1
|
Marques HM. The inorganic chemistry of the cobalt corrinoids - an update. J Inorg Biochem 2023; 242:112154. [PMID: 36871417 DOI: 10.1016/j.jinorgbio.2023.112154] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023]
Abstract
The inorganic chemistry of the cobalt corrinoids, derivatives of vitamin B12, is reviewed, with particular emphasis on equilibrium constants for, and kinetics of, their axial ligand substitution reactions. The role the corrin ligand plays in controlling and modifying the properties of the metal ion is emphasised. Other aspects of the chemistry of these compounds, including their structure, corrinoid complexes with metals other than cobalt, the redox chemistry of the cobalt corrinoids and their chemical redox reactions, and their photochemistry are discussed. Their role as catalysts in non-biological reactions and aspects of their organometallic chemistry are briefly mentioned. Particular mention is made of the role that computational methods - and especially DFT calculations - have played in developing our understanding of the inorganic chemistry of these compounds. A brief overview of the biological chemistry of the B12-dependent enzymes is also given for the reader's convenience.
Collapse
Affiliation(s)
- Helder M Marques
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa.
| |
Collapse
|
2
|
Brenig C, Mestizo PD, Zelder F. Functionalisation of vitamin B 12 derivatives with a cobalt β-phenyl ligand boosters antimetabolite activity in bacteria. RSC Adv 2022; 12:28553-28559. [PMID: 36320527 PMCID: PMC9541496 DOI: 10.1039/d2ra05748d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022] Open
Abstract
This study describes the syntheses of four singly- and two doubly-modified vitamin B12 derivatives for generating antimetabolites of Lactobacillus delbrueckii (L. delbrueckii). The two most potent antagonists, a Coβ-phenyl-cobalamin-c,8-lactam and a 10-bromo-Coβ-phenylcobalamin combine a c-lactam or 10-bromo modification at the "eastern" site of the corrin ring with an artificial organometallic phenyl group instead of a cyano ligand at the β-site of the cobalt center. These two doubly-modified B12 antagonists (10 nM) inhibit fully B12-dependent (0.1 nM) growth of L. delbrueckii. In contrast to potent 10-bromo-Coβ-phenylcobalamin, single modified 10-bromo-Coβ-cyanocobalamin lacking the artificial organometallic phenyl ligand does not show any inhibitory effect. These results suggest, that the organometallic β-phenyl ligand at the Co center ultimately steers the metabolic effect of the 10-bromo-analogue.
Collapse
Affiliation(s)
- Christopher Brenig
- Department of Chemistry, University of Zurich Winterthurerstrasse 190 CH 8057 Zurich Switzerland https://www.felix-zelder.net +41 44 635 6803
| | - Paula Daniela Mestizo
- Department of Chemistry, University of Zurich Winterthurerstrasse 190 CH 8057 Zurich Switzerland https://www.felix-zelder.net +41 44 635 6803
| | - Felix Zelder
- Department of Chemistry, University of Zurich Winterthurerstrasse 190 CH 8057 Zurich Switzerland https://www.felix-zelder.net +41 44 635 6803
| |
Collapse
|
3
|
Ruetz M, Koutmos M, Kräutler B. Antivitamins B 12: Synthesis and application as inhibitory ligand of the B 12-tailoring enzyme CblC. Methods Enzymol 2022; 668:157-178. [PMID: 35589193 DOI: 10.1016/bs.mie.2021.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Antivitamins B12 are non-natural corrinoids that have been designed to counteract the metabolic effects of vitamin B12 and related cobalamins (Cbls) in humans and other mammals. A basic structure- and reactivity-based concept typifies antivitamins B12 as close structural mimics of vitamin B12 that are not transformed by the cellular metabolism into organometallic B12-cofactors. Antivitamins B12 have the correct structure for efficient take-up and transport via the natural mammalian pathway for cobalamin assimilation. Thus they can be delivered to every cell in the body, where they are proposed to target and inhibit the Cbl tailoring enzyme CblC. Antivitamins B12 may be specifically inert Cbls or isostructural Cbl-analogues that carry a metal centre other than a cobalt-ion. The syntheses of two antivitamins B12 are detailed here, as are biochemical and crystallographic studies that provide insights into the crucial binding interactions of Cbl-based antivitamins B12 with the human B12-tailoring enzyme CblC. This key enzyme binds genuine antivitamins B12 as inert substrate mimics and enzyme inhibitors, effectively repressing the metabolic generation of the B12-cofactors. Hence, antivitamins B12 induce the diagnostic symptoms of (functional) B12-deficiency, as observed in healthy laboratory mice.
Collapse
Affiliation(s)
- Markus Ruetz
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Markos Koutmos
- Department of Chemistry, Program in Biophysics, Program in Chemical Biology, University of Michigan, Ann Arbor, MI, United States.
| | - Bernhard Kräutler
- Institute of Organic Chemistry and Center of Molecular Biosciences, University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
4
|
Tsybizova A, Brenig C, Kieninger C, Kräutler B, Chen P. Surprising Homolytic Gas Phase Co-C Bond Dissociation Energies of Organometallic Aryl-Cobinamides Reveal Notable Non-Bonded Intramolecular Interactions. Chemistry 2021; 27:7252-7264. [PMID: 33560580 PMCID: PMC8251903 DOI: 10.1002/chem.202004589] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Indexed: 01/12/2023]
Abstract
Aryl-cobalamins are a new class of organometallic structural mimics of vitamin B12 designed as potential 'antivitamins B12 '. Here, the first cationic aryl-cobinamides are described, which were synthesized using the newly developed diaryl-iodonium method. The aryl-cobinamides were obtained as pairs of organometallic coordination isomers, the stereo-structure of which was unambiguously assigned based on homo- and heteronuclear NMR spectra. The availability of isomers with axial attachment of the aryl group, either at the 'beta' or at the 'alpha' face of the cobalt-center allowed for an unprecedented comparison of the organometallic reactivity of such pairs. The homolytic gas-phase bond dissociation energies (BDEs) of the coordination-isomeric phenyl- and 4-ethylphenyl-cobinamides were determined by ESI-MS threshold CID experiments, furnishing (Co-Csp 2 )-BDEs of 38.4 and 40.6 kcal mol-1 , respectively, for the two β-isomers, and the larger BDEs of 46.6 and 43.8 kcal mol-1 for the corresponding α-isomers. Surprisingly, the observed (Co-Csp 2 )-BDEs of the Coβ -aryl-cobinamides were smaller than the (Co-Csp 3 )-BDE of Coβ -methyl-cobinamide. DFT studies and the magnitudes of the experimental (Co-Csp 2 )-BDEs revealed relevant contributions of non-bonded interactions in aryl-cobinamides, notably steric strain between the aryl and the cobalt-corrin moieties and non-bonded interactions with and among the peripheral sidechains.
Collapse
Affiliation(s)
- Alexandra Tsybizova
- Laboratorium für Organische ChemieDepartment of Chemistry and Applied BiosciencesETH ZürichZürichSwitzerland
| | - Christopher Brenig
- Institute of Organic Chemistry & Center of Molecular BiosciencesUniversity of InnsbruckInnsbruckAustria
| | - Christoph Kieninger
- Institute of Organic Chemistry & Center of Molecular BiosciencesUniversity of InnsbruckInnsbruckAustria
| | - Bernhard Kräutler
- Institute of Organic Chemistry & Center of Molecular BiosciencesUniversity of InnsbruckInnsbruckAustria
| | - Peter Chen
- Laboratorium für Organische ChemieDepartment of Chemistry and Applied BiosciencesETH ZürichZürichSwitzerland
| |
Collapse
|
6
|
Miller NA, Michocki LB, Alonso-Mori R, Britz A, Deb A, DePonte DP, Glownia JM, Kaneshiro AK, Kieninger C, Koralek J, Meadows JH, van Driel TB, Kräutler B, Kubarych KJ, Penner-Hahn JE, Sension RJ. Antivitamins B 12 in a Microdrop: The Excited-State Structure of a Precious Sample Using Transient Polarized X-ray Absorption Near-Edge Structure. J Phys Chem Lett 2019; 10:5484-5489. [PMID: 31483136 DOI: 10.1021/acs.jpclett.9b02202] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Polarized transient X-ray absorption near-edge structure (XANES) was used to probe the excited-state structure of a photostable B12 antivitamin (Coβ-2-(2,4-difluorophenyl)-ethynylcobalamin, F2PhEtyCbl). A drop-on-demand delivery system synchronized to the LCLS X-ray free electron laser pulses was implemented and used to measure the XANES difference spectrum 12 ps following excitation, exposing only ∼45 μL of sample. Unlike cyanocobalamin (CNCbl), where the Co-C bond expands 15-20%, the excited state of F2PhEtyCbl is characterized by little change in the Co-C bond, suggesting that the acetylide linkage raises the barrier for expansion of the Co-C bond. In contrast, the lower axial Co-NDMB bond is elongated in the excited state of F2PhEtyCbl by ca. 10% or more, comparable to the 10% elongation observed for Co-NDMB in CNCbl.
Collapse
Affiliation(s)
- Nicholas A Miller
- Department of Chemistry , University of Michigan , 930 North University Avenue , Ann Arbor , Michigan 48109-1055 , United States
| | - Lindsay B Michocki
- Department of Chemistry , University of Michigan , 930 North University Avenue , Ann Arbor , Michigan 48109-1055 , United States
| | - Roberto Alonso-Mori
- Linac Coherent Light Source , SLAC National Accelerator Laboratory , 2575 Sand Hill Road , Menlo Park , California 94025 , United States
| | - Alexander Britz
- Linac Coherent Light Source , SLAC National Accelerator Laboratory , 2575 Sand Hill Road , Menlo Park , California 94025 , United States
- Stanford PULSE Institute , SLAC National Accelerator Laboratory , 2575 Sand Hill Road , Menlo Park , California 94025 , United States
| | - Aniruddha Deb
- Department of Chemistry , University of Michigan , 930 North University Avenue , Ann Arbor , Michigan 48109-1055 , United States
- Biophysics , University of Michigan , 930 North University Avenue , Ann Arbor , Michigan 48109-1055 , United States
| | - Daniel P DePonte
- Linac Coherent Light Source , SLAC National Accelerator Laboratory , 2575 Sand Hill Road , Menlo Park , California 94025 , United States
| | - James M Glownia
- Linac Coherent Light Source , SLAC National Accelerator Laboratory , 2575 Sand Hill Road , Menlo Park , California 94025 , United States
| | - April K Kaneshiro
- Department of Biological Chemistry , 1150 West Medical Center Drive , Ann Arbor , Michigan 48109-0600 , United States
| | - Christoph Kieninger
- Institute of Organic Chemistry & Center for Molecular Biosciences , University of Innsbruck , Innrain 80/82 , A-6020 Innsbruck , Austria
| | - Jake Koralek
- Linac Coherent Light Source , SLAC National Accelerator Laboratory , 2575 Sand Hill Road , Menlo Park , California 94025 , United States
| | - Joseph H Meadows
- Department of Chemistry , University of Michigan , 930 North University Avenue , Ann Arbor , Michigan 48109-1055 , United States
| | - Tim B van Driel
- Linac Coherent Light Source , SLAC National Accelerator Laboratory , 2575 Sand Hill Road , Menlo Park , California 94025 , United States
| | - Bernhard Kräutler
- Institute of Organic Chemistry & Center for Molecular Biosciences , University of Innsbruck , Innrain 80/82 , A-6020 Innsbruck , Austria
| | - Kevin J Kubarych
- Department of Chemistry , University of Michigan , 930 North University Avenue , Ann Arbor , Michigan 48109-1055 , United States
- Biophysics , University of Michigan , 930 North University Avenue , Ann Arbor , Michigan 48109-1055 , United States
| | - James E Penner-Hahn
- Department of Chemistry , University of Michigan , 930 North University Avenue , Ann Arbor , Michigan 48109-1055 , United States
- Biophysics , University of Michigan , 930 North University Avenue , Ann Arbor , Michigan 48109-1055 , United States
| | - Roseanne J Sension
- Department of Chemistry , University of Michigan , 930 North University Avenue , Ann Arbor , Michigan 48109-1055 , United States
- Biophysics , University of Michigan , 930 North University Avenue , Ann Arbor , Michigan 48109-1055 , United States
- Department of Physics , University of Michigan , 450 Church Street , Ann Arbor , Michigan 48109-1040 , United States
| |
Collapse
|