1
|
Farias FFS, Mittersteiner M, Kieling AM, Lima PSV, Weimer GH, Bonacorso HG, Zanatta N, Martins MAP. The Persistence of Hydrogen Bonds in Pyrimidinones: From Solution to Crystal. ACS ORGANIC & INORGANIC AU 2024; 4:557-570. [PMID: 39371326 PMCID: PMC11450830 DOI: 10.1021/acsorginorgau.4c00057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 10/08/2024]
Abstract
Pyrimidinone scaffolds are present in a wide array of molecules with synthetic and pharmacological utility. The inherent properties of these compounds may be attributed to intermolecular interactions analogous to the interactions that molecules tend to establish with active sites. Pyrimidinones and their fused derivatives have garnered significant interest due to their structural features, which resemble nitrogenous bases, the foundational building blocks of DNA and RNA. Similarly, pyrimidinones are predisposed to forming N-H···O hydrogen bonds akin to nitrogenous bases. Given this context, this study explored the supramolecular features and the predisposition to form hydrogen bonds in a series of 18 substituted 4-(trihalomethyl)-2(1H)-pyrimidinones. The formation of hydrogen bonds was observed in solution via nuclear magnetic resonance (NMR) spectroscopy experiments, and subsequently confirmed in the crystalline solid state. Hence, the 18 compounds were crystallized through crystallization assays by slow solvent evaporation, followed by single-crystal X-ray diffraction (SC-XRD). The supramolecular cluster demarcation was employed to evaluate all intermolecular interactions, and all crystalline structures exhibited robust hydrogen bonds, with an average energy of approximately -21.64 kcal mol-1 (∼19% of the total stabilization energy of the supramolecular clusters), irrespective of the substituents at positions 4, 5, or 6 of the pyrimidinone core. To elucidate the nature of these hydrogen bonds, an analysis based on the quantum theory of atoms in molecules (QTAIM) revealed that the predominant intermolecular interactions are N-H···O (average of -16.55 kcal mol-1) and C-H···O (average of -6.48 kcal mol-1). Through proposing crystallization mechanisms based on molecular stabilization energy data and contact areas between molecules and employing the supramolecular cluster and retrocrystallization concepts, it was determined that altering the halogen (F/Cl) at position 4 of the pyrimidinone nucleus modifies the crystallization mechanism pathway. Notably, the hydrogen bonds present in the initial proposed steps were confirmed by 1H NMR experiments using concentration-dependent techniques.
Collapse
Affiliation(s)
- Fellipe F. S. Farias
- Núcleo de Química
de Heterociclos (NUQUIMHE), Department of Chemistry, Federal University of Santa Maria (UFSM), 97105-900 Santa Maria, Rio Grande do Sul, Brazil
| | - Mateus Mittersteiner
- Núcleo de Química
de Heterociclos (NUQUIMHE), Department of Chemistry, Federal University of Santa Maria (UFSM), 97105-900 Santa Maria, Rio Grande do Sul, Brazil
| | - Amanda M. Kieling
- Núcleo de Química
de Heterociclos (NUQUIMHE), Department of Chemistry, Federal University of Santa Maria (UFSM), 97105-900 Santa Maria, Rio Grande do Sul, Brazil
| | - Priscila S. V. Lima
- Núcleo de Química
de Heterociclos (NUQUIMHE), Department of Chemistry, Federal University of Santa Maria (UFSM), 97105-900 Santa Maria, Rio Grande do Sul, Brazil
| | - Gustavo H. Weimer
- Núcleo de Química
de Heterociclos (NUQUIMHE), Department of Chemistry, Federal University of Santa Maria (UFSM), 97105-900 Santa Maria, Rio Grande do Sul, Brazil
| | - Helio G. Bonacorso
- Núcleo de Química
de Heterociclos (NUQUIMHE), Department of Chemistry, Federal University of Santa Maria (UFSM), 97105-900 Santa Maria, Rio Grande do Sul, Brazil
| | - Nilo Zanatta
- Núcleo de Química
de Heterociclos (NUQUIMHE), Department of Chemistry, Federal University of Santa Maria (UFSM), 97105-900 Santa Maria, Rio Grande do Sul, Brazil
| | - Marcos A. P. Martins
- Núcleo de Química
de Heterociclos (NUQUIMHE), Department of Chemistry, Federal University of Santa Maria (UFSM), 97105-900 Santa Maria, Rio Grande do Sul, Brazil
| |
Collapse
|
2
|
Sun J, Jaworski C, Schirrmacher R, Hall DG. Suppressing Protodeboronation in Cu-Mediated 19F/ 18F-Fluorination of Arylboronic Acids: A Mechanistically Guided Approach Towards Optimized PET Probe Development. Chemistry 2024; 30:e202400906. [PMID: 38959115 DOI: 10.1002/chem.202400906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
Fluorinated arenes play a crucial role in drug discovery, specialty materials, and medical imaging. Although several variants for Cu-mediated nucleophilic fluorination of arylboronic acids and derivatives have been developed, these protocols rarely address the occurrence and control of protodeboronation, which greatly complicates product separation and can compromise the effectiveness of a radiotracer for in vivo imaging. Consequently, simpler and more efficient procedures are needed to allow rapid 18F/19F-fluorination of both arylboronic acids and esters while minimizing protodeboronation. Mechanistic controls revealed that in addition to a high temperature, strong donor ligands such as acetonitrile and pyridine accentuate a Cu-mediated protodeboronation. This observation guided the optimization of a ligandless procedure, with t-BuOH as solvent, to activate fluoride under milder conditions at lower temperatures minimizing protodeboronation. Additionally, a new copper salt, Cu(ONf)2 was employed to further improve the fluorination efficiency. A large range of functional groups are tolerated under the new procedure, which is complete within 30 minutes at a temperature of 60 °C, and affords fluorinated arenes and heteroarenes in 39 % to 84 % yield. With minimal modifications, the protocol can also be applied in 18F-radiofluorination, affording radiochemical conversions (RCCs) between 17 and 54 % with minimal protodeboronation compared to previously established protocols.
Collapse
Affiliation(s)
- Jingkai Sun
- Department of Chemistry, 4-010 CCIS, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - Carolin Jaworski
- Department of Oncology, Division of Oncological Imaging, University of Alberta, Edmonton, AB, T6G 1Z2, Canada
| | - Ralf Schirrmacher
- Department of Oncology, Division of Oncological Imaging, University of Alberta, Edmonton, AB, T6G 1Z2, Canada
| | - Dennis G Hall
- Department of Chemistry, 4-010 CCIS, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| |
Collapse
|
3
|
Longuet M, Vitse K, Martin-Mingot A, Michelet B, Guégan F, Thibaudeau S. Determination of the Hammett Acidity of HF/Base Reagents. J Am Chem Soc 2024; 146:12167-12173. [PMID: 38626381 DOI: 10.1021/jacs.4c02344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
Harnessing the acidity of HF/base reagents is of paramount importance to improve the efficiency and selectivity of fluorination reactions. Yet, no general method has been reported to evaluate their acidic properties, and experimental designs are still relying on a trial-and-error approach. We report a new method based on 19F NMR spectroscopy which allows highly sensitive measures and short-time analyses. Advantageously, the basic properties of the indicators can be determined upstream by DFT calculations, affording a simple yet robust semiempirical approach. In particular, the indicators used in this study were rationally designed to fit on the conceptually appealing and commonly used Hammett scale. This method has been applied to commercially available and recently developed HF/base reagents.
Collapse
Affiliation(s)
- Mélissa Longuet
- UMR-CNRS 7285, IC2MP, Université de Poitiers, 4 rue Michel Brunet, TSA 51106, Poitiers Cedex 9 86073, France
| | - Kassandra Vitse
- UMR-CNRS 7285, IC2MP, Université de Poitiers, 4 rue Michel Brunet, TSA 51106, Poitiers Cedex 9 86073, France
| | - Agnès Martin-Mingot
- UMR-CNRS 7285, IC2MP, Université de Poitiers, 4 rue Michel Brunet, TSA 51106, Poitiers Cedex 9 86073, France
| | - Bastien Michelet
- UMR-CNRS 7285, IC2MP, Université de Poitiers, 4 rue Michel Brunet, TSA 51106, Poitiers Cedex 9 86073, France
| | - Frédéric Guégan
- UMR-CNRS 7285, IC2MP, Université de Poitiers, 4 rue Michel Brunet, TSA 51106, Poitiers Cedex 9 86073, France
| | - Sébastien Thibaudeau
- UMR-CNRS 7285, IC2MP, Université de Poitiers, 4 rue Michel Brunet, TSA 51106, Poitiers Cedex 9 86073, France
| |
Collapse
|
4
|
Garg A, Haswell A, Hopkinson MN. C-F Bond Insertion: An Emerging Strategy for Constructing Fluorinated Molecules. Chemistry 2024; 30:e202304229. [PMID: 38270496 DOI: 10.1002/chem.202304229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 01/26/2024]
Abstract
C-F Insertion reactions, where an organic fragment formally inserts into a carbon-fluorine bond in a substrate, are highly attractive, yet largely unexplored, methods to prepare valuable fluorinated molecules. The inherent strength of C-F bonds and the resulting need for a large thermodynamic driving force to initiate C-F cleavage often leads to sequestering of the released fluoride in an unreactive by-product. Recently, however, several groups have succeeded in overcoming this challenge, opening up the study of C-F insertion as an efficient and highly atom-economical approach to prepare fluorinated compounds. In this article, the recent breakthroughs are discussed focusing on the key conceptual advances that allowed for both C-F bond cleavage and subsequent incorporation of the released fluoride into the product.
Collapse
Affiliation(s)
- Arushi Garg
- School of Natural and Environmental Sciences, Newcastle University, Bedson Building, NE1 7RU, Newcastle Upon Tyne, UK
| | - Alex Haswell
- School of Natural and Environmental Sciences, Newcastle University, Bedson Building, NE1 7RU, Newcastle Upon Tyne, UK
| | - Matthew N Hopkinson
- School of Natural and Environmental Sciences, Newcastle University, Bedson Building, NE1 7RU, Newcastle Upon Tyne, UK
| |
Collapse
|
5
|
Murata Y, Hada K, Aggarwal T, Escorihuela J, Shibata N. Transition-Metal-Free Approach for Z-Vinyl Fluorides by Hydrofluorination of Alkynes bearing SF 4 and SF 5 Groups. Angew Chem Int Ed Engl 2024; 63:e202318086. [PMID: 38206172 DOI: 10.1002/anie.202318086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/12/2024]
Abstract
The synthesis of vinyl fluorides plays a crucial role in various scientific disciplines, including pharmaceutical and materials sciences. Herein, we present a direct and stereoselective hydrofluorination method for the synthesis of Z isomers of vinyl fluorides from alkynes containing unexplored SF5 and SF4 groups. Our strategy employed tetrabutylammonium fluoride (TBAF) as a fluorine source. It demonstrates high compatibility with aryls, biaryls, heteroaryls, and tert-alkyl groups, allowing facile incorporation of SF5 and SF4 groups across the triple bond without any transition-metal catalysts. This approach avoids the potential decomposition of the SF5 or SF4 units via coordination with transition metals or acidic protic sources. Remarkably, this transformation proceeded at room temperature without any additional additives, providing the Z isomer of vinyl fluorides in excellent yield and high selectivity. The presence of a water molecule as a hydrate in TBAF is essential for efficient conversion. This methodology opens new avenues for the synthesis of enchanting SF5 - and SF4 -containing fluorinated vinylic scaffolds, thereby providing advanced opportunities for novel drug discovery and fluorinated polymers.
Collapse
Affiliation(s)
- Yusuke Murata
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology Gokiso, Showa-ku, Nagoya, 466-8555, Japan
| | - Kenshiro Hada
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology Gokiso, Showa-ku, Nagoya, 466-8555, Japan
| | - Trapti Aggarwal
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology Gokiso, Showa-ku, Nagoya, 466-8555, Japan
| | - Jorge Escorihuela
- Departamento de Química Orgánica, Universitat de València, Avda. Vicente Andrés Estellés s/n, Burjassot, 46100, Valencia, Spain
| | - Norio Shibata
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology Gokiso, Showa-ku, Nagoya, 466-8555, Japan
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology Gokiso, Showa-ku, Nagoya, 466-8555, Japan
| |
Collapse
|
6
|
Yoneda N, Iyama H, Nagata T, Katahira M, Ishii Y, Tada K, Matsumoto K, Hagiwara R. Fluoride Ion in Alcohols: Isopropanol vs Hexafluoroisopropanol. J Phys Chem Lett 2024; 15:1677-1685. [PMID: 38315662 DOI: 10.1021/acs.jpclett.3c03619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
The utility of alcohol as a hydrogen bonding donor is considered a providential avenue for moderating the high basicity and reactivity of the fluoride ion, typically used with large cations. However, the practicality of alcohol-fluoride systems in reactions is hampered by the limited understanding of the pertinent interactions between the OH group and F-. Therefore, this study comparatively investigates the thermal, structural, and physical properties of the CsF-2-propanol and CsF-1,1,1,3,3,3-hexafluoro-2-propanol systems to explicate the effects of the fluoroalkyl group on the interaction of alcohols and F-. The two systems exhibit vastly different phase diagrams despite the similar saturated concentrations. A combination of spectroscopic analyses, alcohol activity coefficient measurements, and theoretical calculations reveal the fluorinated alcohol system harbors the stronger OH···F- interactions between the two systems. The diffusion coefficient and ionic conductivity measurements attribute the present results to disparate states of ion association in the two systems.
Collapse
Affiliation(s)
- Nozomi Yoneda
- Graduate School of Energy Science, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Haruka Iyama
- Graduate School of Energy Science, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takashi Nagata
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Masato Katahira
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Yoshiki Ishii
- School of Frontier Engineering, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Kohei Tada
- Research Institute of Electrochemical Energy, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Osaka 563-8577, Japan
| | - Kazuhiko Matsumoto
- Graduate School of Energy Science, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Rika Hagiwara
- Graduate School of Energy Science, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
7
|
Herbstritt D, Tomar P, Müller R, Kaupp M, Braun T. A 2,2-Difluoroimidazolidine Derivative for Deoxyfluorination Reactions: Mechanistic Insights by Experimental and Computational Studies. Chemistry 2023; 29:e202301556. [PMID: 37341145 DOI: 10.1002/chem.202301556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 06/22/2023]
Abstract
A N-heterocyclic deoxyfluorinating agent SIMesF2 was synthesized by nucleophilic fluorination of N,N-1,3-dimesityl-2-chloroimidazolidinium chloride (3) at room temperature. SIMesF2 was applied to deoxyfluorinate carboxylic acids and alcohols and convert benzaldehyde into difluorotoluene. Mechanistic studies by NMR spectroscopy suggest reaction pathways of the carboxylic acid to acyl fluoride via outer-sphere fluorinations at an imidazolidinium ion by polyfluoride. DFT studies give further insight by exploring mechanistic details which distinguish the fluorination of aldehydes from that of carboxylic acids. Furthermore, a consecutive reaction sequence for the oxidation of an aldehyde followed by in situ fluorination of the generated carboxylic acid was developed.
Collapse
Affiliation(s)
- Domenique Herbstritt
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Pooja Tomar
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Robert Müller
- Institut für Chemie, Technische Universität Berlin, Theoretische Chemie/Quantenchemie, Sekr.C7, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Martin Kaupp
- Institut für Chemie, Technische Universität Berlin, Theoretische Chemie/Quantenchemie, Sekr.C7, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Thomas Braun
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| |
Collapse
|
8
|
Yang H, Wang S, Wang J, Xu X, Li X. Gold catalyzed hydrofluorination of propargyl alcohols promoted by fluorine-hydrogen bonding. Chem Commun (Camb) 2023. [PMID: 37401374 DOI: 10.1039/d3cc02275g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
The hydroxyl group was discovered to promote gold catalyzed hydrofluorination of alkynes via hydrogen bonding interaction. Based on this strategy, propargyl alcohols could be hydrofluorinated smoothly using Et3N·3HF under acidic additive-free conditions, which provided a straightforward alternative protocol for the synthesis of 3-fluoroallyl alcohols.
Collapse
Affiliation(s)
- Hui Yang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Shaowen Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Jie Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Xiangsheng Xu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Xiaoqing Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| |
Collapse
|
9
|
Gruden E, Prinčič GG, Hočevar J, Iskra J, Kvíčala J, Tavčar G. From cyclic (alkyl)(amino)carbene (CAAC) precursors to fluorinating reagents. Experimental and theoretical study. Dalton Trans 2023. [PMID: 37368434 DOI: 10.1039/d3dt01476b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Addition of anhydrous HF to the hydrochloride [MeCAACH][Cl(HCl)0.5] resulted in the formation of salts with high HF content. By stepwise removal of HF in vacuo, we selectively prepared [MeCAACH][F(HF)2] (3) and [MeCAACH][F(HF)3] (4). We also characterised a salt with [F(HF)4]- anions within the structure of [MeCAACH][F(HF)3.5] (5). Compounds with a lower content of HF were not accessible under vacuum conditions. MeCAAC(H)F (1) was selectively prepared by abstraction of HF from 3 with CsF or KF, while [MeCAACH][F(HF)] (2) was prepared by mixing 3 and 1 in a 1 : 1 ratio. Compound 2 proved to be quite unstable as it tends to disproportionate into 1 and 3. This observation triggered our computational study, in which the structural relationships between CAAC-based fluoropyrrolidines and dihydropyrrolium fluorides were investigated using different DFT methods. The study showed that the results were very sensitive to the computational method used. For a correct description, the quality of the triple-ζ basis set was crucial. Surprisingly, the isodesmic reaction of [MeCAACH][F] + [MeCAACH][F(HF)2] → [MeCAACH][F(HF)] + [MeCAACH][F(HF)] did not confirm the low thermodynamic stability of 2. Furthermore, the use of 3 as a nucleophilic fluorinating reagent was tested on a range of organic substrates, as it is the most stable compound in this series. It was found to have the potential to fluorinate benzyl bromides, 1- and 2-alkyl bromides, silanes and sulfonyls with good to excellent yields of the target fluorides.
Collapse
Affiliation(s)
- Evelin Gruden
- Department of Inorganic Chemistry and Technology, "Jožef Stefan" Institute, Jamova cesta 39, Ljubljana, Slovenia.
| | - Griša Grigorij Prinčič
- Department of Chemistry and Biochemistry, University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Jan Hočevar
- Department of Chemistry and Biochemistry, University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Jernej Iskra
- Department of Chemistry and Biochemistry, University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Jaroslav Kvíčala
- Department of Organic Chemistry, University of Chemistry and Technology, Technická 5, 166 28 Prague 6, Prague, Czech Republic
| | - Gašper Tavčar
- Department of Inorganic Chemistry and Technology, "Jožef Stefan" Institute, Jamova cesta 39, Ljubljana, Slovenia.
| |
Collapse
|
10
|
Sheldon DJ, Parr JM, Crimmin MR. Room Temperature Defluorination of Poly(tetrafluoroethylene) by a Magnesium Reagent. J Am Chem Soc 2023; 145:10486-10490. [PMID: 37154713 DOI: 10.1021/jacs.3c02526] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Perfluoroalkyl substances (PFAS) are pervasive in the environment. The largest single use material within the PFAS compound class is poly(tetrafluoroethylene) (PTFE), a robust and chemically resistant polymer. Despite their widespread use and serious concerns about their role as pollutants, methods for repurposing PFAS are rare. Here we show that a nucleophilic magnesium reagent reacts with PTFE at room temperature, generating a molecular magnesium fluoride which is easily separated from the surface-modified polymer. The fluoride in turn can be used to transfer the fluorine atoms to a small array of compounds. This proof-of-concept study demonstrates that the atomic fluorine content of PTFE can be harvested and reused in chemical synthesis.
Collapse
Affiliation(s)
- Daniel J Sheldon
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, Shepherds Bush, London, W12 0BZ, U.K
| | - Joseph M Parr
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, Shepherds Bush, London, W12 0BZ, U.K
| | - Mark R Crimmin
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, Shepherds Bush, London, W12 0BZ, U.K
| |
Collapse
|
11
|
Sander S, Cosgrove EJ, Müller R, Kaupp M, Braun T. Hydrogen Bonding in Platinum Indolylphosphine Polyfluorido and Fluorido Complexes. Chemistry 2023; 29:e202202768. [PMID: 36327144 PMCID: PMC10107128 DOI: 10.1002/chem.202202768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/06/2022]
Abstract
The reaction of the Pt complexes cis-[Pt(CH3 )(Ar){Ph2 P(Ind)}2 ] (Ind=2-(3-methyl)indolyl, Ar=4-tBuC6 H4 (1 a), 4-CH3 C6 H4 (1 b), Ph (1 c), 4-FC6 H4 (1 d), 4-ClC6 H4 (1 e), 4-CF3 C6 H4 (1 f)) with HF afforded the polyfluorido complexes trans-[Pt(F(HF)2 )(Ar){Ph2 P(Ind)}2 ] 2 a-f, which can be converted into the fluoride derivatives trans-[Pt(F)(Ar){Ph2 P(Ind)}2 ] (3 a-f) by treatment with CsF. The compounds 2 a-f and 3 a-f were characterised thoroughly by multinuclear NMR spectroscopy. The data reveal hydrogen bonding of the fluorido ligand with HF molecules and the indolylphosphine ligand. Polyfluorido complexes 2 a-f show larger |1 J(F,Pt)|, but lower 1 J(H,F) coupling constants when compared to the fluorido complexes 3 a-f. Decreasing 1 J(P,Pt) coupling constants in 2 a-f and 3 a-f suggest a cis influence of the aryl ligands in the following order: 4-tBuC6 H4 (a) ≈4-CH3 C6 H4 (b)
Collapse
Affiliation(s)
- Stefan Sander
- Department of ChemistryHumboldt-Universität zu BerlinBrook-Taylor-Str. 212489BerlinGermany
| | - Elizabeth J. Cosgrove
- Department of ChemistryHumboldt-Universität zu BerlinBrook-Taylor-Str. 212489BerlinGermany
| | - Robert Müller
- Institut für ChemieTechnische Universität Berlin, Theoretische Chemie/Quantenchemie, Sekr.C7Straße des 17. Juni 13510623BerlinGermany
| | - Martin Kaupp
- Institut für ChemieTechnische Universität Berlin, Theoretische Chemie/Quantenchemie, Sekr.C7Straße des 17. Juni 13510623BerlinGermany
| | - Thomas Braun
- Department of ChemistryHumboldt-Universität zu BerlinBrook-Taylor-Str. 212489BerlinGermany
| |
Collapse
|
12
|
Abstract
Fluorinated carbohydrates have found many applications in the glycosciences. Typically, these contain fluorination at a single position. There are not many applications involving polyfluorinated carbohydrates, here defined as monosaccharides in which more than one carbon has at least one fluorine substituent directly attached to it, with the notable exception of their use as mechanism-based inhibitors. The increasing attention to carbohydrate physical properties, especially around lipophilicity, has resulted in a surge of interest for this class of compounds. This review covers the considerable body of work toward the synthesis of polyfluorinated hexoses, pentoses, ketosugars, and aminosugars including sialic acids and nucleosides. An overview of the current state of the art of their glycosidation is also provided.
Collapse
Affiliation(s)
- Kler Huonnic
- School
of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, U.K.
| | - Bruno Linclau
- School
of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, U.K.
- Department
of Organic and Macromolecular Chemistry, Ghent University, Campus Sterre, Krijgslaan 281-S4, Ghent, 9000, Belgium
| |
Collapse
|
13
|
Divergent regioselective Heck-type reaction of unactivated alkenes and N-fluoro-sulfonamides. Nat Commun 2022; 13:6297. [PMID: 36272976 PMCID: PMC9588056 DOI: 10.1038/s41467-022-33996-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/10/2022] [Indexed: 12/02/2022] Open
Abstract
The control of regioselectivity in Heck-type reaction of unactivated alkenes represents a longstanding challenge due to several detachable hydrogens in β–H elimination step, which generally afford either one specific regioisomer or a mixture. Herein, a copper-catalyzed intermolecular Heck-type reaction of unactivated alkenes and N-fluoro-sulfonamides with divergent regioselectivities is reported. The complete switch of regioselectivity mainly depends on the choice of different additives. Employment of alcohol solvent gives access to vinyl products, while the addition of carboxylate leads to the formation of allylic products. In addition, exclusion of these two promoting factors results in β-lactams via a C–N reductive elimination. This protocol shows a broad substrate scope for both alkenes and structurally diverse N-fluoro-sulfonamides, producing the corresponding products with excellent regio- and stereoselectivities. Further control experiments and DFT calculations provide in-depth insights into the reaction mechanism, highlighting the distinct effect of the additives on a bidentate auxiliary-stabilized Cu(III) intermediate. The control of regioselectivity in Heck-type reactions of unactivated alkenes is challenging. Here, the authors realize regiodivergent Heck-type reactions of unactivated alkenes and N-fluoro-sulfonamides.
Collapse
|
14
|
Lee S, Chung W. Enantioselective halogenation via asymmetric
phase‐transfer
catalysis. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Sunggi Lee
- Department of Physics and Chemistry DGIST Daegu Republic of Korea
| | - Won‐jin Chung
- Department of Chemistry GIST Gwangju Republic of Korea
| |
Collapse
|
15
|
Galland N, Laurence C, Le Questel JY. The p KBHX Hydrogen-Bond Basicity Scale: From Molecules to Anions. J Org Chem 2022; 87:7264-7273. [PMID: 35580340 DOI: 10.1021/acs.joc.2c00469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The pKBHX (logarithm of complexation constant K of 4-fluorophenol with bases) hydrogen-bond basicity scale of neutral hydrogen-bond acceptors (HBAs) is extended to anionic HBAs. The scale is constructed for 26 anions through (i) the infrared measurement of K on NBu4+X- ion pairs in CCl4, (ii) the estimation of K from linear free energy relationships between measured K values and literature K values for various phenols in polar solvents, and (iii) the computation of K at the density functional theory level in CCl4. The scale extends on a 9.4 pK unit range from fluoride to tetraphenylborate. Considering a number of anions as organic functions substituted with unipolar substituents, their pKBHX values can be related to the Hammett-Taft substituent constants σ. Unipolar substituents (O- and S-) obey the same pKBHX versus σ relationships as dipolar ionic (N-N+R3) and dipolar (OH, CF3, NR2, or OR) ones for the nitrile, carbonyl, nitroso, nitro, sulfonyl, and phosphoryl functions. Like dipolar substituents, unipolar substituents at carbon and nitrogen operate by field-inductive and resonance effects, whereas substituents at sulfur and phosphorus operate only by the field-inductive effect.
Collapse
Affiliation(s)
- Nicolas Galland
- Nantes Université, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France
| | | | | |
Collapse
|
16
|
Alič B, Petrovčič J, Jelen J, Tavčar G, Iskra J. Renewable Reagent for Nucleophilic Fluorination. J Org Chem 2022; 87:5987-5993. [PMID: 35438994 PMCID: PMC9087198 DOI: 10.1021/acs.joc.2c00247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Indexed: 11/28/2022]
Abstract
Herein, we report a study on the reactivity of three 1,3-diarylimidazolium-based fluoride reagents, with a general formula of [IPrH][F(HF)n] (n = 0, 1, or 2), that tackle the challenges of limited solubility, hygroscopicity, instability, and laborious preparation procedures of nucleophilic fluoride reagents. Fluorination of 4-tert-butylbenzyl bromide reveals that trifluoride [IPrH][F(HF)2] is the most selective reagent. Microwave-assisted activation coupled with the addition of sterically hindered amine DIPEA or alkali metal fluorides increases the rate of fluorination with [IPrH][F(HF)2], making it an excellent reagent for the fluorination of various organic substrates. The scope of substrates includes benzyl bromides, iodides, chlorides, aliphatic halides, tosylates, mesylates, α-haloketones, a silyl chloride, acyl and sulfuryl chlorides, and a nitroarene. The exceptional stability of the air-stable and nonhygroscopic [IPrH][F(HF)2] reagent is illustrated by its convenient synthesis and detailed experimental regeneration protocol using hydrofluoric acid without organic solvents.
Collapse
Affiliation(s)
- Blaž Alič
- Department
of Inorganic Chemistry and Technology, Jožef
Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Jan Petrovčič
- Department
of Chemistry and Biochemistry, University
of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Jan Jelen
- Department
of Inorganic Chemistry and Technology, Jožef
Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Gašper Tavčar
- Department
of Inorganic Chemistry and Technology, Jožef
Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Jernej Iskra
- Department
of Chemistry and Biochemistry, University
of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, 1000 Ljubljana, Slovenia
| |
Collapse
|
17
|
Jiang L, Sarró P, Teo WJ, Llop J, Suero MG. Catalytic alkene skeletal modification for the construction of fluorinated tertiary stereocenters. Chem Sci 2022; 13:4327-4333. [PMID: 35509472 PMCID: PMC9006967 DOI: 10.1039/d2sc00968d] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/11/2022] [Indexed: 11/25/2022] Open
Abstract
Herein we describe the first construction of fluorinated tertiary stereocenters based on an alkene C(sp2)-C(sp2) bond cleavage. The new process, that takes advantage of a Rh-catalyzed carbyne transfer, relies on a branched-selective fluorination of tertiary allyl cations and is distinguished by a wide scope including natural products and drug molecule derivatives as well as adaptability to radiofluorination.
Collapse
Affiliation(s)
- Liyin Jiang
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology. Av. Països Catalans, 16 43007 Tarragona Spain
| | - Pau Sarró
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology. Av. Països Catalans, 16 43007 Tarragona Spain
- Departament de Química Analítica I Química Orgànica, Universitat Rovira I Virgili, C. Marcel·lí Domingo, 1 43007 Tarragona Spain
| | - Wei Jie Teo
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology. Av. Països Catalans, 16 43007 Tarragona Spain
| | - Jordi Llop
- CIC BiomaGUNE, Basque Research and Technology Alliance 20014 San Sebastián Guipuzcoa Spain
| | - Marcos G Suero
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology. Av. Països Catalans, 16 43007 Tarragona Spain
| |
Collapse
|
18
|
Pupo G, Gouverneur V. Hydrogen Bonding Phase-Transfer Catalysis with Alkali Metal Fluorides and Beyond. J Am Chem Soc 2022; 144:5200-5213. [PMID: 35294171 PMCID: PMC9084554 DOI: 10.1021/jacs.2c00190] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Phase-transfer catalysis (PTC) is one of the most powerful catalytic manifolds for asymmetric synthesis. Chiral cationic or anionic PTC strategies have enabled a variety of transformations, yet studies on the use of insoluble inorganic salts as nucleophiles for the synthesis of enantioenriched molecules have remained elusive. A long-standing challenge is the development of methods for asymmetric carbon-fluorine bond formation from readily available and cost-effective alkali metal fluorides. In this Perspective, we describe how H-bond donors can provide a solution through fluoride binding. We use examples, primarily from our own research, to discuss how hydrogen bonding interactions impact fluoride reactivity and the role of H-bond donors as phase-transfer catalysts to bring solid-phase alkali metal fluorides in solution. These studies led to hydrogen bonding phase-transfer catalysis (HB-PTC), a new concept in PTC, originally crafted for alkali metal fluorides but offering opportunities beyond enantioselective fluorination. Looking ahead, the unlimited options that one can consider to diversify the H-bond donor, the inorganic salt, and the electrophile, herald a new era in phase-transfer catalysis. Whether abundant inorganic salts of lattice energy significantly higher than those studied to date could be considered as nucleophiles, e.g., CaF2, remains an open question, with solutions that may be found through synergistic PTC catalysis or beyond PTC.
Collapse
Affiliation(s)
- Gabriele Pupo
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Véronique Gouverneur
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| |
Collapse
|
19
|
Barbasiewicz M, Tryniszewski M. Gram-Scale Preparation of Acyl Fluorides and Their Reactions with Hindered Nucleophiles. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1649-5460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractA series of acyl fluorides was synthesized at 100 mmol scale using phase-transfer-catalyzed halogen exchange between acyl chlorides and aqueous bifluoride solution. The convenient procedure consists of vigorous stirring of the biphasic mixture at room temperature, followed by extraction and distillation. Isolated acyl fluorides (usually 7–20 g) display excellent purity and can be transformed into sterically hindered amides and esters when treated with lithium amide bases and alkoxides under mild conditions.
Collapse
|
20
|
|
21
|
Li X, Yongcai W, Lijuan S, Zhang Y. Catalytic Halogen‐Exchange Fluorination of 4‐Chlorobenzaldehyde to 4‐Fluorobenzaldehyde, a Greener Process. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202100732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xiukai Li
- Institute of Bioengineering and Bioimaging 31 Biopolis Way The Nanos, Singapore 138669 Singapore
| | - Wu Yongcai
- Wanlong Chemicals 212332 Zhenjiang P.R.China
| | - Shi Lijuan
- Wanlong Chemicals 212332 Zhenjiang P.R.China
| | - Yugen Zhang
- Institute of Bioengineering and Bioimaging 31 Biopolis Way The Nanos, Singapore 138669 Singapore
| |
Collapse
|
22
|
SHIDA N. Electrosynthesis Governed by Electrolyte: Case Studies that Give Some Hints for the Rational Design of Electrolyte. ELECTROCHEMISTRY 2022. [DOI: 10.5796/electrochemistry.22-00074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Naoki SHIDA
- Graduate School of Science and Engineering, Yokohama National University
| |
Collapse
|
23
|
Kabi AK, Gujjarappa R, Roy A, Sahoo A, Musib D, Vodnala N, Singh V, Malakar CC. Transition-Metal-Free Transfer Hydrogenative Cascade Reaction of Nitroarenes with Amines/Alcohols: Redox-Economical Access to Benzimidazoles. J Org Chem 2021; 86:14597-14607. [PMID: 34662119 DOI: 10.1021/acs.joc.1c01450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
This report describes an efficient transition-metal-free process toward the transfer hydrogenative cascade reaction between nitroarenes and amines or alcohols. The developed redox-economical approach was realized using a combination of KOtBu and Et3SiH as reagents, which allows the synthesis of benzimidazole derivatives via σ-bond metathesis. The reaction conditions hold well over a wide range of substrates embedded with diverse functional groups to deliver the desired products in good to excellent yields. The mechanistic proposal has been depicted on the basis of a series of control experiments, mass spectroscopic evidence which is well supported by density functional theory (DFT) calculations with a feasible energy profile.
Collapse
Affiliation(s)
- Arup K Kabi
- Department of Chemistry, National Institute of Technology Manipur, Langol, Imphal - 795004, Manipur, India
| | - Raghuram Gujjarappa
- Department of Chemistry, National Institute of Technology Manipur, Langol, Imphal - 795004, Manipur, India
| | - Anupam Roy
- Department of Chemistry, National Institute of Technology Manipur, Langol, Imphal - 795004, Manipur, India
| | - Abhishek Sahoo
- Department of Chemistry, National Institute of Technology Manipur, Langol, Imphal - 795004, Manipur, India
| | - Dulal Musib
- Department of Chemistry, National Institute of Technology Manipur, Langol, Imphal - 795004, Manipur, India
| | - Nagaraju Vodnala
- Department of Chemistry, National Institute of Technology Manipur, Langol, Imphal - 795004, Manipur, India.,Department of Chemistry, Indian Institute of Technology Delhi, Multi-Storey Building, HauzKhas, New Delhi, 110016 India
| | - Virender Singh
- Department of Chemistry, Central University of Punjab, Bathinda, 151401 Punjab, India
| | - Chandi C Malakar
- Department of Chemistry, National Institute of Technology Manipur, Langol, Imphal - 795004, Manipur, India
| |
Collapse
|
24
|
Cheng X, Ma L. Enzymatic synthesis of fluorinated compounds. Appl Microbiol Biotechnol 2021; 105:8033-8058. [PMID: 34625820 PMCID: PMC8500828 DOI: 10.1007/s00253-021-11608-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 12/31/2022]
Abstract
Fluorinated compounds are widely used in the fields of molecular imaging, pharmaceuticals, and materials. Fluorinated natural products in nature are rare, and the introduction of fluorine atoms into organic compound molecules can give these compounds new functions and make them have better performance. Therefore, the synthesis of fluorides has attracted more and more attention from biologists and chemists. Even so, achieving selective fluorination is still a huge challenge under mild conditions. In this review, the research progress of enzymatic synthesis of fluorinated compounds is summarized since 2015, including cytochrome P450 enzymes, aldolases, fluoroacetyl coenzyme A thioesterases, lipases, transaminases, reductive aminases, purine nucleoside phosphorylases, polyketide synthases, fluoroacetate dehalogenases, tyrosine phenol-lyases, glycosidases, fluorinases, and multienzyme system. Of all enzyme-catalyzed synthesis methods, the direct formation of the C-F bond by fluorinase is the most effective and promising method. The structure and catalytic mechanism of fluorinase are introduced to understand fluorobiochemistry. Furthermore, the distribution, applications, and future development trends of fluorinated compounds are also outlined. Hopefully, this review will help researchers to understand the significance of enzymatic methods for the synthesis of fluorinated compounds and find or create excellent fluoride synthase in future research.Key points• Fluorinated compounds are distributed in plants and microorganisms, and are used in imaging, medicine, materials science.• Enzyme catalysis is essential for the synthesis of fluorinated compounds.• The loop structure of fluorinase is the key to forming the C-F bond.
Collapse
Affiliation(s)
- Xinkuan Cheng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Laboratory of Metabolic Control Fermentation Technology, College of Biotechnology, Tianjin University of Science & Technology, No. 29, Thirteenth Street, Binhai New District, Tianjin, 300457, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Laboratory of Metabolic Control Fermentation Technology, College of Biotechnology, Tianjin University of Science & Technology, No. 29, Thirteenth Street, Binhai New District, Tianjin, 300457, China.
| |
Collapse
|
25
|
Sander S, Müller R, Ahrens M, Kaupp M, Braun T. Platinum Indolylphosphine Fluorido and Polyfluorido Complexes: An Interplay between Cyclometallation, Fluoride Migration, and Hydrogen Bonding. Chemistry 2021; 27:14287-14298. [PMID: 34337795 PMCID: PMC8596594 DOI: 10.1002/chem.202102451] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Indexed: 11/06/2022]
Abstract
The reaction of [PtCl2 (COD)] (COD=1,5-cyclooctadiene) with diisopropyl-2-(3-methyl)indolylphosphine (iPr2 P(C9 H8 N)) led to the formation of the platinum(ii) chlorido complexes, cis-[PtCl2 {iPr2 P(C9 H8 N)}2 ] (1) and trans-[PtCl2 {iPr2 P(C9 H8 N)}2 ] (2). The cis-complex 1 reacted with NEt3 yielding the complex cis-[PtCl{κ2 -(P,N)-iPr2 P(C9 H7 N)}{iPr2 P(C9 H8 N)}] (3) bearing a cyclometalated κ2 -(P,N)-phosphine ligand, while the isomer 2 with a trans-configuration did not show any reactivity towards NEt3 . Treatment of 1 or 3 with (CH3 )4 NF (TMAF) resulted in the formation of the twofold cyclometalated complex cis-[Pt{κ2 -(P,N)-iPr2 P(C9 H7 N)}2 ] (4). The molecular structures of the complexes 1-4 were determined by single-crystal X-ray diffraction. The fluorido complex cis-[PtF{κ2 -(P,N)-iPr2 P(C9 H7 N)}{iPr2 P(C9 H8 N)}] ⋅ (HF)4 (5 ⋅ (HF)4 ) was formed when complex 4 was treated with different hydrogen fluoride sources. The Pt(ii) fluorido complex 5 ⋅ (HF)4 exhibits intramolecular hydrogen bonding in its outer coordination sphere between the fluorido ligand and the NH group of the 3-methylindolyl moiety. In contrast to its chlorido analogue 3, complex 5 ⋅ (HF)4 reacted with CO or the ynamide 1-(2-phenylethynyl)-2-pyrrolidinone to yield the complexes trans-[Pt(CO){κ2 -(P,C)-iPr2 P(C9 H7 NCO)}{iPr2 P(C9 H8 N)}][F(HF)4 ] (7) and a complex, which we suggest to be cis-[Pt{C=C(Ph)OCN(C3 H6 )}{κ2 -(P,N)-iPr2 P(C9 H7 N)}{iPr2 P(C9 H8 N)}][F(HF)4 ] (9), respectively. The structure of 9 was assigned on the basis of DFT calculations as well as NMR and IR data. Hydrogen bonding of HF and NH to fluoride was proven to be crucial for the existence of 7 and 9.
Collapse
Affiliation(s)
- Stefan Sander
- Department of ChemistryHumboldt-Universität zu BerlinBrook-Taylor-Str. 212489BerlinGermany
| | - Robert Müller
- Institut für ChemieTechnische Universität Berlin, Theoretische Chemie/Quantenchemie, Sekr.C7Straße des 17. Juni 13510623BerlinGermany
| | - Mike Ahrens
- Department of ChemistryHumboldt-Universität zu BerlinBrook-Taylor-Str. 212489BerlinGermany
| | - Martin Kaupp
- Institut für ChemieTechnische Universität Berlin, Theoretische Chemie/Quantenchemie, Sekr.C7Straße des 17. Juni 13510623BerlinGermany
| | - Thomas Braun
- Department of ChemistryHumboldt-Universität zu BerlinBrook-Taylor-Str. 212489BerlinGermany
| |
Collapse
|
26
|
Ajenjo J, Destro G, Cornelissen B, Gouverneur V. Closing the gap between 19F and 18F chemistry. EJNMMI Radiopharm Chem 2021; 6:33. [PMID: 34564781 PMCID: PMC8464544 DOI: 10.1186/s41181-021-00143-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/03/2021] [Indexed: 11/10/2022] Open
Abstract
Positron emission tomography (PET) has become an invaluable tool for drug discovery and diagnosis. The positron-emitting radionuclide fluorine-18 is frequently used in PET radiopharmaceuticals due to its advantageous characteristics; hence, methods streamlining access to 18F-labelled radiotracers can make a direct impact in medicine. For many years, access to 18F-labelled radiotracers was limited by the paucity of methodologies available, and the poor diversity of precursors amenable to 18F-incorporation. During the last two decades, 18F-radiochemistry has progressed at a fast pace with the appearance of numerous methodologies for late-stage 18F-incorporation onto complex molecules from a range of readily available precursors including those that do not require pre-functionalisation. Key to these advances is the inclusion of new activation modes to facilitate 18F-incorporation. Specifically, new advances in late-stage 19F-fluorination under transition metal catalysis, photoredox catalysis, and organocatalysis combined with the availability of novel 18F-labelled fluorination reagents have enabled the invention of novel processes for 18F-incorporation onto complex (bio)molecules. This review describes these major breakthroughs with a focus on methodologies for C-18F bond formation. This reinvigorated interest in 18F-radiochemistry that we have witnessed in recent years has made a direct impact on 19F-chemistry with many laboratories refocusing their efforts on the development of methods using nucleophilic fluoride instead of fluorination reagents derived from molecular fluorine gas.
Collapse
Affiliation(s)
- Javier Ajenjo
- Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Gianluca Destro
- Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford, OX3 7DQ, UK
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Bart Cornelissen
- Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Véronique Gouverneur
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK.
| |
Collapse
|
27
|
Shoji T, Fukushima K, Menjo T, Yamada Y, Hanasaki T, Kikushima K, Takenaga N, Dohi T. Triflimide-Promoted Nucleophilic C-Arylation of Halopurines to Access N 7-Substituted Purine Biaryls. Chem Pharm Bull (Tokyo) 2021; 69:886-891. [PMID: 34148910 DOI: 10.1248/cpb.c21-00380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Functionalized nucleobases are utilized in a wide range of fields; therefore, the development of new synthesis methods is essential for their continued application. With respect to the C6-arylation of halopurines, which possess a substituent at the N7-position, only a small number of successful cases have been reported, which is predominately a result of large steric hinderance effects. Herein, we report efficient and metal-free C6-arylations and SNAr reactions of N7-substituted chloropurines in aromatic and heteroatom nucleophiles promoted by triflimide (Tf2NH) in fluoroalcohol.
Collapse
Affiliation(s)
| | - Kosuke Fukushima
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University
| | - Takayuki Menjo
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University
| | | | - Tomonori Hanasaki
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University
| | | | | | - Toshifumi Dohi
- College of Pharmaceutical Sciences, Ritsumeikan University
| |
Collapse
|
28
|
Chang Z, Huang J, Wang S, Chen G, Zhao H, Wang R, Zhao D. Copper catalyzed late-stage C(sp 3)-H functionalization of nitrogen heterocycles. Nat Commun 2021; 12:4342. [PMID: 34267229 PMCID: PMC8282657 DOI: 10.1038/s41467-021-24671-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 06/21/2021] [Indexed: 11/15/2022] Open
Abstract
Nitrogen heterocycle represents a ubiquitous skeleton in natural products and drugs. Late-stage C(sp3)-H bond functionalization of N-heterocycles with broad substrate scope remains a challenge and of particular significance to modern chemical synthesis and pharmaceutical chemistry. Here, we demonstrate copper-catalysed late-stage C(sp3)-H functionalizaion of N-heterocycles using commercially available catalysts under mild reaction conditions. We have investigated 8 types of N-heterocycles which are usually found as medicinally important skeletons. The scope and utility of this approach are demonstrated by late-stage C(sp3)-H modification of these heterocycles including a number of pharmaceuticals with a broad range of nucleophiles, e.g. methylation, arylation, azidination, mono-deuteration and glycoconjugation etc. Preliminary mechanistic studies reveal that the reaction undergoes a C-H fluorination process which is followed by a nucleophilic substitution.
Collapse
Affiliation(s)
- Zhe Chang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Jialin Huang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Si Wang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Geshuyi Chen
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Heng Zhao
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.
| | - Depeng Zhao
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
29
|
Britton R, Gouverneur V, Lin JH, Meanwell M, Ni C, Pupo G, Xiao JC, Hu J. Contemporary synthetic strategies in organofluorine chemistry. ACTA ACUST UNITED AC 2021. [DOI: 10.1038/s43586-021-00042-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
30
|
Maria Faisca Phillips A, Pombeiro AJL. Recent Developments in Enantioselective Organocatalytic Cascade Reactions for the Construction of Halogenated Ring Systems. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100364] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ana Maria Faisca Phillips
- Centro de Química Estrutural Instituto Superior Técnico Universidade de Lisboa Av. Rovisco Pais 1049-001 Lisboa Portugal
| | - Armando J. L. Pombeiro
- Centro de Química Estrutural Instituto Superior Técnico Universidade de Lisboa Av. Rovisco Pais 1049-001 Lisboa Portugal
- Рeoples' Friendship University of Russia RUDN University) 6 Miklukho-Maklaya Street Moscow 117198 Russian Federation
| |
Collapse
|
31
|
Morales-Colón MT, See YY, Lee SJ, Scott PJH, Bland DC, Sanford MS. Tetramethylammonium Fluoride Alcohol Adducts for S NAr Fluorination. Org Lett 2021; 23:4493-4498. [PMID: 34029110 DOI: 10.1021/acs.orglett.1c01490] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Nucleophilic aromatic fluorination (SNAr) is among the most common methods for the formation of C(sp2)-F bonds. Despite many recent advances, a long-standing limitation of these transformations is the requirement for rigorously dry, aprotic conditions to maintain the nucleophilicity of fluoride and suppress the generation of side products. This report addresses this challenge by leveraging tetramethylammonium fluoride alcohol adducts (Me4NF·ROH) as fluoride sources for SNAr fluorination. Through systematic tuning of the alcohol substituent (R), tetramethylammonium fluoride tert-amyl alcohol (Me4NF·t-AmylOH) was identified as an inexpensive, practical, and bench-stable reagent for SNAr fluorination under mild and convenient conditions (80 °C in DMSO, without the requirement for drying of reagents or solvent). A substrate scope of more than 50 (hetero) aryl halides and nitroarene electrophiles is demonstrated.
Collapse
Affiliation(s)
- María T Morales-Colón
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Yi Yang See
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - So Jeong Lee
- Department of Radiology, University of Michigan, 1301 Catherine, Ann Arbor, Michigan 48109, United States
| | - Peter J H Scott
- Department of Radiology, University of Michigan, 1301 Catherine, Ann Arbor, Michigan 48109, United States
| | - Douglas C Bland
- Process Sciences & Technology, Corteva Agriscience, 9330 Zionsville Road, Indianapolis, Indiana 46268, United States
| | - Melanie S Sanford
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
32
|
Mizuta S, Kitamura K, Kitagawa A, Yamaguchi T, Ishikawa T. Silver-Promoted Fluorination Reactions of α-Bromoamides. Chemistry 2021; 27:5930-5935. [PMID: 33274783 DOI: 10.1002/chem.202004769] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/03/2020] [Indexed: 01/18/2023]
Abstract
Silver-promoted C-F bond formation in α-bromoamides by using AgF under mild conditions is reported. This simple method enables access to tertiary, secondary, and primary alkyl fluorides involving biomolecular scaffolds. This transformation is applicable to primary and secondary amides and shows broad functional-group tolerance. Kinetics experiments revealed that the reaction rate increased in the order of 3°>2°>1° α-carbon atom. In addition, it was found that the acidic amide proton plays an important role in accelerating the reaction. Mechanistic studies suggested generation of an aziridinone intermediate that undergoes subsequent nucleophilic addition to form the C-F bond with stereospecificity (i.e., retention of configuration). The synthesis of sterically hindered alcohols and ethers by using AgI is also demonstrated. Examples of reactions of α-bromoamides with O nucleophiles are presented.
Collapse
Affiliation(s)
- Satoshi Mizuta
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo, Nagasaki, 852-8521, Japan
| | - Kanami Kitamura
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo, Nagasaki, 852-8521, Japan
| | - Ayako Kitagawa
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo, Nagasaki, 852-8521, Japan
| | - Tomoko Yamaguchi
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo, Nagasaki, 852-8521, Japan
| | - Takeshi Ishikawa
- Department of Chemistry, Biotechnology and Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima, 890-0065, Japan
| |
Collapse
|
33
|
Micro-solvation and counter ion effects on ionic reactions: Activation of potassium fluoride with 18-crown-6 and tert-butanol in aprotic solvents. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114211] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
34
|
Lainé D, Denavit V, Lessard O, Carrier L, Fecteau CÉ, Johnson PA, Giguère D. Fluorine effect in nucleophilic fluorination at C4 of 1,6-anhydro-2,3-dideoxy-2,3-difluoro-β-D-hexopyranose. Beilstein J Org Chem 2020; 16:2880-2887. [PMID: 33299486 PMCID: PMC7705882 DOI: 10.3762/bjoc.16.237] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/08/2020] [Indexed: 12/22/2022] Open
Abstract
In this work, we have developed a simple synthetic approach using Et3N·3HF as an alternative to the DAST reagent. We controlled the stereochemistry of the nucleophilic fluorination at C4 of 1,6-anhydro-2,3-dideoxy-2,3-difluoro-4-O-triflate-β-ᴅ-talopyranose using Et3N·3HF or in situ generated Et3N·1HF. The influence of the fluorine atom at C2 on reactivity at C4 could contribute to a new fluorine effect in nucleophilic substitution. Finally, with the continuous objective of synthesizing novel multi-vicinal fluorosugars, we prepared one difluorinated and one trifluorinated alditol analogue.
Collapse
Affiliation(s)
- Danny Lainé
- Département de chimie, Université Laval, 1045 av. De la Médecine, Québec City, Qc, G1V 0A6, Canada
| | - Vincent Denavit
- Département de chimie, Université Laval, 1045 av. De la Médecine, Québec City, Qc, G1V 0A6, Canada
| | - Olivier Lessard
- Département de chimie, Université Laval, 1045 av. De la Médecine, Québec City, Qc, G1V 0A6, Canada
| | - Laurie Carrier
- Département de chimie, Université Laval, 1045 av. De la Médecine, Québec City, Qc, G1V 0A6, Canada
| | - Charles-Émile Fecteau
- Département de chimie, Université Laval, 1045 av. De la Médecine, Québec City, Qc, G1V 0A6, Canada
| | - Paul A Johnson
- Département de chimie, Université Laval, 1045 av. De la Médecine, Québec City, Qc, G1V 0A6, Canada
| | - Denis Giguère
- Département de chimie, Université Laval, 1045 av. De la Médecine, Québec City, Qc, G1V 0A6, Canada
| |
Collapse
|
35
|
Silva SL, Valle MS, Pliego JR. Nucleophilic Fluorination with KF Catalyzed by 18-Crown-6 and Bulky Diols: A Theoretical and Experimental Study. J Org Chem 2020; 85:15457-15465. [PMID: 33227195 DOI: 10.1021/acs.joc.0c02229] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The activation of potassium fluoride for nucleophilic fluorination of alkyl halides is an important challenge because of the high lattice energy of this salt and its low solubility in many polar aprotic solvents. Crown ethers have been used for increasing the solubilization of KF during several decades. Nevertheless, these macrocycles are not enough to produce a high reaction rate. In this work, theoretical methods were used for designing a synergic combination of bulky diols with crown ethers able to accelerate this kind of reaction. The calculations have predicted that the bulky diol 1,4-Bis(2-hydroxy-2-propyl)benzene, which has distant hydroxyl groups, is able to catalyze nucleophilic fluorination in combination with 18-crown-6 via two hydrogen bonds to the SN2 transition state. Experimental studies following the theoretical predictions have confirmed the catalytic effect and the estimated kinetic data point out that the bulky diol at 1 mol L-1 in combination with 18-crown-6 is able to produce an 18-fold increase in the reaction rate in relation to crown ether catalysis only. The reaction produces 46% yield of fluorination after 24 h at moderate temperature of 82 °C, with minimal formation of the side elimination product. Thus, this work presents an improved method for fluorination with KF salt.
Collapse
Affiliation(s)
- Samuel L Silva
- Departamento de Ciências Naturais, Universidade Federal de Säo Joäo del-Rei, Säo Joäo del-Rei, 36301-160 MG, Brazil
| | - Marcelo S Valle
- Departamento de Ciências Naturais, Universidade Federal de Säo Joäo del-Rei, Säo Joäo del-Rei, 36301-160 MG, Brazil
| | - Josefredo R Pliego
- Departamento de Ciências Naturais, Universidade Federal de Säo Joäo del-Rei, Säo Joäo del-Rei, 36301-160 MG, Brazil
| |
Collapse
|
36
|
Song HX, Tian ZY, Xiao JC, Zhang CP. Tertiary-Amine-Initiated Synthesis of Acyl Fluorides from Carboxylic Acids and CF 3 SO 2 OCF 3. Chemistry 2020; 26:16261-16265. [PMID: 32954583 DOI: 10.1002/chem.202003756] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/16/2020] [Indexed: 01/18/2023]
Abstract
A convenient method for deoxyfluorination of aromatic and aliphatic carboxylic acids with CF3 SO2 OCF3 in the presence of a suitable base at room temperature has been developed. The reaction allows a straightforward access to a variety of acyl fluorides and proves that CF3 SO2 OCF3 is an effective deoxyfluorination reagent for carboxylic acids. The method features simplicity, expeditiousness, high efficiency, ease of handling, good functional group tolerance, a wide range of substrates, excellent yields of products, compatibility of many amine initiators, use of environmentally friendly reagents, and effortless removal of byproducts. This reaction represents the first utilization of trifluoromethyl trifluoromethanesulfonate as a fluorination reagent.
Collapse
Affiliation(s)
- Hai-Xia Song
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan, 430070, P. R. China
| | - Ze-Yu Tian
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan, 430070, P. R. China
| | - Ji-Chang Xiao
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Cheng-Pan Zhang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan, 430070, P. R. China
| |
Collapse
|
37
|
Ibba F, Pupo G, Thompson AL, Brown JM, Claridge TDW, Gouverneur V. Impact of Multiple Hydrogen Bonds with Fluoride on Catalysis: Insight from NMR Spectroscopy. J Am Chem Soc 2020; 142:19731-19744. [PMID: 33166450 PMCID: PMC7677927 DOI: 10.1021/jacs.0c09832] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
![]()
Hydrogen-bonding
interactions have been explored in catalysis,
enabling complex chemical reactions. Recently, enantioselective nucleophilic
fluorination with metal alkali fluoride has been accomplished with
BINAM-derived bisurea catalysts, presenting up to four NH hydrogen-bond
donors (HBDs) for fluoride. These catalysts bring insoluble CsF and
KF into solution, control fluoride nucleophilicity, and provide a
chiral microenvironment for enantioselective fluoride delivery to
the electrophile. These attributes encouraged a 1H/19F NMR study to gain information on hydrogen-bonding networks
with fluoride in solution, as well as how these arrangements impact
the efficiency of catalytic nucleophilic fluorination. Herein, NMR
experiments enabled the determination of the number and magnitude
of HB contacts to fluoride for thirteen bisurea catalysts. These data
supplemented by diagnostic coupling constants 1hJNH···F– give
insight into how multiple H bonds to fluoride influence reaction performance.
In dichloromethane (DCM-d2), nonalkylated
BINAM-derived bisurea catalyst engages two of its four NH groups in
hydrogen bonding with fluoride, an arrangement that allows effective
phase-transfer capability but low control over enantioselectivity
for fluoride delivery. The more efficient N-alkylated BINAM-derived
bisurea catalysts undergo urea isomerization upon fluoride binding
and form dynamically rigid trifurcated hydrogen-bonded fluoride complexes
that are structurally similar to their conformation in the solid state.
Insight into how the countercation influences fluoride complexation
is provided based on NMR data characterizing the species formed in
DCM-d2 when reacting a bisurea catalyst
with tetra-n-butylammonium fluoride (TBAF) or CsF.
Structure–activity analysis reveals that the three hydrogen-bond
contacts with fluoride are not equal in terms of their contribution
to catalyst efficacy, suggesting that tuning individual electronic
environment is a viable approach to control phase-transfer ability
and enantioselectivity.
Collapse
Affiliation(s)
- Francesco Ibba
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Gabriele Pupo
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Amber L Thompson
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - John M Brown
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Timothy D W Claridge
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Véronique Gouverneur
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| |
Collapse
|
38
|
Kabi AK, Gujjarappa R, Vodnala N, Kaldhi D, Tyagi U, Mukherjee K, Malakar CC. HFIP-mediated strategy towards β-oxo amides and subsequent Friedel-Craft type cyclization to 2‑quinolinones using recyclable catalyst. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152535] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
39
|
Gujjarappa R, Vodnala N, Reddy VG, Malakar CC. A Facile C‐H Insertion Strategy using Combination of HFIP and Isocyanides: Metal‐Free Access to Azole Derivatives. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Raghuram Gujjarappa
- Department of Chemistry National Institute of Technology Manipur, Langol Imphal 795004, Manipur India
| | - Nagaraju Vodnala
- Department of Chemistry National Institute of Technology Manipur, Langol Imphal 795004, Manipur India
| | - Velma Ganga Reddy
- Centre for Advanced Materials & Industrial Chemistry (CAMIC) School of Science RMIT University GPO Box 2476 Melbourne 3001 Australia
| | - Chandi C. Malakar
- Department of Chemistry National Institute of Technology Manipur, Langol Imphal 795004, Manipur India
| |
Collapse
|
40
|
Takahashi S, Umakoshi Y, Nakayama K, Okada Y, Zhdankin VV, Yoshimura A, Saito A. Fluorocyclization of
N
‐Propargyl Carboxamides by λ
3
‐Iodane Catalysts with Coordinating Substituents. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000381] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shunsuke Takahashi
- Division of Applied Chemistry, Institute of EngineeringTokyo University of Agriculture and Technology, Koganei Tokyo 184-8588 Japan
| | - Yuki Umakoshi
- Division of Applied Chemistry, Institute of EngineeringTokyo University of Agriculture and Technology, Koganei Tokyo 184-8588 Japan
| | - Kaii Nakayama
- Division of Applied Chemistry, Institute of EngineeringTokyo University of Agriculture and Technology, Koganei Tokyo 184-8588 Japan
| | - Yohei Okada
- Division of Applied Chemistry, Institute of EngineeringTokyo University of Agriculture and Technology, Koganei Tokyo 184-8588 Japan
| | - Viktor V. Zhdankin
- Department of Chemistry and BiochemistryUniversity of Minnesota Duluth MN 55812 USA
| | - Akira Yoshimura
- Department of Chemistry and BiochemistryUniversity of Minnesota Duluth MN 55812 USA
| | - Akio Saito
- Division of Applied Chemistry, Institute of EngineeringTokyo University of Agriculture and Technology, Koganei Tokyo 184-8588 Japan
| |
Collapse
|
41
|
Webb EW, Park JB, Cole EL, Donnelly DJ, Bonacorsi SJ, Ewing WR, Doyle AG. Nucleophilic (Radio)Fluorination of Redox-Active Esters via Radical-Polar Crossover Enabled by Photoredox Catalysis. J Am Chem Soc 2020; 142:9493-9500. [DOI: 10.1021/jacs.0c03125] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Eric W. Webb
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - John B. Park
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Erin L. Cole
- Discovery Chemistry Platforms, PET Radiochemical Synthesis, Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - David J. Donnelly
- Discovery Chemistry Platforms, PET Radiochemical Synthesis, Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Samuel J. Bonacorsi
- Discovery Chemistry Platforms, PET Radiochemical Synthesis, Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - William R. Ewing
- Discovery Chemistry, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
| | - Abigail G. Doyle
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
42
|
Caron S. Where Does the Fluorine Come From? A Review on the Challenges Associated with the Synthesis of Organofluorine Compounds. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00030] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Stéphane Caron
- Chemical Research & Development, Pfizer Worldwide Research & Development, MS 8220-2432, Eastern Point Rd, Groton, Connecticut 06340, United States
| |
Collapse
|
43
|
Gujjarappa R, Vodnala N, Putta V, Ganga Reddy V, Malakar CC. Conversion of alkynes into 1,2-diketones using HFIP as sacrificial hydrogen donor and DMSO as dihydroxylating agent. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2019.151588] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
44
|
Tsutsumi R. Catalytic Asymmetric Fluorination Using CsF Sparingly Soluble in Organic Solvent. J SYN ORG CHEM JPN 2020. [DOI: 10.5059/yukigoseikyokaishi.78.158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
45
|
Pliego JR. Free Energy Profile of a Model Palladium Catalyzed Fluorination of Aryl Bromide with Cesium Fluoride. J Phys Chem A 2019; 123:9850-9856. [DOI: 10.1021/acs.jpca.9b08988] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Josefredo R. Pliego
- Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, São João del-Rei, 36301-160 MG, Brazil
| |
Collapse
|
46
|
Phae-nok S, Pohmakotr M, Kuhakarn C, Reutrakul V, Soorukram D. Site-Specific Synthesis of β-Fluorinated γ-Butyrolactams via Decarboxylative Fluorination of β-Carboxyl-γ-Butyrolactams. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900685] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Supasorn Phae-nok
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC); Faculty of Science; Mahidol University; Rama VI Road 10400 Bangkok Thailand
| | - Manat Pohmakotr
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC); Faculty of Science; Mahidol University; Rama VI Road 10400 Bangkok Thailand
| | - Chutima Kuhakarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC); Faculty of Science; Mahidol University; Rama VI Road 10400 Bangkok Thailand
| | - Vichai Reutrakul
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC); Faculty of Science; Mahidol University; Rama VI Road 10400 Bangkok Thailand
| | - Darunee Soorukram
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC); Faculty of Science; Mahidol University; Rama VI Road 10400 Bangkok Thailand
| |
Collapse
|
47
|
Wang J, Ogawa Y, Shibata N. Activation of Saturated Fluorocarbons to Synthesize Spirobiindanes, Monofluoroalkenes, and Indane Derivatives. iScience 2019; 17:132-143. [PMID: 31276957 PMCID: PMC6612000 DOI: 10.1016/j.isci.2019.06.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 06/03/2019] [Accepted: 06/12/2019] [Indexed: 12/15/2022] Open
Abstract
Fluorinated organic compounds are produced in abundance by the pharmaceutical and agrochemical industry, making such compounds attractive as building blocks for further functionalization. Unfortunately, activation of C(sp3)-F bond in saturated fluorocarbons, especially for aliphatic gem-difluoroalkanes, remains challenging. Here we describe the selective activation of inert C(sp3)-F bonds catalyzed by B(C6F5)3. In hexafluoro-2-propanol (HFIP), chemically robust aliphatic gem-difluorides are converted in high yields to the corresponding substituted 2,2′,3,3′-tetrahydro-1,1′-spirobiindenes via a B(C6F5)3-catalyzed intramolecular cascade Friedel-Crafts cyclization, not requiring a silicon-based trapping reagent. However, in the absence of a hydrogen-bonding donor solvent such as HFIP, the aliphatic gem-difluorides preferentially engage in a defluorination/elimination process that provides monofluorinated alkenes in good yields. Furthermore, a series of substituted 1-alkyl-2,3-dihydro-1H-indenes was obtained in high yield from the B(C6F5)3-catalyzed defluorinative cyclization of aliphatic secondary monofluorides in HFIP. The protocol could inspire development of a new class of main-group Lewis acid-catalyzed C(sp3)-F bond activation in general unactivated fluorocarbons. C(sp3)-F bond activation in general unactivated fluorocarbons The activation of C(sp3)-F bonds in aliphatic gem-difluoroalkanes The selective activation of inert C(sp3)-F bonds catalyzed by B(C6F5)3 An intramolecular cascade defluorinative Friedel-Crafts cyclization
Collapse
Affiliation(s)
- Jiandong Wang
- Department of Nanopharmaceutical Sciences and Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-5888, Japan
| | - Yuta Ogawa
- Department of Nanopharmaceutical Sciences and Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-5888, Japan
| | - Norio Shibata
- Department of Nanopharmaceutical Sciences and Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-5888, Japan; Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, 688 Yingbin Avenue, 321004 Jinhua, China.
| |
Collapse
|
48
|
Boer SA, Foyle EM, Thomas CM, White NG. Anion coordination chemistry using O-H groups. Chem Soc Rev 2019; 48:2596-2614. [PMID: 30860210 DOI: 10.1039/c8cs00828k] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This review covers significant advances in the use of O-H groups in anion coordination chemistry. The review focuses on the use of these groups in synthetic anion receptors, as well as more recent developments in transport, self-assembly and catalysis.
Collapse
Affiliation(s)
- Stephanie A Boer
- Research School of Chemistry, The Australian National University, Canberra, Australia.
| | | | | | | |
Collapse
|
49
|
Xie Y, Sun P, Li Y, Wang S, Ye M, Li Z. Ligand‐Promoted Iron(III)‐Catalyzed Hydrofluorination of Alkenes. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902607] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yongtao Xie
- State Key Laboratory and Institute of Elemento-Organic ChemistryCollege of ChemistryNankai University Tianjin 300071 China
| | - Peng‐Wei Sun
- State Key Laboratory and Institute of Elemento-Organic ChemistryCollege of ChemistryNankai University Tianjin 300071 China
| | - Yuxin Li
- State Key Laboratory and Institute of Elemento-Organic ChemistryCollege of ChemistryNankai University Tianjin 300071 China
| | - Siwei Wang
- State Key Laboratory and Institute of Elemento-Organic ChemistryCollege of ChemistryNankai University Tianjin 300071 China
| | - Mengchun Ye
- State Key Laboratory and Institute of Elemento-Organic ChemistryCollege of ChemistryNankai University Tianjin 300071 China
| | - Zhengming Li
- State Key Laboratory and Institute of Elemento-Organic ChemistryCollege of ChemistryNankai University Tianjin 300071 China
| |
Collapse
|
50
|
Xie Y, Sun PW, Li Y, Wang S, Ye M, Li Z. Ligand-Promoted Iron(III)-Catalyzed Hydrofluorination of Alkenes. Angew Chem Int Ed Engl 2019; 58:7097-7101. [PMID: 30891881 DOI: 10.1002/anie.201902607] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Indexed: 11/09/2022]
Abstract
An iron-catalyzed hydrofluorination of unactivated alkenes has been developed. The use of a multidentate ligand and the fluorination reagent N-fluorobenzenesulfonimide (NFSI) proved to be critical for this reaction, which afforded various fluorinated compounds in up to 94 % yield.
Collapse
Affiliation(s)
- Yongtao Xie
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Peng-Wei Sun
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yuxin Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Siwei Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Mengchun Ye
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhengming Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|