1
|
Mardhekar S, Subramani B, Samudra P, Srikanth P, Mahida V, Bhoge PR, Toraskar S, Abraham NM, Kikkeri R. Sulfation of Heparan and Chondroitin Sulfate Ligands Enables Cell-Specific Homing of Nanoprobes. Chemistry 2023; 29:e202202622. [PMID: 36325647 PMCID: PMC7616003 DOI: 10.1002/chem.202202622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/02/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022]
Abstract
Demystifying the sulfation code of glycosaminoglycans (GAGs) to induce precise homing of nanoparticles in tumor cells or neurons influences the development of a potential drug- or gene-delivery system. However, GAGs, particularly heparan sulfate (HS) and chondroitin sulfate (CS), are structurally highly heterogeneous, and synthesizing well-defined HS/CS composed nanoparticles is challenging. Here, we decipher how specific sulfation patterns on HS and CS regulate receptor-mediated homing of nanoprobes in primary and secondary cells. We discovered that aggressive cancer cells such as MDA-MB-231 displayed a strong uptake of GAG-nanoprobes compared to mild or moderately aggressive cancer cells. However, there was no selectivity towards the GAG sequences, thus indicating the presence of more than one form of receptor-mediated uptake. However, U87 cells, olfactory bulb, and hippocampal primary neurons showed selective or preferential uptake of CS-E-coated nanoprobes compared to other GAG-nanoprobes. Furthermore, mechanistic studies revealed that the 4,6-O-disulfated-CS nanoprobe used the CD44 and caveolin-dependent endocytosis pathway for uptake. These results could lead to new opportunities to use GAG nanoprobes in nanomedicine.
Collapse
Grants
- SERB/F/9228/2019-2020 Department of Science and Technology , Ministry of Science and Technology New Delhi, India
- BT/PR34475/MED/15/210/2020 Department of Biotechnology, Ministry of Science and Technology, India
- SR/WOS-A/CS-72/2019 Department of Science and Technology , Ministry of Science and Technology New Delhi, India
- DST/CSRI/2017/271 Department of Science and Technology , Ministry of Science and Technology New Delhi, India
- IA/I/14/1/501306 DBT-Wellcome Trust India Alliance
- Wellcome Trust
- IA/I/14/1/501306 The Wellcome Trust DBT India Alliance
- BT/PR21934/NNT/28/1242/2017 Department of Biotechnology, Ministry of Science and Technology, India
Collapse
Affiliation(s)
- Sandhya Mardhekar
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune-411008 (India)
| | - Balamurugan Subramani
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune-411008 (India)
| | - Prasanna Samudra
- Laboratory of Neural Circuits and Behaviour (LNCB), Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune-411008, (India)
| | - Priyadharshini Srikanth
- Laboratory of Neural Circuits and Behaviour (LNCB), Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune-411008, (India)
| | - Virendrasinh Mahida
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune-411008 (India)
| | - Preeti Ravindra Bhoge
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune-411008 (India)
| | - Suraj Toraskar
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune-411008 (India)
| | - Nixon M. Abraham
- Laboratory of Neural Circuits and Behaviour (LNCB), Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune-411008, (India)
| | - Raghavendra Kikkeri
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune-411008 (India)
| |
Collapse
|
2
|
Martínez-Bailén M, Rojo J, Ramos-Soriano J. Multivalent glycosystems for human lectins. Chem Soc Rev 2023; 52:536-572. [PMID: 36545903 DOI: 10.1039/d2cs00736c] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Human lectins are involved in a wide variety of biological processes, both physiological and pathological, which have attracted the interest of the scientific community working in the glycoscience field. Multivalent glycosystems have been employed as useful tools to understand carbohydrate-lectin binding processes as well as for biomedical applications. The review shows the different scaffolds designed for a multivalent presentation of sugars and their corresponding binding studies to lectins and in some cases, their biological activities. We summarise this research by organizing based on lectin types to highlight the progression in this active field. The paper provides an overall picture of how these contributions have furnished relevant information on this topic to help in understanding and participate in these carbohydrate-lectin interactions.
Collapse
Affiliation(s)
- Macarena Martínez-Bailén
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Av. Américo Vespucio 49, Seville 41092, Spain.
| | - Javier Rojo
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Av. Américo Vespucio 49, Seville 41092, Spain.
| | - Javier Ramos-Soriano
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Av. Américo Vespucio 49, Seville 41092, Spain.
| |
Collapse
|
3
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2017-2018. MASS SPECTROMETRY REVIEWS 2023; 42:227-431. [PMID: 34719822 DOI: 10.1002/mas.21721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2018. Also included are papers that describe methods appropriate to glycan and glycoprotein analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, new methods, matrices, derivatization, MALDI imaging, fragmentation and the use of arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Most of the applications are presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and highlights the impact that MALDI imaging is having across a range of diciplines. MALDI is still an ideal technique for carbohydrate analysis and advancements in the technique and the range of applications continue steady progress.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| |
Collapse
|
4
|
Maeda S, Yamada J, Iinuma KM, Nadanaka S, Kitagawa H, Jinno S. Chondroitin sulfate proteoglycan is a potential target of memantine to improve cognitive function via the promotion of adult neurogenesis. Br J Pharmacol 2022; 179:4857-4877. [PMID: 35797426 DOI: 10.1111/bph.15920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 06/02/2022] [Accepted: 06/28/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Chondroitin sulfate proteoglycan (CSPG) constitutes the neurogenic niche in the hippocampus. The reduction of hippocampal neurogenesis is involved in aging-related cognitive decline and dementia. The purpose of this study is to find candidates that improve cognitive function by analyzing the effects of memantine (MEM), a therapeutic agent for Alzheimer's disease, on CSPG and adult hippocampal neurogenesis. EXPERIMENTAL APPROACH The effects of MEM on neurogenesis-related cells and CSPG content were assessed in the hippocampus of middle-aged mice. The MEM-induced alterations in gene expressions of neurotrophins and enzymes associated with biosynthesis and degradation of CSPG in the hippocampus were also measured. The effects of MEM on cognitive function were estimated using a behavioral test battery. The same set of behavioral tests was applied to evaluate the effects of pharmacological depletion of CSPG in the hippocampus. KEY RESULTS The densities of newborn granule cells and content of CSPG in the hippocampus were increased by MEM. The expression levels of the enzyme responsible for the biosynthesis CSPG were increased by MEM. The neurotrophin-related molecules were activated by MEM. Short- and long-term memory performance was improved by MEM. Pharmacological depletion of CSPG impairs the effects of MEM on cognitive improvement in middle-aged mice. CONCLUSIONS AND IMPLICATIONS MEM regulates the biosynthesis and degradation of CSPG, which may underlie the improvement of cognitive function via the promotion of adult hippocampal neurogenesis. These results imply that CSPG-related enzymes may be potentially attractive candidates for the treatment of aging-related cognitive decline.
Collapse
Affiliation(s)
- Shoichiro Maeda
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Jun Yamada
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kyoko M Iinuma
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Satomi Nadanaka
- Department of Biochemistry, Kobe Pharmaceutical University, Kobe, Japan
| | - Hiroshi Kitagawa
- Department of Biochemistry, Kobe Pharmaceutical University, Kobe, Japan
| | - Shozo Jinno
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
5
|
Buisson P, Treuillet E, Schuler M, Lopin-Bon C. Multigram scale preparation of a semi-synthetic N-trifluoroacetyl protected chondroitin disaccharide building block: Towards the stereoselective synthesis of chondroitin sulfates disaccharides. Carbohydr Res 2022; 512:108514. [PMID: 35123175 DOI: 10.1016/j.carres.2022.108514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/26/2022] [Accepted: 01/26/2022] [Indexed: 11/02/2022]
Abstract
The chemoselective N-trifluoroacetylation of a chondroitin disaccharide obtained from controlled acid hydrolysis of a commercially available polymeric chondroitin sulfate is reported for the first time. We also described the multi-gram scale synthesis of a donor block having a benzylidene moiety further used for the expeditious and stereocontrolled synthesis of glycosides fitted with various aglycons. Stereocontrolled β-glycosylation, sulfation and efficient N-TFA deprotection steps afforded the desired disaccharides in good yields.
Collapse
Affiliation(s)
- Pierre Buisson
- Institut de Chimie Organique et Analytique (ICOA), UMR 7311 CNRS et Université d'Orléans, BP 6759, 45067, Orléans cedex 02, France
| | - Elodie Treuillet
- Institut de Chimie Organique et Analytique (ICOA), UMR 7311 CNRS et Université d'Orléans, BP 6759, 45067, Orléans cedex 02, France
| | - Marie Schuler
- Institut de Chimie Organique et Analytique (ICOA), UMR 7311 CNRS et Université d'Orléans, BP 6759, 45067, Orléans cedex 02, France
| | - Chrystel Lopin-Bon
- Institut de Chimie Organique et Analytique (ICOA), UMR 7311 CNRS et Université d'Orléans, BP 6759, 45067, Orléans cedex 02, France.
| |
Collapse
|
6
|
Kim Y, Hyun JY, Shin I. Multivalent glycans for biological and biomedical applications. Chem Soc Rev 2021; 50:10567-10593. [PMID: 34346405 DOI: 10.1039/d0cs01606c] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recognition of glycans by proteins plays a crucial role in a variety of physiological processes in cells and living organisms. In addition, interactions of glycans with proteins are involved in the development of diverse diseases, such as pathogen infection, inflammation and tumor metastasis. It is well-known that multivalent glycans bind to proteins much more strongly than do their monomeric counterparts. Owing to this property, numerous multivalent glycans have been utilized to elucidate glycan-mediated biological processes and to discover glycan-based biomedical agents. In this review, we discuss recent advances (2014-2020) made in the development and biological and biomedical applications of synthetic multivalent glycans, including neoglycopeptides, neoglycoproteins, glycodendrimers, glycopolymers, glyconanoparticles and glycoliposomes. We hope this review assists researchers in the design and development of novel multivalent glycans with predictable activities.
Collapse
Affiliation(s)
- Yujun Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea.
| | - Ji Young Hyun
- Department of Drug Discovery, Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Korea.
| | - Injae Shin
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
7
|
Cristófalo AE, Nieto PM, Thépaut M, Fieschi F, Di Chenna PH, Uhrig ML. Synthesis, self-assembly and Langerin recognition studies of a resorcinarene-based glycocluster exposing a hyaluronic acid thiodisaccharide mimetic. Org Biomol Chem 2021; 19:6455-6467. [PMID: 34236375 DOI: 10.1039/d1ob00895a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we report the synthesis of an octavalent glycocluster exposing a thiodisaccharide mimetic of the repetitive unit of hyaluronic acid, βSGlcA(1 → 3)βSGlcNAc, constructed on a calix[4]resorcinarene scaffold by CuAAC reaction of suitable precursors. This glycocluster showed a strong tendency toward self-aggregation. DOSY-NMR and DLS experiments demonstrated the formation of spherical micelles of d ≅ 6.2 nm, in good agreement. TEM micrographs showed the presence of particles of different sizes, depending on the pH of the starting solution, thus evidencing that the negative charge on the micelle surface due to ionization of the GlcA residues plays an important role in the aggregation process. STD-NMR and DLS experiments provided evidence of the interaction between the synthetic glycocluster and Langerin, a relevant C-type lectin. This interaction was not observed in the STD-NMR experiments performed with the basic disaccharide, providing evidence of a multivalent effect.
Collapse
Affiliation(s)
- Alejandro E Cristófalo
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EGA Buenos Aires, Argentina. and CONICET-Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), C1428EGA Buenos Aires, Argentina
| | - Pedro M Nieto
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), cicCartuja, CSIC and Universidad de Sevilla, 41092 Sevilla, España.
| | - Michel Thépaut
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, F-38044 Grenoble, France
| | - Franck Fieschi
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, F-38044 Grenoble, France
| | - Pablo H Di Chenna
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EGA Buenos Aires, Argentina. and CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos Aplicados a la Química Orgánica (UMYMFOR), C1428EGA Buenos Aires, Argentina
| | - María Laura Uhrig
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EGA Buenos Aires, Argentina. and CONICET-Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), C1428EGA Buenos Aires, Argentina
| |
Collapse
|
8
|
Rojo J, Nieto PM, de Paz JL. GAG Multivalent Systems to interact with Langerin. Curr Med Chem 2021; 29:1173-1192. [PMID: 34225602 DOI: 10.2174/0929867328666210705143102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 11/22/2022]
Abstract
Langerin is a C-type Lectin expressed at the surface of Langerhans cells, which play a pivotal role in protecting organisms against pathogen infections. To address this aim, Langerin presents at least two recognition sites, one Ca2+-dependent and another one independent, capable of recognizing a variety of carbohydrate ligands. In contrast to other lectins, Langerin recognizes sulfated glycosaminoglycans (GAGs), a family of complex and heterogeneous polysaccharides present in the cell membrane and the extracellular matrix at the interphase generated in the trimeric form of Langerin but absent in the monomeric form. The complexity of these oligosaccharides has impeded the development of well-defined monodisperse structures to study these interaction processes. However, in the last few decades, an improvement of synthetic developments to achieve the preparation of carbohydrate multivalent systems mimicking the GAGs has been described. Despite all these contributions, very few examples are reported where the GAG multivalent structures are used to evaluate the interaction with Langerin. These molecules should pave the way to explore these GAG-Langerin interactions.
Collapse
Affiliation(s)
- Javier Rojo
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Av. Américo Vespucio 49, Seville 41092, Spain
| | - Pedro M Nieto
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Av. Américo Vespucio 49, Seville 41092, Spain
| | - José Luis de Paz
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Av. Américo Vespucio 49, Seville 41092, Spain
| |
Collapse
|
9
|
Folliero V, Zannella C, Chianese A, Stelitano D, Ambrosino A, De Filippis A, Galdiero M, Franci G, Galdiero M. Application of Dendrimers for Treating Parasitic Diseases. Pharmaceutics 2021; 13:343. [PMID: 33808016 PMCID: PMC7998910 DOI: 10.3390/pharmaceutics13030343] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/23/2021] [Accepted: 03/01/2021] [Indexed: 01/02/2023] Open
Abstract
Despite advances in medical knowledge, parasitic diseases remain a significant global health burden and their pharmacological treatment is often hampered by drug toxicity. Therefore, drug delivery systems may provide useful advantages when used in combination with conventional therapeutic compounds. Dendrimers are three-dimensional polymeric structures, characterized by a central core, branches and terminal functional groups. These nanostructures are known for their defined structure, great water solubility, biocompatibility and high encapsulation ability against a wide range of molecules. Furthermore, the high ratio between terminal groups and molecular volume render them a hopeful vector for drug delivery. These nanostructures offer several advantages compared to conventional drugs for the treatment of parasitic infection. Dendrimers deliver drugs to target sites with reduced dosage, solving side effects that occur with accepted marketed drugs. In recent years, extensive progress has been made towards the use of dendrimers for therapeutic, prophylactic and diagnostic purposes for the management of parasitic infections. The present review highlights the potential of several dendrimers in the management of parasitic diseases.
Collapse
Affiliation(s)
- Veronica Folliero
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (V.F.); (C.Z.); (A.C.); (D.S.); (A.A.); (M.G.)
| | - Carla Zannella
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (V.F.); (C.Z.); (A.C.); (D.S.); (A.A.); (M.G.)
| | - Annalisa Chianese
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (V.F.); (C.Z.); (A.C.); (D.S.); (A.A.); (M.G.)
| | - Debora Stelitano
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (V.F.); (C.Z.); (A.C.); (D.S.); (A.A.); (M.G.)
| | - Annalisa Ambrosino
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (V.F.); (C.Z.); (A.C.); (D.S.); (A.A.); (M.G.)
| | - Anna De Filippis
- Department of Pharmacy, University of Naples “Federico II”, 80131 Naples, Italy;
| | - Marilena Galdiero
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (V.F.); (C.Z.); (A.C.); (D.S.); (A.A.); (M.G.)
| | - Gianluigi Franci
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy;
| | - Massimiliano Galdiero
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (V.F.); (C.Z.); (A.C.); (D.S.); (A.A.); (M.G.)
| |
Collapse
|
10
|
Ji Y, Zhang S, Qiao M, Jiao R, Li J, Song P, Zhang X, Huang H. Synthesis of structurally defined chondroitin sulfate: Paving the way to the structure-activity relationship studies. Carbohydr Polym 2020; 248:116796. [PMID: 32919534 DOI: 10.1016/j.carbpol.2020.116796] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/05/2020] [Accepted: 07/17/2020] [Indexed: 12/20/2022]
Abstract
Chondroitin sulfate (CS) is one of the major and widespread glycosaminoglycans, a family of structurally complex, linear, anionic hetero-co-polysaccharides. CS plays a vital role in various normal physiological and pathological processes, thus, showing varieties of biological activities, such as anti-oxidation, anti-atherosclerosis, anti-thrombosis, and insignificant immunogenicity. However, the heterogeneity of the naturally occurring CS potentially leads to function unspecific and limits further structure-activity relationship studies. Therefore, the synthesis of CS with well-defined and uniform chain lengths is of major interest for the development of reliable drugs. In this review, we examine the remarkable progress that has been made in the chemical, enzymatic and chemoenzymatic synthesis of CS and its derivatives, providing a broad spectrum of options to access CS of well controlled chain lengths.
Collapse
Affiliation(s)
- Yuan Ji
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Shilin Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Meng Qiao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Ruoyu Jiao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Jun Li
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Ping Song
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Xing Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
11
|
Domínguez-Rodríguez P, Vivès C, Thepaut M, Fieschi F, Nieto PM, de Paz JL, Rojo J. Second-Generation Dendrimers with Chondroitin Sulfate Type-E Disaccharides as Multivalent Ligands for Langerin. Biomacromolecules 2020; 21:2726-2734. [DOI: 10.1021/acs.biomac.0c00476] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Pedro Domínguez-Rodríguez
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de La Cartuja, CSIC and Universidad de Sevilla, Américo Vespucio, 49, 41092 Sevilla, Spain
| | - Corinne Vivès
- Université Grenoble Alpes, CNRS, CEA, IBS, F-38044 Grenoble, France
| | - Michel Thepaut
- Université Grenoble Alpes, CNRS, CEA, IBS, F-38044 Grenoble, France
| | - Franck Fieschi
- Université Grenoble Alpes, CNRS, CEA, IBS, F-38044 Grenoble, France
| | - Pedro M. Nieto
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de La Cartuja, CSIC and Universidad de Sevilla, Américo Vespucio, 49, 41092 Sevilla, Spain
| | - José L. de Paz
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de La Cartuja, CSIC and Universidad de Sevilla, Américo Vespucio, 49, 41092 Sevilla, Spain
| | - Javier Rojo
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de La Cartuja, CSIC and Universidad de Sevilla, Américo Vespucio, 49, 41092 Sevilla, Spain
| |
Collapse
|
12
|
García‐Oliva C, Cabanillas AH, Perona A, Hoyos P, Rumbero Á, Hernáiz MJ. Efficient Synthesis of Muramic and Glucuronic Acid Glycodendrimers as Dengue Virus Antagonists. Chemistry 2020; 26:1588-1596. [DOI: 10.1002/chem.201903788] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/17/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Cecilia García‐Oliva
- Departamento de Química en Ciencias FarmacéuticasFacultad de FarmaciaUniversidad Complutense de Madrid 28040 Madrid Spain
| | | | - Almudena Perona
- Departamento de Química en Ciencias FarmacéuticasFacultad de FarmaciaUniversidad Complutense de Madrid 28040 Madrid Spain
| | - Pilar Hoyos
- Departamento de Química en Ciencias FarmacéuticasFacultad de FarmaciaUniversidad Complutense de Madrid 28040 Madrid Spain
| | - Ángel Rumbero
- Departamento de Química OrgánicaUniversidad Autónoma de Madrid 28049 Madrid Spain
| | - María J. Hernáiz
- Departamento de Química en Ciencias FarmacéuticasFacultad de FarmaciaUniversidad Complutense de Madrid 28040 Madrid Spain
| |
Collapse
|
13
|
The synthesis and biological evaluation of chondroitin sulfate E glycodendrimers. Future Med Chem 2019; 11:1403-1415. [PMID: 31304829 DOI: 10.4155/fmc-2019-0011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: Chondroitin sulfate (CS) is a class of highly sulfated polysaccharides that possess many important biological functions. The heterogeneity of CS limits pharmacological research and leads to ambiguous mechanisms. Thus, glycomimetics are demanded as replacement of natural polysaccharides to explore important biological processes. Results & methodology: Here the preparation of CS glycodendrimers is reported as well as their use as CS mimetics to regulate the NF-κB pathway. Multivalent presentation of sugar epitopes on appropriate dendrimer scaffolds increased the suppression of the NF-κB pathway. The interaction between CS-E molecules and TNF-α was examined by nuclear magnetic resonance technology. Conclusion: Overall, the glycodendrimer reported here may be potentially employed as molecular tool to investigate the biological functions of CS.
Collapse
|
14
|
Synthesis of a Fluorous-Tagged Hexasaccharide and Interaction with Growth Factors Using Sugar-Coated Microplates. MOLECULES (BASEL, SWITZERLAND) 2019; 24:molecules24081591. [PMID: 31013665 PMCID: PMC6515340 DOI: 10.3390/molecules24081591] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 12/25/2022]
Abstract
Here, we report the synthesis of a sulfated, fully protected hexasaccharide as a glycosaminoglycan mimetic and the study of its interactions with different growth factors: midkine, basic fibroblast growth factor (FGF-2) and nerve growth factor (NGF). Following a fluorous-assisted approach, monosaccharide building blocks were successfully assembled and the target oligosaccharide was prepared in excellent yield. The use of more acid stable 4,6-O-silylidene protected glucosamine units was crucial for the efficiency of this strategy because harsh reaction conditions were needed in the glycosylations to avoid the formation of orthoester side products. Fluorescence polarization experiments demonstrated the strong interactions between the synthesized hexamer, and midkine and FGF-2. In addition, we have developed an alternative assay to analyse these molecular recognition events. The prepared oligosaccharide was non-covalently attached to a fluorous-functionalized microplate and the direct binding of the protein to the sugar-immobilized surface was measured, affording the corresponding KD,surf value.
Collapse
|
15
|
Mena-Barragán T, de Paz JL, Nieto PM. Unexpected loss of stereoselectivity in glycosylation reactions during the synthesis of chondroitin sulfate oligosaccharides. Beilstein J Org Chem 2019; 15:137-144. [PMID: 30745989 PMCID: PMC6350880 DOI: 10.3762/bjoc.15.14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 01/04/2019] [Indexed: 11/23/2022] Open
Abstract
Here, we present an exploratory study on the fluorous-assisted synthesis of chondroitin sulfate (CS) oligosaccharides. Following this approach, a CS tetrasaccharide was prepared. However, in contrast to our previous results, a significant loss of β-selectivity was observed in [2 + 2] glycosylations involving N-trifluoroacetyl-protected D-galactosamine donors and D-glucuronic acid (GlcA) acceptors. These results, together with those obtained from experiments employing model monosaccharide building blocks, highlight the impact of the glycosyl acceptor structure on the stereoselectivity of glycosylation reactions. Our study provides useful data about the substitution pattern of GlcA units for the efficient synthesis of CS oligomers.
Collapse
Affiliation(s)
- Teresa Mena-Barragán
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), cicCartuja, CSIC and Universidad de Sevilla, Americo Vespucio, 49, 41092 Sevilla, Spain
| | - José L de Paz
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), cicCartuja, CSIC and Universidad de Sevilla, Americo Vespucio, 49, 41092 Sevilla, Spain
| | - Pedro M Nieto
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), cicCartuja, CSIC and Universidad de Sevilla, Americo Vespucio, 49, 41092 Sevilla, Spain
| |
Collapse
|
16
|
Synthesis and anticoagulation studies of “short-armed” fucosylated chondroitin sulfate glycoclusters. Carbohydr Res 2018; 467:45-51. [DOI: 10.1016/j.carres.2018.07.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 07/27/2018] [Accepted: 07/27/2018] [Indexed: 11/20/2022]
|
17
|
Lim TC, Cai S, Huber RG, Bond PJ, Siew Chia PX, Khou SL, Gao S, Lee SS, Lee SG. Facile saccharide-free mimetics that recapitulate key features of glycosaminoglycan sulfation patterns. Chem Sci 2018; 9:7940-7947. [PMID: 30429999 PMCID: PMC6201788 DOI: 10.1039/c8sc02303d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/21/2018] [Indexed: 12/16/2022] Open
Abstract
We report a new class of saccharide-free glycosaminoglycan (GAG) mimetics where polyproline imparts facilely-made sulfation patterns with GAG-like structure, function and tunability.
Controlling glycosaminoglycan (GAG) activity to exploit its immense potential in biology ultimately requires facile manipulation of sulfation patterns associated with GAGs. However, satisfying this requirement in full remains challenging, given that synthesis of GAGs is technically arduous while convenient GAG mimetics often produce sulfation patterns that are uncharacteristic of GAGs. To overcome this, we develop saccharide-free polyproline-based GAG mimetics (PGMs) that can be facilely assembled via amide coupling chemistry. Molecular dynamics simulations show that PGMs recapitulate key GAG structural features (i.e. ∼9 Å-sized repeating units, periodicity and helicity) and as with GAGs, can be tuned to introduce systematic variations in sulfate clustering and spacing. Functionally, a variety of PGMs control various GAG activities (concerning P-selectin, neurotrophic factors and heparinase) and exhibit GAG-like characteristics such as progressive modulation, comparable effectiveness with heparins, need for different sequences to suit different activities and the presence of a “minimal bioactive length”. Furthermore, PGMs produce consistent effects in vivo and successfully provide therapeutic benefits over cancer metastasis. Taken together with their high level of biosafety, PGMs answer the long-standing need for an effective and practicable strategy to manipulate GAG-appropriate sulfation patterns and exploit GAG activity in medicine and biotechnology.
Collapse
Affiliation(s)
- Teck Chuan Lim
- Institute of Bioengineering and Nanotechnology , 31 Biopolis Way, The Nanos , Singapore 138669 , Singapore .
| | - Shuting Cai
- Institute of Bioengineering and Nanotechnology , 31 Biopolis Way, The Nanos , Singapore 138669 , Singapore .
| | - Roland G Huber
- Bioinformatics Institute , 30 Biopolis Street, #07-01 Matrix , Singapore 138671 , Singapore
| | - Peter J Bond
- Bioinformatics Institute , 30 Biopolis Street, #07-01 Matrix , Singapore 138671 , Singapore.,Department of Biological Sciences , National University of Singapore , 14 Science Drive 4 , Singapore 117543 , Singapore
| | - Priscilla Xian Siew Chia
- Institute of Bioengineering and Nanotechnology , 31 Biopolis Way, The Nanos , Singapore 138669 , Singapore .
| | - Siv Ly Khou
- Institute of Bioengineering and Nanotechnology , 31 Biopolis Way, The Nanos , Singapore 138669 , Singapore .
| | - Shujun Gao
- Institute of Bioengineering and Nanotechnology , 31 Biopolis Way, The Nanos , Singapore 138669 , Singapore .
| | - Su Seong Lee
- Institute of Bioengineering and Nanotechnology , 31 Biopolis Way, The Nanos , Singapore 138669 , Singapore .
| | - Song-Gil Lee
- Institute of Bioengineering and Nanotechnology , 31 Biopolis Way, The Nanos , Singapore 138669 , Singapore .
| |
Collapse
|
18
|
Yang S, Liu Q, Zhang G, Zhang X, Zhao Z, Lei P. An Approach to Synthesize Chondroitin Sulfate-E (CS-E) Oligosaccharide Precursors. J Org Chem 2018; 83:5897-5908. [PMID: 29756448 DOI: 10.1021/acs.joc.8b00157] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An approach was developed to synthesize chondroitin sulfate-E (CS-E) oligosaccharides by adopting a postglycosylation-transformation strategy: different from all of the traditional approaches, the characteristic groups of CS-E were introduced following the assembly of the oligosaccharides. The adjusted strategy rendered an easy chain elongation strategy. All of the elongation steps generated high yields with excellent glycosylation outcomes. An orthogonally protected disaccharide was used as the building block to provide flexibility for the group transformation and derivatization at the N-2 position of the GalNAc residue and the O-1,5 positions of the GlcA residue, thereby providing ready access for the further examination of the structure-activity relationship (SAR) of CS-E molecules.
Collapse
Affiliation(s)
- Shuang Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines , Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences , Beijing , 100050 , P. R. China
| | - Qi Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines , Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences , Beijing , 100050 , P. R. China
| | - Guangyan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines , Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences , Beijing , 100050 , P. R. China
| | - Xiaoxi Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines , Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences , Beijing , 100050 , P. R. China
| | - Zhehui Zhao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines , Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences , Beijing , 100050 , P. R. China
| | - Pingsheng Lei
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines , Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences , Beijing , 100050 , P. R. China
| |
Collapse
|
19
|
Pomin VH, Wang X. Synthetic Oligosaccharide Libraries and Microarray Technology: A Powerful Combination for the Success of Current Glycosaminoglycan Interactomics. ChemMedChem 2018; 13:648-661. [PMID: 29160016 PMCID: PMC5895483 DOI: 10.1002/cmdc.201700620] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/15/2017] [Indexed: 11/08/2022]
Abstract
Glycosaminoglycans (GAGs) are extracellular matrix and/or cell-surface sulfated glycans crucial to the regulation of various signaling proteins, the functions of which are essential in many pathophysiological systems. Because structural heterogeneity is high in GAG chains and purification is difficult, the use of structurally defined GAG oligosaccharides from natural sources as molecular models in both biophysical and pharmacological assays is limited. To overcome this obstacle, GAG-like oligosaccharides of well-defined structures are currently being synthesized by chemical and/or enzymatic means in many research groups around the world. These synthetic GAG oligosaccharides serve as useful molecular tools in studies of GAG-protein interactions. In this review, besides discussing the commonest routes used for the synthesis of GAG oligosaccharides, we also survey some libraries of these synthetic models currently available for research and discuss their activities in interaction studies with functional proteins, especially through the microarray approach.
Collapse
Affiliation(s)
- Vitor H Pomin
- Program of Glycobiology, Institute of Medical Biochemistry Leopoldo de Meis and University Hospital Clementino Fraga Filho, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-913, Brazil
| | - Xu Wang
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| |
Collapse
|
20
|
Maza S, Gandia-Aguado N, de Paz JL, Nieto PM. Fluorous-tag assisted synthesis of a glycosaminoglycan mimetic tetrasaccharide as a high-affinity FGF-2 and midkine ligand. Bioorg Med Chem 2018; 26:1076-1085. [DOI: 10.1016/j.bmc.2018.01.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/22/2018] [Accepted: 01/24/2018] [Indexed: 02/01/2023]
|
21
|
Zhang X, Yao W, Xu X, Sun H, Zhao J, Meng X, Wu M, Li Z. Synthesis of Fucosylated Chondroitin Sulfate Glycoclusters: A Robust Route to New Anticoagulant Agents. Chemistry 2017; 24:1694-1700. [PMID: 29131431 DOI: 10.1002/chem.201705177] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Xiao Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, P.R. China
| | - Wang Yao
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, P.R. China
| | - Xiaojiang Xu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, P.R. China
| | - Huifang Sun
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, P.R. China
| | - Jinhua Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, P.R. China
| | - Xiangbao Meng
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, P.R. China
| | - Mingyi Wu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, P.R. China
| | - Zhongjun Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, P.R. China
| |
Collapse
|
22
|
López-Cebral R, Silva-Correia J, Reis RL, Silva TH, Oliveira JM. Peripheral Nerve Injury: Current Challenges, Conventional Treatment Approaches, and New Trends in Biomaterials-Based Regenerative Strategies. ACS Biomater Sci Eng 2017; 3:3098-3122. [DOI: 10.1021/acsbiomaterials.7b00655] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- R. López-Cebral
- 3Bs Research Group, Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3Bs, PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Portugal
| | - J. Silva-Correia
- 3Bs Research Group, Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3Bs, PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Portugal
| | - R. L. Reis
- 3Bs Research Group, Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3Bs, PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Portugal
| | - T. H. Silva
- 3Bs Research Group, Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3Bs, PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Portugal
| | - J. M. Oliveira
- 3Bs Research Group, Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3Bs, PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Portugal
| |
Collapse
|