1
|
Sen A, Britto NJ, Kass D, Ray K, Rajaraman G. Origin of Unprecedented Formation and Reactivity of Fe IV═O Species via Oxygen Activation: Role of Noncovalent Interactions and Magnetic Coupling. Inorg Chem 2024; 63:9809-9822. [PMID: 38739843 DOI: 10.1021/acs.inorgchem.4c00371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Emulating the capabilities of the soluble methane monooxygenase (sMMO) enzymes, which effortlessly activate oxygen at diiron(II) centers to form a reactive diiron(IV) intermediate Q, which then performs the challenging oxidation of methane to methanol, poses a significant challenge. Very recently, one of us reported the mononuclear complex [(cyclam)FeII(CH3CN)2]2+ (1), which performed a rare bimolecular activation of the molecule of O2 to generate two molecules of FeIV═O without the requirement of external proton or electron sources, similar to sMMO. In the present study, we employed the density functional theory (DFT) calculations to investigate this unique mechanism of O2 activation. We show that secondary hydrogen-bonding interactions between ligand N-H groups and O2 play a vital role in reducing the energy barrier associated with the initial O2 binding at 1 and O-O bond cleavage to form the FeIV═O complex. Further, the unique reactivity of FeIV═O species toward simultaneous C-H and O-H bond activation process has been demonstrated. Our study unveils that the nature of the magnetic coupling between the diiron centers is also crucial. Given that the influence of magnetic coupling and noncovalent interactions in catalysis remains largely unexplored, this unexplored realm presents numerous avenues for experimental chemists to develop novel structural and functional analogues of sMMO.
Collapse
Affiliation(s)
- Asmita Sen
- Department of Chemistry, IIT Bombay, Powai, Mumbai-400076, India
| | | | - Dustin Kass
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Kallol Ray
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | | |
Collapse
|
2
|
Ahmed M, Malhotra SS, Yadav O, Monika, Saini C, Sharma N, Gupta MK, Mohapatra RK, Ansari A. DFT and TDDFT exploration on electronic transitions and bonding aspect of DPA and PTDC ligated transition metal complexes. J Mol Model 2024; 30:122. [PMID: 38570356 DOI: 10.1007/s00894-024-05912-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 03/22/2024] [Indexed: 04/05/2024]
Abstract
CONTEXT In this study, we have investigated the structure, reactivity, bonding, and electronic transitions of DPA and PDTC along with their Ni-Zn complexes using DFT/TD-DFT methods. The energy gap between the frontier orbitals was computed to understand the reactivity pattern of the ligands and metal complexes. From the energies of FMO's, the global reactivity descriptors such as electron affinity, ionization potential, hardness (η), softness (S), chemical potential (μ), electronegativity (χ), and electrophilicity index (ω) have been calculated. The complexes show a strong NLO properties due to easily polarization as indicated by the narrow HOMO-LUMO gap. The polarizability and hyperpolarizabilities of the complexes indicate that they are good candidates for NLO materials. Molecular electrostatic potential (MEP) maps identified electrophilic and nucleophilic sites on the surfaces of the complexes. TDDFT and NBO analyses provided insights into electronic transitions, bonding, and stabilizing interactions within the studied complexes. DPA and PDTC exhibited larger HOMO-LUMO gaps and more negative electrostatic potentials compared to their metal complexes suggesting the higher reactivity. Ligands (DPA and PDTC) had absorption spectra in the range of 250 nm to 285 nm while their complexes spanned 250 nm to 870 nm. These bands offer valuable information on electronic transitions, charge transfer and optical behavior. This work enhances our understanding of the electronic structure and optical properties of these complexes. METHODS Gaussian16 program was used for the optimization of all the compounds. B3LYP functional in combination with basis sets, such as LanL2DZ for Zn, Ni and Cu while 6-311G** for other atoms like C, H, O, N, and S was used. Natural bond orbital (NBO) analysis is carried out to find out how the filled orbital of one sub-system interacts with the empty orbital of another sub-system. The ORCA software is used for computing spectral features along with the zeroth order regular approximation method (ZORA) to observe its relativistic effects. TD-DFT study is carried out to calculate the excitation energy by using B3LYP functional.
Collapse
Affiliation(s)
- Mukhtar Ahmed
- Department of Chemistry, Central University of Haryana, Mahendergarh, 123031, India
| | - Sumit Sahil Malhotra
- Department of Chemistry, Central University of Haryana, Mahendergarh, 123031, India
| | - Oval Yadav
- Department of Chemistry, Central University of Haryana, Mahendergarh, 123031, India
| | - Monika
- Department of Chemistry, Central University of Haryana, Mahendergarh, 123031, India
| | - Charu Saini
- Department of Chemistry, Central University of Haryana, Mahendergarh, 123031, India
| | - Neha Sharma
- Life Science, Dyal Singh College, University of Delhi, Delhi, 110003, India
| | - Manoj Kumar Gupta
- Department of Chemistry, Central University of Haryana, Mahendergarh, 123031, India
| | - Ranjan Kumar Mohapatra
- Department of Chemistry, Government College of Engineering, Keonjhar, Odisha, 758002, India
| | - Azaj Ansari
- Department of Chemistry, Central University of Haryana, Mahendergarh, 123031, India.
| |
Collapse
|
3
|
Monika, Kumar M, Somi, Sarkar A, Gupta MK, Ansari A. Theoretical study of the formation of metal-oxo species of the first transition series with the ligand 14-TMC: driving factors of the "Oxo Wall". Dalton Trans 2023; 52:14160-14169. [PMID: 37750348 DOI: 10.1039/d3dt02109b] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Terminal metal-oxo species of the early transition metal series are well known, whereas those for the late transition series are rare, and this is related to the "Oxo Wall". Here, we have undertaken a theoretical study on the formation of metal-oxo species from the metal hydroperoxo species of the 3d series (Cr, Mn, Fe, Co, Ni, and Cu) with the ligand 14-TMC (1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane) via O⋯O bond cleavage. DFT calculations reveal that the barrier for O⋯O bond cleavage is higher with the late transition metals (Co, Ni, and Cu) than the early transition metals (Cr, Mn, and Fe), and the formed late metal-oxo species are also thermodynamically less stable. The higher barrier may be due to electronic repulsion because of the pairing of d electrons. In the late transition metal series, the electron goes into an antibonding orbital, which decreases the bond order and hence decreases the possibility of metal-oxo formation. Computed structural parameters and spin densities suggest that valence tautomerism occurs in the late transition metal-oxo species which remain as a metal-oxyl. Our findings support the concept of the "Oxo Wall".
Collapse
Affiliation(s)
- Monika
- Department of Chemistry, Central University of Haryana, Mahendergarh-123031, Haryana, India.
| | - Manjeet Kumar
- Department of Chemistry, Central University of Haryana, Mahendergarh-123031, Haryana, India.
| | - Somi
- Department of Chemistry, Central University of Haryana, Mahendergarh-123031, Haryana, India.
| | - Arup Sarkar
- Department of Chemistry, The University of Chicago 5735 South Ellis Avenue, Chicago, IL 60637, USA
| | - Manoj Kumar Gupta
- Department of Chemistry, Central University of Haryana, Mahendergarh-123031, Haryana, India.
| | - Azaj Ansari
- Department of Chemistry, Central University of Haryana, Mahendergarh-123031, Haryana, India.
| |
Collapse
|
4
|
Ziółkowska A, Witwicki M. Understanding the Exchange Interaction between Paramagnetic Metal Ions and Radical Ligands: DFT and Ab Initio Study on Semiquinonato Cu(II) Complexes. Int J Mol Sci 2023; 24:ijms24044001. [PMID: 36835412 PMCID: PMC9959031 DOI: 10.3390/ijms24044001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
The exchange coupling, represented by the J parameter, is of tremendous importance in understanding the reactivity and magnetic behavior of open-shell molecular systems. In the past, it was the subject of theoretical investigations, but these studies are mostly limited to the interaction between metallic centers. The exchange coupling between paramagnetic metal ions and radical ligands has hitherto received scant attention in theoretical studies, and thus the understanding of the factors governing this interaction is lacking. In this paper, we use DFT, CASSCF, CASSCF/NEVPT2, and DDCI3 methods to provide insight into exchange interaction in semiquinonato copper(II) complexes. Our primary objective is to identify structural features that affect this magnetic interaction. We demonstrate that the magnetic character of Cu(II)-semiquinone complexes are mainly determined by the relative position of the semiquinone ligand to the Cu(II) ion. The results can support the experimental interpretation of magnetic data for similar systems and can be used for the in-silico design of magnetic complexes with radical ligands.
Collapse
Affiliation(s)
- Aleksandra Ziółkowska
- Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
| | - Maciej Witwicki
- Faculty of Chemistry, Wroclaw University, F. Joliot-Curie 14, 50-283 Wroclaw, Poland
- Correspondence:
| |
Collapse
|
5
|
Ansari M, Rajaraman G. Comparative oxidative ability of mononuclear and dinuclear high-valent iron-oxo species towards the activation of methane: does the axial/bridge atom modulate the reactivity? Dalton Trans 2023; 52:308-325. [PMID: 36504243 DOI: 10.1039/d2dt02559k] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Over the years, mononuclear FeIVO species have been extensively studied, but the presence of dinuclear FeIVO species in soluble methane monooxygenase (sMMO) has inspired the development of biomimic models that could activate inert substrates such as methane. There are some successful attempts; particularly the [(Por)(m-CBA) FeIV(μ-N)FeIV(O)(Por˙+)]- species has been reported to activate methane and yield decent catalytic turnover numbers and therefore regarded as the closest to the sMMO enzyme functional model, as no mononuclear FeIVO analogues could achieve this feat. In this work, we have studied a series of mono and dinuclear models using DFT and ab initio DLPNO-CCSD(T) calculations to probe the importance of nuclearity in enhancing the reactivity. We have probed the catalytic activities of four complexes: [(HO)FeIV(O)(Por)]- (1), [(HO)FeIV(O)(Por˙+)] (2), μ-oxo dinuclear iron species [(Por)(m-CBA)FeIV(μ-O)FeIV(O) (Por˙+)]- (3) and N-bridged dinuclear iron species [(Por)(m-CBA)FeIV(μ-N)FeIV(O)(Por˙+)]- (4) towards the activation of methane. Additionally, calculations were performed on the mononuclear models [(X)FeIV(O)(Por˙+)]n {X = N 4a (n = -2), NH 4b (n = -1) and NH24c (n = 0)} to understand the role of nuclearity in the reactivity. DFT calculations performed on species 1-4 suggest an interesting variation among them, with species 1-3 possessing an intermediate spin (S = 1) as a ground state and species 4 possessing a high-spin (S = 2) as a ground state. Furthermore, the two FeIV centres in species 3 and 4 are antiferromagnetically coupled, yielding a singlet state with a distinct difference in their electronic structure. On the other hand, species 2 exhibits a ferromagnetic coupling between the FeIV and the Por˙+ moiety. Our calculations suggest that the higher barriers for the C-H bond activation of methane and the rebound step for species 1 and 3 are very high in energy, rendering them unreactive towards methane, while species 2 and 4 have lower barriers, suggesting their reactivity towards methane. Studies on the system reveal that model 4a has multiple FeN bonds facilitating greater reactivity, whereas the other two models have longer Fe-N bonds and less radical character with steeper barriers. Strong electronic cooperativity is found to be facilitated by the bridging nitride atom, and this cooperativity is suppressed by substituents such as oxygen, rendering them inactive. Thus, our study unravels that apart from enhancing the nuclearity, bridging atoms that facilitate strong cooperation between the metals are required to activate very inert substrates such as methane, and our results are broadly in agreement with earlier experimental findings.
Collapse
Affiliation(s)
- Mursaleem Ansari
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India.
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India.
| |
Collapse
|
6
|
Yadav O, Ansari M, Ansari A. Electronic structures, bonding aspects and spectroscopic parameters of homo/hetero valent bridged dinuclear transition metal complexes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 278:121331. [PMID: 35597159 DOI: 10.1016/j.saa.2022.121331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
Bridged dinuclear metal complexes have fascinated scientists worldwide, and remarkable success has been achieved to unravel the electronic structures, structure-function relationship, coordination environments, and fine mechanistic details of the enzymes owing to the repercussion of biomimetic studies carried out on dinuclear model systems. Molecular level study of these systems integrated with spectroscopic study helps in gaining deep insights about structural and electronic aspects of natural enzymatic systems. Considering the same, here first time we report DFT study on bridged non-heme metal complexes based on N-Et-HPTB ligand system containing homovalent (MIIMII); {[(MnII)2(O2CCH3)(N-Et-HPTB)]2+; Species I), [(FeII)2(O2CCH3)(N-Et-HPTB)]2+; Species II), [(CoII)2(O2CCH3)(N-Et-HPTB)]2+; Species III)} and heterovalent (MIIIMII): {[(MnIII)(MnII)(O2)(N-Et-HPTB)]2+; Species Ia) [(FeIII)(FeII)(O2)(N-Et-HPTB)]2+; Species IIa) and [(CoIII)(CoII)(O2)(N-Et-HPTB)]2+; Species IIIa)} dinuclear metal centres. Bridging oxygen bears a significant spin density which may prompt important chemical reactions involving activation of bonds like C-H/O-H/N-H etc. TD-DFT calculations for UV-Visible absorption have been carried out to further shed light on structural-functional and electronic structures of these dinuclear species. Studying these dinuclear species may be a good starting point for the study of active sites of the bimetallic centre of dinuclear enzymes and thus may serve as fascinating spectroscopic models. Further, FMO analysis, MEP mapping, and NBO calculations were employed to analyze bonding aspects predict theoretical reactivity behaviour and any kind of stabilizing interactions present in the reported species.
Collapse
Affiliation(s)
- Oval Yadav
- Department of Chemistry, Central University of Haryana, Mahendergarh 123031, India
| | - Mursaleem Ansari
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, Pawai 400076, India
| | - Azaj Ansari
- Department of Chemistry, Central University of Haryana, Mahendergarh 123031, India.
| |
Collapse
|
7
|
Yadav O, Kumar M, Mittal H, Yadav K, Seidel V, Ansari A. Theoretical exploration on structures, bonding aspects and molecular docking of α-aminophosphonate ligated copper complexes against SARS-CoV-2 proteases. Front Pharmacol 2022; 13:982484. [PMID: 36263127 PMCID: PMC9575937 DOI: 10.3389/fphar.2022.982484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Recent years have witnessed a growing interest in the biological activity of metal complexes of α-aminophosphonates. Here for the first time, a detailed DFT study on five α-aminophosphonate ligated mononuclear/dinuclear CuII complexes is reported using the dispersion corrected density functional (B3LYP-D2) method. The electronic structures spin densities, FMO analysis, energetic description of spin states, and theoretical reactivity behaviour using molecular electrostatic potential (MEP) maps of all five species are reported. All possible spin states of the dinuclear species were computed and their ground state S values were determined along with the computation of their magnetic coupling constants. NBO analysis was also performed to provide details on stabilization energies. A molecular docking study was performed for the five complexes against two SARS-CoV-2 coronavirus protein targets (PDB ID: 6LU7 and 7T9K). The docking results indicated that the mononuclear species had a higher binding affinity for the targets compared to the dinuclear species. Among the species investigated, species I showed the highest binding affinity with the SARS-CoV-2 Omicron protease. NPA charge analysis showed that the heteroatoms of model species III had a more nucleophilic nature. A comparative study was performed to observe any variations and/or correlations in properties among all species.
Collapse
Affiliation(s)
- Oval Yadav
- Department of Chemistry, Central University of Haryana, Mahendergarh, India
| | - Manjeet Kumar
- Department of Chemistry, Central University of Haryana, Mahendergarh, India
| | - Himanshi Mittal
- Department of Chemistry, Central University of Haryana, Mahendergarh, India
| | - Kiran Yadav
- Department of Chemistry, Central University of Haryana, Mahendergarh, India
| | - Veronique Seidel
- Natural Products Research Laboratory, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Azaj Ansari
- Department of Chemistry, Central University of Haryana, Mahendergarh, India
| |
Collapse
|
8
|
Monika, Ansari A. Effect of the ring size of TMC ligands in controlling C-H bond activation by metal-superoxo species. Dalton Trans 2022; 51:5878-5889. [PMID: 35347335 DOI: 10.1039/d2dt00491g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Metal-superoxo species play a very important role in many metal-mediated catalytic transformation reactions. Their catalytic reactivity is affected by many factors such as the nature of metal ions and ring size of ligands. Herein, for the first time, we report DFT calculations on the electronic structures of a series of metal-superoxo species (M = V, Cr, Mn, Fe, and Co) with two ring size ligands, i.e., 13-TMC/14-TMC, and a detailed mechanistic study on the C-H bond activation of cyclohexa-1,4-diene followed by the effect of the ring size of ligands. Our DFT results showed that the electron density at the distal oxygen plays an important role in C-H bond activation. By computing the energetics of C-H bond activation and mapping the potential energy surface, it was found that the initial hydrogen abstraction is the rate-determining step with both TMC rings and all the studied metal-superoxo species. The significant electron density at the cyclohex-1,4-diene carbon indicates that the reaction proceeds via the proton-coupled electron transfer mechanism. By mapping the potential energy surfaces, we found that the 13-TMC ligated superoxo with the anti-isomer are more reactive than the 14-TMC superoxo species except for the iron-superoxo species where the 14-TMC ligated superoxo species is more reactive i.e. smaller ring size TMC is more reactive towards C-H bond activation. This is also supported by the structural correlation, i.e., the greater contraction in the smaller ring results in the metal being pushed out of plane along the z-axis, which reduces the steric hindrance. Thus, the ring size can help in designing catalysts with better efficiency for catalytic reactions.
Collapse
Affiliation(s)
- Monika
- Department of Chemistry, Central University of Haryana, India, 123031.
| | - Azaj Ansari
- Department of Chemistry, Central University of Haryana, India, 123031.
| |
Collapse
|
9
|
Kumar R, Pandey B, Singh A, Rajaraman G. Mechanistic Insights into the Oxygen Atom Transfer Reactions by Nonheme Manganese Complex: A Computational Case Study on the Comparative Oxidative Ability of Manganese-Hydroperoxo vs High-Valent Mn IV═O and Mn IV-OH Intermediates. Inorg Chem 2021; 60:12085-12099. [PMID: 34293860 DOI: 10.1021/acs.inorgchem.1c01306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Understanding the comparative oxidative abilities of high-valent metal-oxo/hydroxo/hydroperoxo species holds the key to robust biomimic catalysts that perform desired organic transformations with very high selectivity and efficiency. The comparative oxidative abilities of popular high-valent iron-oxo and manganese-oxo species are often counterintuitive, for example, oxygen atom transfer (OAT) reaction by [(Me2EBC)MnIV-OOH]3+, [(Me2EBC)MnIV-OH]3+, and [(Me2EBC)MnIV═O]2+ (Me2EBC = 4,11-dimethyl-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane) shows extremely high reactivity for MnIV-OOH species and no reactivity for MnIV-OH and MnIV═O species toward alkyl/aromatic sulfides. Using a combination of density functional theory (DFT) and ab initio domain-based local pair natural orbital coupled-cluster with single, double, and perturbative triples excitation (DLPNO-CCSD(T)) and complete-active space self-consistent field/N-electron valence perturbation theory second order (CASSCF/NEVPT2) calculations, here, we have explored the electronic structures and sulfoxidation mechanism of these species. Our calculations unveil that MnIV-OOH reacts through distal oxygen atom with the substrate via electron transfer (ET) mechanism with a very small kinetic barrier (16.5 kJ/mol), placing this species at the top among the best-known catalysts for such transformations. The MnIV-OH and MnIV═O species have a much larger barrier. The mechanism has also been found to switch from ET in the former to concerted in the latter, rendering both unreactive under the tested experimental conditions. Intrinsic differences in the electronic structures, such as the presence and absence of the multiconfigurational character coupled with the steric effects, are responsible for such variations observed. This comparative oxidative ability that runs contrary to the popular iron-oxo/hydroperoxo reactivity will have larger mechanistic implications in understanding the reactivity of biomimic catalysts and the underlying mechanisms in PSII.
Collapse
Affiliation(s)
- Ravi Kumar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Bhawana Pandey
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Akta Singh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
10
|
Biswas JP, Ansari M, Paik A, Sasmal S, Paul S, Rana S, Rajaraman G, Maiti D. Effect of the Ligand Backbone on the Reactivity and Mechanistic Paradigm of Non‐Heme Iron(IV)‐Oxo during Olefin Epoxidation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jyoti Prasad Biswas
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Mursaleem Ansari
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Aniruddha Paik
- Department of Chemistry University of North Bengal Raja Rammohunpur Darjeeling West Bengal, Pin 734013 India
| | - Sheuli Sasmal
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Sabarni Paul
- Department of Chemistry University of North Bengal Raja Rammohunpur Darjeeling West Bengal, Pin 734013 India
| | - Sujoy Rana
- Department of Chemistry University of North Bengal Raja Rammohunpur Darjeeling West Bengal, Pin 734013 India
| | - Gopalan Rajaraman
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Debabrata Maiti
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai 400076 India
| |
Collapse
|
11
|
Biswas JP, Ansari M, Paik A, Sasmal S, Paul S, Rana S, Rajaraman G, Maiti D. Effect of the Ligand Backbone on the Reactivity and Mechanistic Paradigm of Non-Heme Iron(IV)-Oxo during Olefin Epoxidation. Angew Chem Int Ed Engl 2021; 60:14030-14039. [PMID: 33836110 DOI: 10.1002/anie.202102484] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Indexed: 01/08/2023]
Abstract
The oxygen atom transfer (OAT) reactivity of the non-heme [FeIV (2PyN2Q)(O)]2+ (2) containing the sterically bulky quinoline-pyridine pentadentate ligand (2PyN2Q) has been thoroughly studied with different olefins. The ferryl-oxo complex 2 shows excellent OAT reactivity during epoxidations. The steric encumbrance and electronic effect of the ligand influence the mechanistic shuttle between OAT pathway I and isomerization pathway II (during the reaction stereo pure olefins), resulting in a mixture of cis-trans epoxide products. In contrast, the sterically less hindered and electronically different [FeIV (N4Py)(O)]2+ (1) provides only cis-stilbene epoxide. A Hammett study suggests the role of dominant inductive electronic along with minor resonance effect during electron transfer from olefin to 2 in the rate-limiting step. Additionally, a computational study supports the involvement of stepwise pathways during olefin epoxidation. The ferryl bend due to the bulkier ligand incorporation leads to destabilization of both d z 2 and d x 2 - y 2 orbitals, leading to a very small quintet-triplet gap and enhanced reactivity for 2 compared to 1. Thus, the present study unveils the role of steric and electronic effects of the ligand towards mechanistic modification during olefin epoxidation.
Collapse
Affiliation(s)
- Jyoti Prasad Biswas
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Mursaleem Ansari
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Aniruddha Paik
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal, Pin, 734013, India
| | - Sheuli Sasmal
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Sabarni Paul
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal, Pin, 734013, India
| | - Sujoy Rana
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal, Pin, 734013, India
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| |
Collapse
|
12
|
Iman K, Ahamad MN, Monika, Ansari A, Saleh HAM, Khan MS, Ahmad M, Haque RA, Shahid M. How to identify a smoker: a salient crystallographic approach to detect thiocyanate content. RSC Adv 2021; 11:16881-16891. [PMID: 35479719 PMCID: PMC9032361 DOI: 10.1039/d1ra01749g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/07/2021] [Indexed: 11/21/2022] Open
Abstract
There is an increasing demand for monitoring environmental pollutants and the control requires new sensing materials with better sensitivity, selectivity and reliability. In this study, a series of Co7 clusters incorporating various flexible polyhydroxyamine ligands are explored, with the first report of thiocyanate recognition triggered by crystal formation using a Co7 crystal (1). For this, we have fortunately synthesized three new mixed metal Co7 clusters with fascinating structural features. The clusters were characterized by spectroscopic and single crystal X-ray diffraction methods and later by DFT calculations. Due to its better emission spectrum, 1 was further utilized for evaluating its sensing ability towards various anions in water. Surprisingly, 1 shows better quenching ability towards the recognition of SCN− with a better binding constant. The luminescence quenching towards SCN− detection was further verified by the single crystal method, HSAB principle (symbiosis) and theoretical calculations such as DFT studies. The SCXRD data clearly suggest that the Co7 (1) can be converted into Co14 (1a) by direct reaction with NaSCN under ambient conditions. Besides the soft/hard acid–base concept (symbiosis), the energies of formation, and Co–NCS and Co–OH2 bond energies (as unravelled by DFT) are responsible for this transformation. Therefore, 1 can be used as a selective and sensitive sensor for the detection of thiocyanate anions based on the fluorescence amplification and quenching method. Further, the designed cluster has also been utilized to detect anions in human blood samples to differentiate a smoker and a non-smoker. It has been concluded that the samples of smokers have a high degree of thiocyanate (∼12 or 9.5 mg L−1) in comparison to those of non-smokers (2–3 mg L−1). Thus, this kind of cluster material has high potentiality in the field of bio-medical science in future endeavours for identification of the extent of thiocyanate content in smokers. A new Co based sensor for thiocyanate recognition by formation of the dimeric crystals is designed to distinguish a smoker from a non-smoker.![]()
Collapse
Affiliation(s)
- Khushboo Iman
- Functional Inorganic Materials Lab (FIML), Department of Chemistry, Aligarh Muslim University Aligarh 202002 India
| | - M Naqi Ahamad
- Functional Inorganic Materials Lab (FIML), Department of Chemistry, Aligarh Muslim University Aligarh 202002 India
| | - Monika
- Department of Chemistry, Central University of Haryana Mahendergarh 123031 Haryana India
| | - Azaj Ansari
- Department of Chemistry, Central University of Haryana Mahendergarh 123031 Haryana India
| | - Hatem A M Saleh
- Functional Inorganic Materials Lab (FIML), Department of Chemistry, Aligarh Muslim University Aligarh 202002 India
| | - M Shahnawaz Khan
- Functional Inorganic Materials Lab (FIML), Department of Chemistry, Aligarh Muslim University Aligarh 202002 India
| | - Musheer Ahmad
- Department of Applied Chemistry (ZHCET), Aligarh Muslim University Aligarh 202002 India
| | - Rosenani A Haque
- School of Chemical Sciences, Universiti Sains Malaysia, USM 11800 Penang Malaysia
| | - M Shahid
- Functional Inorganic Materials Lab (FIML), Department of Chemistry, Aligarh Muslim University Aligarh 202002 India
| |
Collapse
|
13
|
Yadav O, Ansari M, Ansari A. Electronic structures, bonding and energetics of non-heme mono and dinuclear iron-TPA complexes: a computational exploration. Struct Chem 2021. [DOI: 10.1007/s11224-021-01775-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
14
|
Monika, Yadav O, Chauhan H, Ansari A. Electronic structures, bonding, and spin state energetics of biomimetic mononuclear and bridged dinuclear iron complexes: a computational examination. Struct Chem 2021. [DOI: 10.1007/s11224-020-01690-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Ansari M, Senthilnathan D, Rajaraman G. Deciphering the origin of million-fold reactivity observed for the open core diiron [HO-Fe III-O-Fe IV[double bond, length as m-dash]O] 2+ species towards C-H bond activation: role of spin-states, spin-coupling, and spin-cooperation. Chem Sci 2020; 11:10669-10687. [PMID: 33209248 PMCID: PMC7654192 DOI: 10.1039/d0sc02624g] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 06/16/2020] [Indexed: 01/26/2023] Open
Abstract
High-valent metal-oxo species have been characterised as key intermediates in both heme and non-heme enzymes that are found to perform efficient aliphatic hydroxylation, epoxidation, halogenation, and dehydrogenation reactions. Several biomimetic model complexes have been synthesised over the years to mimic both the structure and function of metalloenzymes. The diamond-core [Fe2(μ-O)2] is one of the celebrated models in this context as this has been proposed as the catalytically active species in soluble methane monooxygenase enzymes (sMMO), which perform the challenging chemical conversion of methane to methanol at ease. In this context, a report of open core [HO(L)FeIII-O-FeIV(O)(L)]2+ (1) gains attention as this activates C-H bonds a million-fold faster compared to the diamond-core structure and has the dual catalytic ability to perform hydroxylation as well as desaturation with organic substrates. In this study, we have employed density functional methods to probe the origin of the very high reactivity observed for this complex and also to shed light on how this complex performs efficient hydroxylation and desaturation of alkanes. By modelling fifteen possible spin-states for 1 that could potentially participate in the reaction mechanism, our calculations reveal a doublet ground state for 1 arising from antiferromagnetic coupling between the quartet FeIV centre and the sextet FeIII centre, which regulates the reactivity of this species. The unusual stabilisation of the high-spin ground state for FeIV[double bond, length as m-dash]O is due to the strong overlap of with the orbital, reducing the antibonding interactions via spin-cooperation. The electronic structure features computed for 1 are consistent with experiments offering confidence in the methodology chosen. Further, we have probed various mechanistic pathways for the C-H bond activation as well as -OH rebound/desaturation of alkanes. An extremely small barrier height computed for the first hydrogen atom abstraction by the terminal FeIV[double bond, length as m-dash]O unit was found to be responsible for the million-fold activation observed in the experiments. The barrier height computed for -OH rebound by the FeIII-OH unit is also smaller suggesting a facile hydroxylation of organic substrates by 1. A strong spin-cooperation between the two iron centres also reduces the barrier for second hydrogen atom abstraction, thus making the desaturation pathway competitive. Both the spin-state as well as spin-coupling between the two metal centres play a crucial role in dictating the reactivity for species 1. By exploring various mechanistic pathways, our study unveils the fact that the bridged μ-oxo group is a poor electrophile for both C-H activation as well for -OH rebound. As more and more evidence is gathered in recent years for the open core geometry of sMMO enzymes, the idea of enhancing the reactivity via an open-core motif has far-reaching consequences.
Collapse
Affiliation(s)
- Mursaleem Ansari
- Department of Chemistry , Indian Institute of Technology Bombay , Mumbai 400076 , India .
| | - Dhurairajan Senthilnathan
- Center for Computational Chemistry , CRD , PRIST University , Vallam , Thanjavur , Tamilnadu 613403 , India
| | - Gopalan Rajaraman
- Department of Chemistry , Indian Institute of Technology Bombay , Mumbai 400076 , India .
| |
Collapse
|
16
|
Abstract
High-valent oxocobalt(IV) species have been invoked as key intermediates in oxidative catalysis, but investigations into the chemistry of proton-coupled redox reactions of such species have been limited. Herein, the reactivity of an established water oxidation catalyst, [Co4O4(OAc)4(py)4][PF6], toward H-atom abstraction reactions is described. Mechanistic analyses and density functional theory (DFT) calculations support a concerted proton-electron transfer (CPET) pathway in which the high energy intermediates formed in stepwise pathways are bypassed. Natural bond orbital (NBO) calculations point to cooperative donor-acceptor σ interactions at the transition state, whereby the H-atom of the substrate is transferred to an orbital delocalized over a Co3(μ3-O) fragment. The mechanistic insights provide design principles for the development of catalytic C-H activation processes mediated by a multimetallic oxo metal cluster.
Collapse
|
17
|
Monika, Ansari A. Mechanistic insights into the allylic oxidation of aliphatic compounds by tetraamido iron( v) species: A C–H vs. O–H bond activation. NEW J CHEM 2020. [DOI: 10.1039/d0nj03095c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work is based on a deep insight into a comparative study of C–H vs. O–H bond activation of allylic compound by the high valent iron complex. Our theoretical findings can help to design catalysts with better efficiency for catalytic reactions.
Collapse
Affiliation(s)
- Monika
- Department of Chemistry
- Central University of Haryana
- Mahendergarh-123031
- India
| | - Azaj Ansari
- Department of Chemistry
- Central University of Haryana
- Mahendergarh-123031
- India
| |
Collapse
|
18
|
Saito T, Takano Y. Transition State Search Using rPM6: Iron- and Manganese-Catalyzed Oxidation Reactions as a Test Case. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2018. [DOI: 10.1246/bcsj.20180119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Toru Saito
- Graduate School of Information Sciences, Hiroshima City University, 3-4-1 Ozuka-Higashi, Asa-Minami-ku, Hiroshima 731-3194, Japan
| | - Yu Takano
- Graduate School of Information Sciences, Hiroshima City University, 3-4-1 Ozuka-Higashi, Asa-Minami-ku, Hiroshima 731-3194, Japan
| |
Collapse
|
19
|
Kumar R, Ansari A, Rajaraman G. Axial vs. Equatorial Ligand Rivalry in Controlling the Reactivity of Iron(IV)-Oxo Species: Single-State vs. Two-State Reactivity. Chemistry 2018; 24:6818-6827. [DOI: 10.1002/chem.201800380] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Ravi Kumar
- Department of Chemistry; Indian Institute of Technology Bombay; Powai, Mumbai 400076 India
| | - Azaj Ansari
- Department of Chemistry; Central University of Haryana; Haryana 123031 India
| | - Gopalan Rajaraman
- Department of Chemistry; Indian Institute of Technology Bombay; Powai, Mumbai 400076 India
| |
Collapse
|
20
|
Nishizaki D, Iwahashi H. Oxygen-Centered Radicals Formed in the Reaction Mixtures Containing Chloroiron Tetraphenylporphyrin, Iodosylbenzene, and Ethanol. Inorg Chem 2017; 56:13166-13173. [DOI: 10.1021/acs.inorgchem.7b01949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Daisuke Nishizaki
- Department of Chemistry, Wakayama Medical University, 580 Mikazura, Wakayama 6410011, Japan
| | - Hideo Iwahashi
- Department of Chemistry, Wakayama Medical University, 580 Mikazura, Wakayama 6410011, Japan
| |
Collapse
|