1
|
Dey S, Dwivedi S, Giri D, Sau A. Benzene-1,3-disulfonyl Fluoride Mediated Synthesis of Glycosyl Fluorides from Glycosyl Hemiacetals. Org Lett 2024; 26:10351-10355. [PMID: 39570800 DOI: 10.1021/acs.orglett.4c03968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
We developed an efficient method for synthesizing glycosyl fluorides from glycosyl hemiacetals using benzene-1,3-disulfonyl fluoride (S2) as the fluorinating agent in combination with the base DBU (1,8-diazabicyclo[5.4.0]undec-7-ene) under mild conditions. This approach enabled the successful synthesis of 17 glycosyl fluorides with various functional groups, including disaccharides and deoxysulfates, with yields of up to 99%. The utility of these synthesized glycosyl fluorides was further demonstrated in the synthesis of important O- and C-glycosides.
Collapse
Affiliation(s)
- Soumyadip Dey
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi-502 284, Sangareddy, Telangana, India
| | - Shubhi Dwivedi
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi-502 284, Sangareddy, Telangana, India
| | - Debabrata Giri
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi-502 284, Sangareddy, Telangana, India
| | - Abhijit Sau
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi-502 284, Sangareddy, Telangana, India
| |
Collapse
|
2
|
Neeliveettil A, Dey S, Nomula V, Thakur S, Giri D, Santra A, Sau A. Deoxyfluorinated amidation and esterification of carboxylic acid by pyridinesulfonyl fluoride. Chem Commun (Camb) 2024; 60:4789-4792. [PMID: 38602165 DOI: 10.1039/d4cc00877d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Amide bond synthesis is one of the most used reactions in medicinal chemistry. We report an amide bond formation reaction through deoxyfluorinated carboxylic acids under mild conditions using 2-pyridinesulfonyl fluoride. The reaction procedure has been used in a one-pot synthesis of amides and esters via in situ generation of acyl fluoride. This one-pot synthetic method provides easy access to amides and esters. Using this method, we have sequentially synthesized a tetrapeptide and calceolarioside-B glycoside derivative with good yields.
Collapse
Affiliation(s)
- Anootha Neeliveettil
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India.
- Academic of scientific Innovation Research (AcSIR), Ghaziabad, 201002, India
| | - Soumyadip Dey
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, 502284, Sangareddy, Telangana, India
| | - Vishnu Nomula
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India.
- Academic of scientific Innovation Research (AcSIR), Ghaziabad, 201002, India
| | - Swati Thakur
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, 502284, Sangareddy, Telangana, India
| | - Debabrata Giri
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, 502284, Sangareddy, Telangana, India
| | - Abhishek Santra
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India.
- Academic of scientific Innovation Research (AcSIR), Ghaziabad, 201002, India
| | - Abhijit Sau
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India.
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, 502284, Sangareddy, Telangana, India
| |
Collapse
|
3
|
Amorim AC, Burke AJ. What is the future of click chemistry in drug discovery and development? Expert Opin Drug Discov 2024; 19:267-280. [PMID: 38214914 DOI: 10.1080/17460441.2024.2302151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/02/2024] [Indexed: 01/13/2024]
Abstract
INTRODUCTION The concept of click chemistry was introduced in 2001 as an effective, efficient, and sustainable approach to making functional groups harnessing the thermodynamic properties of a set of known chemical reactions that are based on nature. Some of the most common examples include reactions that produce 1,2,3-triazoles, which have been used with great success in drug discovery and development, and in chemical biology. The reactions unite two molecules quickly and irreversibly, and the reactions can be performed inside living cells, without harming the cell. AREAS COVERED The main focus of this perspective is the future of click chemistry in drug discovery and development, exemplified by novel click chemistry approaches and other aspects of the drug development enterprise, like SPAAC and analogous techniques, PROTACs, as well as diversity-oriented click chemistry. EXPERT OPINION Drug discovery and development has benefited enormously from the amazing advances that have been made in the field of click chemistry since 2001. The methods most likely to have the most future applications include metal-catalyzed azide-alkyne cycloadditions giving 1,2,3-triazoles, SPAAC for medical diagnostics and vaccine development, other congeners, Sulfur-Fluoride Exchange (SuFEx) and Diversity-Oriented Clicking (DOC), a concept with diverse molecular methodology with the potential for obtaining extensive molecular diversity.
Collapse
Affiliation(s)
- Ana C Amorim
- Chemistry Department, Coimbra Chemistry Centre, Institute of Molecular Sciences, Coimbra, Portugal
| | - Anthony J Burke
- Chemistry Department, Coimbra Chemistry Centre, Institute of Molecular Sciences, Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- LAQV-REQUIMTE, Institute for Research and Advanced Studies, Universidade de Évora, Évora, Portugal
- Center for Neurosciences and Cellular Biology (CNC), Polo I, Universidade de Coimbra Rua Larga Faculdade de Medicina, Coimbra, Portugal
| |
Collapse
|
4
|
Cen M, Yang X, Zhang S, Gan L, Liu L, Chen T. Synthesis of acyl fluorides through deoxyfluorination of carboxylic acids. Org Biomol Chem 2023; 21:9372-9378. [PMID: 37975303 DOI: 10.1039/d3ob01557b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
A direct deoxyfluorination of carboxylic acids by utilizing inorganic potassium fluoride (KF) as a safe and inexpensive fluoride source has been developed. Both aryl carboxylic acids and cinnamyl carboxylic acids could be efficiently transformed into valuable acyl fluorides in moderate to high yields with good functional group tolerance. A scale-up reaction could be carried out smoothly under solvent-free conditions, which further demonstrated the practicality of this reaction in organic synthesis.
Collapse
Affiliation(s)
- Mengjie Cen
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Laboratory of Fine Chemical, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China.
| | - Xi Yang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Laboratory of Fine Chemical, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China.
| | - Shanshan Zhang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Laboratory of Fine Chemical, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China.
| | - Liguang Gan
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Laboratory of Fine Chemical, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China.
| | - Long Liu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Laboratory of Fine Chemical, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China.
| | - Tieqiao Chen
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Laboratory of Fine Chemical, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China.
| |
Collapse
|
5
|
Chen D, Xu L, Ren B, Wang Z, Liu C. Triflylpyridinium as Coupling Reagent for Rapid Amide and Ester Synthesis. Org Lett 2023. [PMID: 37290965 DOI: 10.1021/acs.orglett.3c01598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
An effective method has been developed to facilitate the synthesis of amides and esters at ambient temperature within 5 min, in which a stable and easily accessible triflylpyridinium reagent is used. Remarkably, this method not only has a wide range of substrate compatibility but also could realize the scalable synthesis of peptide and ester via a continuous flow process. Moreover, excellent chirality retentions are presented during activation of carboxylic acid.
Collapse
Affiliation(s)
- Du Chen
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liangxuan Xu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bowen Ren
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zian Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Liu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Smedley CJ. A diversity oriented clicking strategy: the stereoselective synthesis of highly-functionalised olefins from 2-substituted-alkynyl-1-sulfonyl fluorides. Chem Commun (Camb) 2022; 58:11316-11319. [PMID: 36128722 DOI: 10.1039/d2cc04473k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel series of addition reactions of highly reactive 2-substituted-alkynyl-1-sulfonyl fluoride (SASF) hubs with DMSO and DMF for the synthesis of two unique sulfonyl fluoride cores is described. The stereoselective chemistry allowed the unprecedented syntheses of 12 (Z)-2-(dimethylsulfonio)-2-(fluorosulfonyl)-1-substitutedethen-1-olates and 10 (E)-1-(dimethylamino)-3-oxo-3-substitutedprop-1-ene-2-sulfonyl fluorides from DMSO and DMF, respectively. The reactions proceed expediently to give single products in excellent yield without the need for chromatographic purification. Furthermore, the utility of the DMSO derived products is demonstrated in the synthesis of synthetically valuable β-keto sulfonyl fluorides under hydrogenation conditions in excellent yields.
Collapse
Affiliation(s)
- Christopher J Smedley
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia.,Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia.
| |
Collapse
|
7
|
Wu QX, Shu T, Fang WY, Qin HL. Discovery of KOH+BrCH2SO2F as a Water‐Removable System for the Clean, Mild and Robust Synthesis of Amides and Peptides. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Qi-Xin Wu
- Wuhan University of Technology School of Chemistry, Chemical Engineering and Life Sciences Wuhan CHINA
| | - Tao Shu
- Wuhan University of Technology School of Chemistry, Chemical Engineering and Life Sciences Wuhan CHINA
| | - Wan-Yin Fang
- Wuhan University of Technology School of Chemistry, Chemical Engineering and Life Sciences Wuhan CHINA
| | - Hua-Li Qin
- Wuhan University of Technology Chemistry 205 Luoshi Road 430070 Wuhan CHINA
| |
Collapse
|
8
|
Wu FW, Mao YJ, Pu J, Li HL, Ye P, Xu ZY, Lou SJ, Xu DQ. Ni-catalysed deamidative fluorination of amides with electrophilic fluorinating reagents. Org Biomol Chem 2022; 20:4091-4095. [PMID: 35522070 DOI: 10.1039/d2ob00519k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We describe here a Ni-catalysed deamidative fluorination of diverse amides with electrophilic fluorinating reagents. Different types of amides including aromatic amides and olefinic amides were well compatible, affording the corresponding acyl fluorides in good to excellent yields.
Collapse
Affiliation(s)
- Feng-Wei Wu
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Yang-Jie Mao
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Jun Pu
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Huan-Le Li
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Peng Ye
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Zhen-Yuan Xu
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Shao-Jie Lou
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Dan-Qian Xu
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| |
Collapse
|
9
|
Li BY, Voets L, Van Lommel R, Hoppenbrouwers F, Alonso M, Verhelst SHL, De Borggraeve WM, Demaerel J. SuFEx-enabled, chemoselective synthesis of triflates, triflamides and triflimidates. Chem Sci 2022; 13:2270-2279. [PMID: 35310484 PMCID: PMC8864708 DOI: 10.1039/d1sc06267k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/03/2022] [Indexed: 12/24/2022] Open
Abstract
Sulfur(vi) Fluoride Exchange (SuFEx) chemistry has emerged as a next-generation click reaction, designed to assemble functional molecules quickly and modularly. Here, we report the ex situ generation of trifluoromethanesulfonyl fluoride (CF3SO2F) gas in a two chamber system, and its use as a new SuFEx handle to efficiently synthesize triflates and triflamides. This broadly tolerated protocol lends itself to peptide modification or to telescoping into coupling reactions. Moreover, redesigning the SVI-F connector with a S[double bond, length as m-dash]O → S[double bond, length as m-dash]NR replacement furnished the analogous triflimidoyl fluorides as SuFEx electrophiles, which were engaged in the synthesis of rarely reported triflimidate esters. Notably, experiments showed H2O to be the key towards achieving chemoselective trifluoromethanesulfonation of phenols vs. amine groups, a phenomenon best explained-using ab initio metadynamics simulations-by a hydrogen bonded termolecular transition state for the CF3SO2F triflylation of amines.
Collapse
Affiliation(s)
- Bing-Yu Li
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven Celestijnenlaan 200F, Box 2404 3001 Leuven Belgium
| | - Lauren Voets
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven Celestijnenlaan 200F, Box 2404 3001 Leuven Belgium
| | - Ruben Van Lommel
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven Celestijnenlaan 200F, Box 2404 3001 Leuven Belgium
- Eenheid Algemene Chemie (ALGC), Department of Chemistry, Vrije Universiteit Brussel (VUB) Pleinlaan 2 1050 Brussels Belgium
| | - Fien Hoppenbrouwers
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven Celestijnenlaan 200F, Box 2404 3001 Leuven Belgium
| | - Mercedes Alonso
- Eenheid Algemene Chemie (ALGC), Department of Chemistry, Vrije Universiteit Brussel (VUB) Pleinlaan 2 1050 Brussels Belgium
| | - Steven H L Verhelst
- Laboratory of Chemical Biology, Department of Cellular and Molecular Medicine, KU Leuven O&N I bis, Herestraat 49, box 901 3000 Leuven Belgium
- Leibniz Institute for Analytical Sciences ISAS e.V., Otto-Hahn-Str. 6b 44227 Dortmund Germany
| | - Wim M De Borggraeve
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven Celestijnenlaan 200F, Box 2404 3001 Leuven Belgium
| | - Joachim Demaerel
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven Celestijnenlaan 200F, Box 2404 3001 Leuven Belgium
- Laboratory of Chemical Biology, Department of Cellular and Molecular Medicine, KU Leuven O&N I bis, Herestraat 49, box 901 3000 Leuven Belgium
| |
Collapse
|
10
|
Grygorenko OO, Volochnyuk DM, Vashchenko BV. Emerging Building Blocks for Medicinal Chemistry: Recent Synthetic Advances. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100857] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Oleksandr O. Grygorenko
- Enamine Ltd. Chervonotkatska 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| | - Dmitriy M. Volochnyuk
- Enamine Ltd. Chervonotkatska 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
- Institute of Organic Chemistry National Academy of Sciences of Ukraine Murmanska Street 5 Kyiv 02094 Ukraine
| | - Bohdan V. Vashchenko
- Enamine Ltd. Chervonotkatska 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| |
Collapse
|
11
|
Wang X, Wang F, Huang F, Ni C, Hu J. Deoxyfluorination of Carboxylic Acids with CpFluor: Access to Acyl Fluorides and Amides. Org Lett 2021; 23:1764-1768. [PMID: 33586447 DOI: 10.1021/acs.orglett.1c00190] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
3,3-Difluoro-1,2-diphenylcyclopropene (CpFluor), a bench-stable fluorination reagent, has been developed in the deoxyfluorination of carboxylic acids to afford various acyl fluorides. This all-carbon-based fluorination reagent enabled the efficient transformation of (hetero)aryl, alkyl, alkenyl, and alkynyl carboxylic acids to the corresponding acyl fluorides under the neutral conditions. This deoxyfluorination method was featured by the synthesis of acyl fluorides with in-situ formed CpFluor, as well as the one-pot amidation reaction of carboxylic acids via in-situ formed acyl fluorides.
Collapse
Affiliation(s)
- Xiu Wang
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Fei Wang
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Fengfeng Huang
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Chuanfa Ni
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Jinbo Hu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| |
Collapse
|
12
|
Wang J, Hou H, Hu Y, Lin J, Wu M, Zheng Z, Xu X. Visible-light-induced direct construction of amide bond from carboxylic acids with amines in aqueous solution. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2020.152801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Room temperature clickable coupling electron deficient amines with sterically hindered carboxylic acids for the construction of amides. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Liu S, Huang Y, Xu XH, Qing FL. Fluorosulfonylation of arenediazonium tetrafluoroborates with Na2S2O5 and N-fluorobenzenesulfonimide. J Fluor Chem 2020. [DOI: 10.1016/j.jfluchem.2020.109653] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
15
|
Le B, Wu H, Hu X, Zhou X, Guo Y, Chen QY, Liu C. Rapid synthesis of acyl fluorides from carboxylic acids with Cu(O2CCF2SO2F)2. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152624] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
16
|
Abstract
AbstractAcyl fluorides are valuable intermediates in organic synthesis. They are increasingly employed in peptide synthesis, in challenging esterification and amidation reactions or in transition-metal-catalyzed transformations. This review summarizes recent advances in their preparation.1 Introduction2 Nucleophilic Fluorination2.1 α-Fluoroamine Reagents2.2 Sulfur-Based Reagents2.3 Metal Catalysts2.4 Phosphorus-Based Reagents2.5 N,N′-Dicyclohexylcarbodiimide/HF·Pyridine2.6 Uranium Hexafluoride2.7 Bromine Trifluoride3 Radical Fluorination4 Conclusion
Collapse
|
17
|
Gonay M, Batisse C, Paquin JF. Synthesis of Acyl Fluorides from Carboxylic Acids Using NaF-Assisted Deoxofluorination with XtalFluor-E. J Org Chem 2020; 85:10253-10260. [PMID: 32691597 DOI: 10.1021/acs.joc.0c01377] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The synthesis of acyl fluorides using the deoxofluorination reaction of carboxylic acids using XtalFluor-E is described. This transformation, assisted by a catalytic amount of NaF, occurs at room temperature in EtOAc, where XtalFluor-E behaves as the activating agent and the fluoride source. A wide range of acyl fluorides were obtained in moderate to excellent yields (36-99%) after a simple filtration on a pad of silica gel. We also demonstrated that sequential deoxofluorination/amidation was possible.
Collapse
Affiliation(s)
- Marie Gonay
- CCVC, PROTEO, Département de chimie, Université Laval, 1045 Avenue de la Médecine, Québec, Québec G1V 0A6, Canada
| | - Chloé Batisse
- CCVC, PROTEO, Département de chimie, Université Laval, 1045 Avenue de la Médecine, Québec, Québec G1V 0A6, Canada
| | - Jean-François Paquin
- CCVC, PROTEO, Département de chimie, Université Laval, 1045 Avenue de la Médecine, Québec, Québec G1V 0A6, Canada
| |
Collapse
|
18
|
Smedley CJ, Li G, Barrow AS, Gialelis TL, Giel MC, Ottonello A, Cheng Y, Kitamura S, Wolan DW, Sharpless KB, Moses JE. Diversity Oriented Clicking (DOC): Divergent Synthesis of SuFExable Pharmacophores from 2-Substituted-Alkynyl-1-Sulfonyl Fluoride (SASF) Hubs. Angew Chem Int Ed Engl 2020; 59:12460-12469. [PMID: 32301265 PMCID: PMC7572632 DOI: 10.1002/anie.202003219] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Indexed: 01/08/2023]
Abstract
Diversity Oriented Clicking (DOC) is a unified click-approach for the modular synthesis of lead-like structures through application of the wide family of click transformations. DOC evolved from the concept of achieving "diversity with ease", by combining classic C-C π-bond click chemistry with recent developments in connective SuFEx-technologies. We showcase 2-Substituted-Alkynyl-1-Sulfonyl Fluorides (SASFs) as a new class of connective hub in concert with a diverse selection of click-cycloaddition processes. Through the selective DOC of SASFs with a range of dipoles and cyclic dienes, we report a diverse click-library of 173 unique functional molecules in minimal synthetic steps. The SuFExable library comprises 10 discrete heterocyclic core structures derived from 1,3- and 1,5-dipoles; while reaction with cyclic dienes yields several three-dimensional bicyclic Diels-Alder adducts. Growing the library to 278 discrete compounds through late-stage modification was made possible through SuFEx click derivatization of the pendant sulfonyl fluoride group in 96 well-plates-demonstrating the versatility of the DOC approach for the rapid synthesis of diverse functional structures. Screening for function against MRSA (USA300) revealed several lead hits with improved activity over methicillin.
Collapse
Affiliation(s)
- Christopher J Smedley
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Gencheng Li
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Andrew S Barrow
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Timothy L Gialelis
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Marie-Claire Giel
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Alessandra Ottonello
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Yunfei Cheng
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Seiya Kitamura
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Dennis W Wolan
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - K Barry Sharpless
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - John E Moses
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.,Cancer Center, Cold Spring Harbor Laboratory, 1 Bungtown Rd, Cold Spring Harbor, NY, 11724, USA
| |
Collapse
|
19
|
Diversity Oriented Clicking (DOC): Divergent Synthesis of SuFExable Pharmacophores from 2‐Substituted‐Alkynyl‐1‐Sulfonyl Fluoride (SASF) Hubs. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003219] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
20
|
Liang DD, Streefkerk DE, Jordaan D, Wagemakers J, Baggerman J, Zuilhof H. Silicon-Free SuFEx Reactions of Sulfonimidoyl Fluorides: Scope, Enantioselectivity, and Mechanism. Angew Chem Int Ed Engl 2020; 59:7494-7500. [PMID: 32157791 PMCID: PMC7216998 DOI: 10.1002/anie.201915519] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/30/2020] [Indexed: 12/20/2022]
Abstract
SuFEx reactions, in which an S−F moiety reacts with a silyl‐protected phenol, have been developed as powerful click reactions. In the current paper we open up the potential of SuFEx reactions as enantioselective reactions, analyze the role of Si and outline the mechanism of this reaction. As a result, fast, high‐yielding, “Si‐free” and enantiospecific SuFEx reactions of sulfonimidoyl fluorides have been developed, and their mechanism shown, by both experimental and theoretical methods, to yield chiral products.
Collapse
Affiliation(s)
- Dong-Dong Liang
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708WE, Wageningen, The Netherlands
| | - Dieuwertje E Streefkerk
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708WE, Wageningen, The Netherlands
| | - Daan Jordaan
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708WE, Wageningen, The Netherlands
| | - Jorden Wagemakers
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708WE, Wageningen, The Netherlands
| | - Jacob Baggerman
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708WE, Wageningen, The Netherlands
| | - Han Zuilhof
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708WE, Wageningen, The Netherlands.,School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Tianjin, China.,Department of Chemical and Materials Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
21
|
Liang D, Streefkerk DE, Jordaan D, Wagemakers J, Baggerman J, Zuilhof H. Silicon‐Free SuFEx Reactions of Sulfonimidoyl Fluorides: Scope, Enantioselectivity, and Mechanism. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915519] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Dong‐Dong Liang
- Laboratory of Organic ChemistryWageningen University Stippeneng 4 6708WE Wageningen The Netherlands
| | - Dieuwertje E. Streefkerk
- Laboratory of Organic ChemistryWageningen University Stippeneng 4 6708WE Wageningen The Netherlands
| | - Daan Jordaan
- Laboratory of Organic ChemistryWageningen University Stippeneng 4 6708WE Wageningen The Netherlands
| | - Jorden Wagemakers
- Laboratory of Organic ChemistryWageningen University Stippeneng 4 6708WE Wageningen The Netherlands
| | - Jacob Baggerman
- Laboratory of Organic ChemistryWageningen University Stippeneng 4 6708WE Wageningen The Netherlands
| | - Han Zuilhof
- Laboratory of Organic ChemistryWageningen University Stippeneng 4 6708WE Wageningen The Netherlands
- School of Pharmaceutical Science and TechnologyTianjin University 92 Weijin Road Tianjin China
- Department of Chemical and Materials EngineeringFaculty of EngineeringKing Abdulaziz University Jeddah Saudi Arabia
| |
Collapse
|
22
|
Wang SM, Zhao C, Zhang X, Qin HL. Clickable coupling of carboxylic acids and amines at room temperature mediated by SO 2F 2: a significant breakthrough for the construction of amides and peptide linkages. Org Biomol Chem 2020; 17:4087-4101. [PMID: 30957817 DOI: 10.1039/c9ob00699k] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The construction of amide bonds and peptide linkages is one of the most fundamental transformations in all life processes and organic synthesis. The synthesis of structurally ubiquitous amide motifs is essential in the assembly of numerous important molecules such as peptides, proteins, alkaloids, pharmaceutical agents, polymers, ligands and agrochemicals. A method of SO2F2-mediated direct clickable coupling of carboxylic acids with amines was developed for the synthesis of a broad scope of amides in a simple, mild, highly efficient, robust and practical manner (>110 examples, >90% yields in most cases). The direct click reactions of acids and amines on a gram scale are also demonstrated using an extremely easy work-up and purification process of washing with 1 M aqueous HCl to provide the desired amides in greater than 99% purity and excellent yields.
Collapse
Affiliation(s)
- Shi-Meng Wang
- State Key Laboratory of Silicate Materials for Architectures; and School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan, 430070, P. R. China.
| | | | | | | |
Collapse
|
23
|
Ogiwara Y, Sakai N. Acyl Fluorides in Late‐Transition‐Metal Catalysis. Angew Chem Int Ed Engl 2020; 59:574-594. [DOI: 10.1002/anie.201902805] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/01/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Yohei Ogiwara
- Department of Pure and Applied ChemistryFaculty of Science and TechnologyTokyo University of Science Noda Chiba 278-8510 Japan
| | - Norio Sakai
- Department of Pure and Applied ChemistryFaculty of Science and TechnologyTokyo University of Science Noda Chiba 278-8510 Japan
| |
Collapse
|
24
|
Xia C, Liu C, Zhou F, Gu P, Li H, He J, Li Y, Xu Q, Lu J. Tunable Electronic Memory Performances Based on Poly(Triphenylamine) and Its Metal Complex via a SuFEx Click Reaction. Chem Asian J 2019; 14:4296-4302. [DOI: 10.1002/asia.201901234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/14/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Chenyu Xia
- College of ChemistryChemical Engineering and Materials ScienceCollaborative Innovation Center of Suzhou Nano Science and TechnologyNational Center for International ResearchSoochow University Suzhou 215123 P. R. China
| | - Cheng Liu
- Institute of Functional Nano & Soft Materials Laboratory (FUNSOM)Jiangsu Key Laboratory for Carbon-Based Functional MaterialsSoochow University Suzhou 215123 P. R. China
| | - Feng Zhou
- College of ChemistryChemical Engineering and Materials ScienceCollaborative Innovation Center of Suzhou Nano Science and TechnologyNational Center for International ResearchSoochow University Suzhou 215123 P. R. China
| | - Peiyang Gu
- College of ChemistryChemical Engineering and Materials ScienceCollaborative Innovation Center of Suzhou Nano Science and TechnologyNational Center for International ResearchSoochow University Suzhou 215123 P. R. China
| | - Hua Li
- College of ChemistryChemical Engineering and Materials ScienceCollaborative Innovation Center of Suzhou Nano Science and TechnologyNational Center for International ResearchSoochow University Suzhou 215123 P. R. China
| | - Jinghui He
- College of ChemistryChemical Engineering and Materials ScienceCollaborative Innovation Center of Suzhou Nano Science and TechnologyNational Center for International ResearchSoochow University Suzhou 215123 P. R. China
| | - Youyong Li
- Institute of Functional Nano & Soft Materials Laboratory (FUNSOM)Jiangsu Key Laboratory for Carbon-Based Functional MaterialsSoochow University Suzhou 215123 P. R. China
| | - Qingfeng Xu
- College of ChemistryChemical Engineering and Materials ScienceCollaborative Innovation Center of Suzhou Nano Science and TechnologyNational Center for International ResearchSoochow University Suzhou 215123 P. R. China
| | - Jianmei Lu
- College of ChemistryChemical Engineering and Materials ScienceCollaborative Innovation Center of Suzhou Nano Science and TechnologyNational Center for International ResearchSoochow University Suzhou 215123 P. R. China
| |
Collapse
|
25
|
Yamada K, Kota M, Takahashi K, Fujita H, Kitamura M, Kunishima M. Development of Triazinone-Based Condensing Reagents for Amide Formation. J Org Chem 2019; 84:15042-15051. [PMID: 31701748 DOI: 10.1021/acs.joc.9b01261] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Novel triazinone-based condensing reagents have been developed. The palladium-catalyzed O-N allylic rearrangement of 2-(allyloxy)-4,6-dichloro-1,3,5-triazine and subsequent regioselective substitution using alcohols and an amine afforded chlorotriazinones, which can be readily converted using N-methylmorpholine into the corresponding condensing reagents. The condensation of carboxylic acids and amines using these reagents proceeded to afford the desired amides in good yields. In comparison with 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride, the newly synthesized triazinone-based condensing reagents exhibited higher reactivity.
Collapse
Affiliation(s)
- Kohei Yamada
- Faculty of Pharmaceutical Sciences , Institute of Medical, Pharmaceutical, and Health Sciences Kanazawa University , Kakuma-machi , Kanazawa 920-1192 , Japan
| | - Mika Kota
- Faculty of Pharmaceutical Sciences , Institute of Medical, Pharmaceutical, and Health Sciences Kanazawa University , Kakuma-machi , Kanazawa 920-1192 , Japan
| | - Kensuke Takahashi
- Faculty of Pharmaceutical Sciences , Institute of Medical, Pharmaceutical, and Health Sciences Kanazawa University , Kakuma-machi , Kanazawa 920-1192 , Japan
| | - Hikaru Fujita
- Faculty of Pharmaceutical Sciences , Institute of Medical, Pharmaceutical, and Health Sciences Kanazawa University , Kakuma-machi , Kanazawa 920-1192 , Japan
| | - Masanori Kitamura
- Faculty of Pharmaceutical Sciences , Institute of Medical, Pharmaceutical, and Health Sciences Kanazawa University , Kakuma-machi , Kanazawa 920-1192 , Japan
| | - Munetaka Kunishima
- Faculty of Pharmaceutical Sciences , Institute of Medical, Pharmaceutical, and Health Sciences Kanazawa University , Kakuma-machi , Kanazawa 920-1192 , Japan
| |
Collapse
|
26
|
Ogiwara Y, Sakai N. Carbonsäurefluoride in der Katalyse durch späte Übergangsmetalle. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902805] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yohei Ogiwara
- Department of Pure and Applied ChemistryFaculty of Science and TechnologyTokyo University of Science Noda Chiba 278-8510 Japan
| | - Norio Sakai
- Department of Pure and Applied ChemistryFaculty of Science and TechnologyTokyo University of Science Noda Chiba 278-8510 Japan
| |
Collapse
|
27
|
SuFEx-enabled, agnostic discovery of covalent inhibitors of human neutrophil elastase. Proc Natl Acad Sci U S A 2019; 116:18808-18814. [PMID: 31484779 DOI: 10.1073/pnas.1909972116] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Sulfur fluoride exchange (SuFEx) has emerged as the new generation of click chemistry. We report here a SuFEx-enabled, agnostic approach for the discovery and optimization of covalent inhibitors of human neutrophil elastase (hNE). Evaluation of our ever-growing collection of SuFExable compounds toward various biological assays unexpectedly revealed a selective and covalent hNE inhibitor: benzene-1,2-disulfonyl fluoride. Synthetic derivatization of the initial hit led to a more potent agent, 2-(fluorosulfonyl)phenyl fluorosulfate with IC50 0.24 μM and greater than 833-fold selectivity over the homologous neutrophil serine protease, cathepsin G. The optimized, yet simple benzenoid probe only modified active hNE and not its denatured form.
Collapse
|
28
|
Munoz SB, Dang H, Ispizua-Rodriguez X, Mathew T, Prakash GKS. Direct Access to Acyl Fluorides from Carboxylic Acids Using a Phosphine/Fluoride Deoxyfluorination Reagent System. Org Lett 2019; 21:1659-1663. [PMID: 30840474 DOI: 10.1021/acs.orglett.9b00197] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A fast and simple method for deoxyfluorination of carboxylic acids is presented. The protocol employs commodity chemicals (PPh3, NBS, fluoride), affording products in excellent yields under mild conditions. Acyloxyphosphonium ion, the key reaction intermediate, was identified by NMR spectroscopic methods. Brønsted acidic conditions are essential for efficient C-F bond formation. The protocol displays scalability, high functional group tolerance, chemoselectivity, and easy purification of products. Deoxyfluorination of active pharmaceutical ingredients was established.
Collapse
Affiliation(s)
- Socrates B Munoz
- Loker Hydrocarbon Research Institute and Department of Chemistry , University of Southern California , Los Angeles , California 90089-1661 , United States
| | - Huong Dang
- Loker Hydrocarbon Research Institute and Department of Chemistry , University of Southern California , Los Angeles , California 90089-1661 , United States
| | - Xanath Ispizua-Rodriguez
- Loker Hydrocarbon Research Institute and Department of Chemistry , University of Southern California , Los Angeles , California 90089-1661 , United States
| | - Thomas Mathew
- Loker Hydrocarbon Research Institute and Department of Chemistry , University of Southern California , Los Angeles , California 90089-1661 , United States
| | - G K Surya Prakash
- Loker Hydrocarbon Research Institute and Department of Chemistry , University of Southern California , Los Angeles , California 90089-1661 , United States
| |
Collapse
|
29
|
Barrow AS, Smedley CJ, Zheng Q, Li S, Dong J, Moses JE. The growing applications of SuFEx click chemistry. Chem Soc Rev 2019; 48:4731-4758. [DOI: 10.1039/c8cs00960k] [Citation(s) in RCA: 181] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
SuFEx (Sulfur Fluoride Exchange) is a modular, next generation family of click reactions, geared towards the rapid and reliable assembly of functional molecules.
Collapse
Affiliation(s)
- A. S. Barrow
- La Trobe Institute for Molecular Science
- La Trobe University
- Melbourne
- Australia
| | - C. J. Smedley
- La Trobe Institute for Molecular Science
- La Trobe University
- Melbourne
- Australia
| | - Q. Zheng
- Department of Chemistry
- The Scripps Research Institute
- La Jolla
- USA
| | - S. Li
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - J. Dong
- Key Laboratory of Organofluorine Chemistry
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - J. E. Moses
- La Trobe Institute for Molecular Science
- La Trobe University
- Melbourne
- Australia
| |
Collapse
|
30
|
Liu W, Dong Y, Zhang S, Wu Z, Chen H. A rapid one-step surface functionalization of polyvinyl chloride by combining click sulfur(vi)-fluoride exchange with benzophenone photochemistry. Chem Commun (Camb) 2019; 55:858-861. [DOI: 10.1039/c8cc08109c] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We demonstrated a rapid one-step strategy for polyvinyl chloride surface functionalization by combining click “sulfur(vi)-fluoride exchange” (SuFEx) reaction with benzophenone photochemistry.
Collapse
Affiliation(s)
- Wenying Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry
- Chemical Engineering and Materials Science, Soochow University
- Suzhou 215123
- P. R. China
| | - Yishi Dong
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry
- Chemical Engineering and Materials Science, Soochow University
- Suzhou 215123
- P. R. China
| | - Shuxiang Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry
- Chemical Engineering and Materials Science, Soochow University
- Suzhou 215123
- P. R. China
| | - Zhaoqiang Wu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry
- Chemical Engineering and Materials Science, Soochow University
- Suzhou 215123
- P. R. China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry
- Chemical Engineering and Materials Science, Soochow University
- Suzhou 215123
- P. R. China
| |
Collapse
|
31
|
Karthik S, Muthuvel K, Gandhi T. Base-Promoted Amidation and Esterification of Imidazolium Salts via Acyl C–C bond Cleavage: Access to Aromatic Amides and Esters. J Org Chem 2018; 84:738-751. [DOI: 10.1021/acs.joc.8b02567] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Shanmugam Karthik
- Department of Chemistry, School of Advanced Sciences, VIT, Vellore, Tamil Nadu 632014, India
| | - Karthick Muthuvel
- Department of Chemistry, School of Advanced Sciences, VIT, Vellore, Tamil Nadu 632014, India
| | - Thirumanavelan Gandhi
- Department of Chemistry, School of Advanced Sciences, VIT, Vellore, Tamil Nadu 632014, India
| |
Collapse
|
32
|
Randall JD, Eyckens DJ, Stojcevski F, Francis PS, Doeven EH, Barlow AJ, Barrow AS, Arnold CL, Moses JE, Henderson LC. Modification of Carbon Fibre Surfaces by Sulfur-Fluoride Exchange Click Chemistry. Chemphyschem 2018; 19:3176-3181. [PMID: 30253016 DOI: 10.1002/cphc.201800789] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Indexed: 01/28/2023]
Abstract
Technologies that enable surface modification are in high demand and are critical for the implementation of new functional materials and devices. Here, we describe the first modification of a carbon surface (in this case carbon fiber) using the sulfur-fluoride exchange (SuFEx) reaction. The parent sulfur (VI) fluoride moiety can be installed directly to the surface via electrochemical deposition of the fluorosulfate phenyldiazonium tetrafluoroborate salt, or by 'SuFExing' a phenol on the carbon surface followed by treatment of the material with SO2 F2 ; similar to a 'graft to' or 'graft from' functionalization approach. We demonstrate that these SuFEx-able surfaces readily undergo exchange with aryl silyl ethers, and that the subsequent sulfate linkages are themselves stable under electrochemical redox conditions. Finally, we showcase the utility of the SuFEx chemistry by installing a pendant amino group to the fiber surface resulting in interfacial shear strength improvements of up to 130 % in epoxy resin.
Collapse
Affiliation(s)
- James D Randall
- Deakin University, 75 Pigdons Road, Geelong, Waurn Ponds, Victoria, Australia, 3216
| | - Daniel J Eyckens
- Deakin University, 75 Pigdons Road, Geelong, Waurn Ponds, Victoria, Australia, 3216
| | - Filip Stojcevski
- Deakin University, 75 Pigdons Road, Geelong, Waurn Ponds, Victoria, Australia, 3216
| | - Paul S Francis
- Deakin University, 75 Pigdons Road, Geelong, Waurn Ponds, Victoria, Australia, 3216
| | - Egan H Doeven
- Deakin University, 75 Pigdons Road, Geelong, Waurn Ponds, Victoria, Australia, 3216
| | - Anders J Barlow
- Centre for Materials and Surface Science and Department of Chemistry and Physics, School of Molecular Sciences, La Trobe University, Melbourne, Victoria, Australia, 3086
| | - Andrew S Barrow
- The Click Chemistry Research Laboratory, La Trobe Institute for Molecular Science, Bundoora, Melbourne, Victoria, Australia, 3083
| | - Chantelle L Arnold
- Deakin University, 75 Pigdons Road, Geelong, Waurn Ponds, Victoria, Australia, 3216
| | - John E Moses
- The Click Chemistry Research Laboratory, La Trobe Institute for Molecular Science, Bundoora, Melbourne, Victoria, Australia, 3083
| | - Luke C Henderson
- Deakin University, 75 Pigdons Road, Geelong, Waurn Ponds, Victoria, Australia, 3216
| |
Collapse
|
33
|
Abdul Fattah T, Saeed A, Albericio F. Recent advances towards sulfur (VI) fluoride exchange (SuFEx) click chemistry. J Fluor Chem 2018. [DOI: 10.1016/j.jfluchem.2018.07.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
34
|
Affiliation(s)
- Praveen K. Chinthakindi
- Department of Medicinal Chemistry; Drug Design and Discovery; Uppsala University; Box 574 SE-75123 Uppsala Sweden
| | - Per I. Arvidsson
- Catalysis and Peptide Research Unit; University of KwaZulu Natal; Durban South Africa
- Science for Life Laboratory, Drug Discovery and Development Platform and Division of Translational Medicine and Chemical Biology; Department of Medical Biochemistry and Biophysics; Karolinska Institutet; Stockholm Sweden
| |
Collapse
|
35
|
Gahtory D, Sen R, Pujari S, Li S, Zheng Q, Moses JE, Sharpless KB, Zuilhof H. Quantitative and Orthogonal Formation and Reactivity of SuFEx Platforms. Chemistry 2018; 24:10550-10556. [PMID: 29949211 PMCID: PMC6099289 DOI: 10.1002/chem.201802356] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Indexed: 01/14/2023]
Abstract
The constraints of minute reactant amounts and the impossibility to remove any undesired surface‐bound products during monolayer functionalization of a surface necessitate the selection of efficient, modular and orthogonal reactions that lead to quantitative conversions. Herein, we explore the character of sulfur–fluoride exchange (SuFEx) reactions on a surface, and explore the applicability for quantitative and orthogonal surface functionalization. To this end, we demonstrate the use of ethenesulfonyl fluoride (ESF) as an efficient SuFEx linker for creating “SuFEx‐able” monolayer surfaces, enabling three distinct approaches to utilize SuFEx chemistry on a surface. The first approach relies on a di‐SuFEx loading allowing dual functionalization with a nucleophile, while the two latter approaches focus on dual (CuAAC–SuFEx/SPOCQ–SuFEx) click platforms. The resultant strategies allow facile attachment of two different substrates sequentially on the same platform. Along the way we also demonstrate the Michael addition of ethenesulfonyl fluoride to be a quantitative surface‐bound reaction, indicating significant promise in materials science for this reaction.
Collapse
Affiliation(s)
- Digvijay Gahtory
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Rickdeb Sen
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Sidharam Pujari
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Suhua Li
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA.,School of Chemistry, Sun Yat-Sen University, 135 Xingang Xi Road, Guangzhou, 510275, P.R. China
| | - Qinheng Zheng
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - John E Moses
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Melbourne, Victoria, 3086, Australia
| | - K Barry Sharpless
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Han Zuilhof
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.,School of Pharmaceutical Sciences and Technology, Tianjin University, 92 Weijin Road, Tianjin, P.R. China.,Department of Chemical and Materials Engineering, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
36
|
Biswas P, Guin J. Molecular Oxygen Mediated Radical Dicarbofunctionalization of Olefin with Aldehyde. J Org Chem 2018; 83:5629-5638. [DOI: 10.1021/acs.joc.8b00618] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Promita Biswas
- Department of Organic Chemistry, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India
| | - Joyram Guin
- Department of Organic Chemistry, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India
| |
Collapse
|
37
|
Xiao X, Zhou F, Jiang J, Chen H, Wang L, Chen D, Xu Q, Lu J. Highly efficient polymerization via sulfur(vi)-fluoride exchange (SuFEx): novel polysulfates bearing a pyrazoline–naphthylamide conjugated moiety and their electrical memory performance. Polym Chem 2018. [DOI: 10.1039/c7py02042b] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two polysulfates (PolyTPP-NI and CPTPP-NI) were synthesized by a SuFEx click reaction, and their memory devices show Flash behaviors.
Collapse
Affiliation(s)
- Xiong Xiao
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Suzhou Nano Science and Technology
- Soochow University
- Suzhou 215123
| | - Feng Zhou
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Suzhou Nano Science and Technology
- Soochow University
- Suzhou 215123
| | - Jun Jiang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Suzhou Nano Science and Technology
- Soochow University
- Suzhou 215123
| | - Haifeng Chen
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Suzhou Nano Science and Technology
- Soochow University
- Suzhou 215123
| | - Lihua Wang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Suzhou Nano Science and Technology
- Soochow University
- Suzhou 215123
| | - Dongyun Chen
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Suzhou Nano Science and Technology
- Soochow University
- Suzhou 215123
| | - Qingfeng Xu
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Suzhou Nano Science and Technology
- Soochow University
- Suzhou 215123
| | - Jianmei Lu
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Suzhou Nano Science and Technology
- Soochow University
- Suzhou 215123
| |
Collapse
|