorouracils into a PNA results in a significantly reduced pH dependence of triplex formation even for PNAs containing C bases, likely due to an upshift of the apparent pKa of N3 atoms of C bases. Thus, halogenation and other chemical modifications may be utilized to enhance hydrogen bonding of the adjacent base triples and thus triplex formation. Furthermore, our experimental and computational modelling data suggest that PNA·RNA2 triplexes may be stabilized by incorporating a BrUL step but not an LBrU step, in dsRNA-binding PNAs.
Collapse
Affiliation(s)
- Kiran M Patil
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Desiree-Faye Kaixin Toh
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Zhen Yuan
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Zhenyu Meng
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Zhiyu Shu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Haiping Zhang
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Alan Ann Lerk Ong
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Manchugondanahalli S Krishna
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Lanyuan Lu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Yunpeng Lu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Gang Chen
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| |
Collapse
|
21
|
Toh DFK, Patil KM, Chen G. Sequence-specific and Selective Recognition of Double-stranded RNAs over Single-stranded RNAs by Chemically Modified Peptide Nucleic Acids. J Vis Exp 2017:56221. [PMID: 28994801 PMCID: PMC5752312 DOI: 10.3791/56221] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
RNAs are emerging as important biomarkers and therapeutic targets. Thus, there is great potential in developing chemical probes and therapeutic ligands for the recognition of RNA sequence and structure. Chemically modified Peptide Nucleic Acid (PNA) oligomers have been recently developed that can recognize RNA duplexes in a sequence-specific manner. PNAs are chemically stable with a neutral peptide-like backbone. PNAs can be synthesized relatively easily by the manual Boc-chemistry solid-phase peptide synthesis method. PNAs are purified by reverse-phase HPLC, followed by molecular weight characterization by matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF). Non-denaturing polyacrylamide gel electrophoresis (PAGE) technique facilitates the imaging of the triplex formation, because carefully designed free RNA duplex constructs and PNA bound triplexes often show different migration rates. Non-denaturing PAGE with ethidium bromide post staining is often an easy and informative technique for characterizing the binding affinities and specificities of PNA oligomers. Typically, multiple RNA hairpins or duplexes with single base pair mutations can be used to characterize PNA binding properties, such as binding affinities and specificities. 2-Aminopurine is an isomer of adenine (6-aminopurine); the 2-aminopurine fluorescence intensity is sensitive to local structural environment changes, and is suitable for the monitoring of triplex formation with the 2-aminopurine residue incorporated near the PNA binding site. 2-Aminopurine fluorescence titration can also be used to confirm the binding selectivity of modified PNAs towards targeted double-stranded RNAs (dsRNAs) over single-stranded RNAs (ssRNAs). UV-absorbance-detected thermal melting experiments allow the measurement of the thermal stability of PNA-RNA duplexes and PNA·RNA2 triplexes. Here, we describe the synthesis and purification of PNA oligomers incorporating modified residues, and describe biochemical and biophysical methods for characterization of the recognition of RNA duplexes by the modified PNAs.
Collapse
Affiliation(s)
- Desiree-Faye Kaixin Toh
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University
| | - Kiran M Patil
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University
| | - Gang Chen
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University;
| |
Collapse
|