1
|
Eills J, Budker D, Cavagnero S, Chekmenev EY, Elliott SJ, Jannin S, Lesage A, Matysik J, Meersmann T, Prisner T, Reimer JA, Yang H, Koptyug IV. Spin Hyperpolarization in Modern Magnetic Resonance. Chem Rev 2023; 123:1417-1551. [PMID: 36701528 PMCID: PMC9951229 DOI: 10.1021/acs.chemrev.2c00534] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Indexed: 01/27/2023]
Abstract
Magnetic resonance techniques are successfully utilized in a broad range of scientific disciplines and in various practical applications, with medical magnetic resonance imaging being the most widely known example. Currently, both fundamental and applied magnetic resonance are enjoying a major boost owing to the rapidly developing field of spin hyperpolarization. Hyperpolarization techniques are able to enhance signal intensities in magnetic resonance by several orders of magnitude, and thus to largely overcome its major disadvantage of relatively low sensitivity. This provides new impetus for existing applications of magnetic resonance and opens the gates to exciting new possibilities. In this review, we provide a unified picture of the many methods and techniques that fall under the umbrella term "hyperpolarization" but are currently seldom perceived as integral parts of the same field. Specifically, before delving into the individual techniques, we provide a detailed analysis of the underlying principles of spin hyperpolarization. We attempt to uncover and classify the origins of hyperpolarization, to establish its sources and the specific mechanisms that enable the flow of polarization from a source to the target spins. We then give a more detailed analysis of individual hyperpolarization techniques: the mechanisms by which they work, fundamental and technical requirements, characteristic applications, unresolved issues, and possible future directions. We are seeing a continuous growth of activity in the field of spin hyperpolarization, and we expect the field to flourish as new and improved hyperpolarization techniques are implemented. Some key areas for development are in prolonging polarization lifetimes, making hyperpolarization techniques more generally applicable to chemical/biological systems, reducing the technical and equipment requirements, and creating more efficient excitation and detection schemes. We hope this review will facilitate the sharing of knowledge between subfields within the broad topic of hyperpolarization, to help overcome existing challenges in magnetic resonance and enable novel applications.
Collapse
Affiliation(s)
- James Eills
- Institute
for Bioengineering of Catalonia, Barcelona
Institute of Science and Technology, 08028Barcelona, Spain
| | - Dmitry Budker
- Johannes
Gutenberg-Universität Mainz, 55128Mainz, Germany
- Helmholtz-Institut,
GSI Helmholtzzentrum für Schwerionenforschung, 55128Mainz, Germany
- Department
of Physics, UC Berkeley, Berkeley, California94720, United States
| | - Silvia Cavagnero
- Department
of Chemistry, University of Wisconsin, Madison, Madison, Wisconsin53706, United States
| | - Eduard Y. Chekmenev
- Department
of Chemistry, Integrative Biosciences (IBio), Karmanos Cancer Institute
(KCI), Wayne State University, Detroit, Michigan48202, United States
- Russian
Academy of Sciences, Moscow119991, Russia
| | - Stuart J. Elliott
- Molecular
Sciences Research Hub, Imperial College
London, LondonW12 0BZ, United Kingdom
| | - Sami Jannin
- Centre
de RMN à Hauts Champs de Lyon, Université
de Lyon, CNRS, ENS Lyon, Université Lyon 1, 69100Villeurbanne, France
| | - Anne Lesage
- Centre
de RMN à Hauts Champs de Lyon, Université
de Lyon, CNRS, ENS Lyon, Université Lyon 1, 69100Villeurbanne, France
| | - Jörg Matysik
- Institut
für Analytische Chemie, Universität
Leipzig, Linnéstr. 3, 04103Leipzig, Germany
| | - Thomas Meersmann
- Sir
Peter Mansfield Imaging Centre, University Park, School of Medicine, University of Nottingham, NottinghamNG7 2RD, United Kingdom
| | - Thomas Prisner
- Institute
of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic
Resonance, Goethe University Frankfurt, , 60438Frankfurt
am Main, Germany
| | - Jeffrey A. Reimer
- Department
of Chemical and Biomolecular Engineering, UC Berkeley, and Materials Science Division, Lawrence Berkeley National
Laboratory, Berkeley, California94720, United States
| | - Hanming Yang
- Department
of Chemistry, University of Wisconsin, Madison, Madison, Wisconsin53706, United States
| | - Igor V. Koptyug
- International Tomography Center, Siberian
Branch of the Russian Academy
of Sciences, 630090Novosibirsk, Russia
| |
Collapse
|
2
|
Rayner PJ, Fekete M, Gater CA, Ahwal F, Turner N, Kennerley AJ, Duckett SB. Real-Time High-Sensitivity Reaction Monitoring of Important Nitrogen-Cycle Synthons by 15N Hyperpolarized Nuclear Magnetic Resonance. J Am Chem Soc 2022; 144:8756-8769. [PMID: 35508182 PMCID: PMC9121385 DOI: 10.1021/jacs.2c02619] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Here, we show how
signal amplification by reversible exchange hyperpolarization
of a range of 15N-containing synthons can be used to enable
studies of their reactivity by 15N nuclear magnetic resonance
(NO2– (28% polarization), ND3 (3%), PhCH2NH2 (5%), NaN3 (3%),
and NO3– (0.1%)). A range of iridium-based
spin-polarization transfer catalysts are used, which for NO2– work optimally as an amino-derived carbene-containing
complex with a DMAP-d2 coligand. We harness
long 15N spin-order lifetimes to probe in situ reactivity
out to 3 × T1. In the case of NO2– (T1 17.7 s
at 9.4 T), we monitor PhNH2 diazotization in acidic solution.
The resulting diazonium salt (15N-T1 38 s) forms within 30 s, and its subsequent reaction with
NaN3 leads to the detection of hyperpolarized PhN3 (T1 192 s) in a second step via the
formation of an identified cyclic pentazole intermediate. The role
of PhN3 and NaN3 in copper-free click chemistry
is exemplified for hyperpolarized triazole (T1 < 10 s) formation when they react with a strained alkyne.
We also demonstrate simple routes to hyperpolarized N2 in
addition to showing how utilization of 15N-polarized PhCH2NH2 enables the probing of amidation, sulfonamidation,
and imine formation. Hyperpolarized ND3 is used to probe
imine and ND4+ (T1 33.6 s) formation. Furthermore, for NO2–, we also demonstrate how the 15N-magnetic resonance imaging
monitoring of biphasic catalysis confirms the successful preparation
of an aqueous bolus of hyperpolarized 15NO2– in seconds with 8% polarization. Hence, we create
a versatile tool to probe organic transformations that has significant
relevance for the synthesis of future hyperpolarized pharmaceuticals.
Collapse
Affiliation(s)
- Peter J Rayner
- Centre for Hyperpolarisation in Magnetic Resonance, Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| | - Marianna Fekete
- Centre for Hyperpolarisation in Magnetic Resonance, Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| | - Callum A Gater
- Centre for Hyperpolarisation in Magnetic Resonance, Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| | - Fadi Ahwal
- Centre for Hyperpolarisation in Magnetic Resonance, Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| | - Norman Turner
- Department of Engineering and Technology, University of Huddersfield, Queensgate, Huddersfield, West Yorkshire HD1 3DH, U.K
| | - Aneurin J Kennerley
- Centre for Hyperpolarisation in Magnetic Resonance, Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| | - Simon B Duckett
- Centre for Hyperpolarisation in Magnetic Resonance, Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| |
Collapse
|
3
|
Roy SS, Iali W, Moustafa GAI, Levitt MH. Tuning of pH enables carbon-13 hyperpolarization of oxalates by SABRE. Chem Commun (Camb) 2022; 58:2291-2294. [PMID: 35080536 DOI: 10.1039/d1cc06973j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nuclear spin hyperpolarization transforms typically weak NMR responses into strong signals paving the way for low-gamma nuclei detection within practical time-frames. SABRE (Signal Amplification by Reversible Exchange) is a particularly popular hyperpolarization technique due to its simplicity but the pool of molecules it can polarize is limited. The recent advancement in the form of co-ligands has made SABRE applicable towards molecules with O-donor sites e.g. pyruvate, a key step towards its potential clinical application. Here we explore the SABRE hyperpolarization of another compound with an alpha-keto motif, namely oxalate. We show that hyperpolarization of oxalate may be achieved by adjusting the pH in the presence of sulfoxide co-ligands. The SABRE effect for oxalate in methanol solutions is most effective for the mono-protonated form, which is dominant in the solution around pH ∼2.8. The polarization levels become markedly lower at both higher and lower pH. Employing 50% enriched pH2 we achieve up to 0.33% net 13C polarization in mono-protonated oxalate. In an alternative procedure we show that the hyperpolarization effect in oxalates can also be realised by synthesizing an esterified version of it, without any substantive pH implications. Further, the procedures to create hyperpolarized singlet orders in such substrates are also investigated.
Collapse
Affiliation(s)
- Soumya S Roy
- School of Chemistry, University of Southampton, University Road, Southampton, SO17 1BJ, UK. .,CBR Division, Defence Science and Technology Laboratory (Dstl), Porton Down, Salisbury, SP4 0JQ, UK
| | - Wissam Iali
- Department of Chemistry, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia. .,Center for Refining & Advanced Chemicals, Dhahran 31261, Saudi Arabia
| | - Gamal A I Moustafa
- School of Chemistry, University of Southampton, University Road, Southampton, SO17 1BJ, UK.
| | - Malcolm H Levitt
- School of Chemistry, University of Southampton, University Road, Southampton, SO17 1BJ, UK.
| |
Collapse
|
4
|
Rayner PJ, Burns MJ, Fear EJ, Duckett SB. Steric and electronic effects on the 1 H hyperpolarisation of substituted pyridazines by signal amplification by reversible exchange. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2021; 59:1187-1198. [PMID: 33729592 PMCID: PMC8650576 DOI: 10.1002/mrc.5152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 05/05/2023]
Abstract
Utility of the pyridazine motif is growing in popularity as pharmaceutical and agrochemical agents. The detection and structural characterisation of such materials is therefore imperative for the successful development of new products. Signal amplification by reversible exchange (SABRE) offers a route to dramatically improve the sensitivity of magnetic resonance methods, and we apply it here to the rapid and cost-effective hyperpolarisation of substituted pyridazines. The 33 substrates investigated cover a range of steric and electronic properties and their capacity to perform highly effective SABRE is assessed. We find the method to be tolerant to a broad range of electron donating and withdrawing groups; however, good sensitivity is evident when steric bulk is added to the 3- and 6-positions of the pyridazine ring. We optimise the method by reference to a disubstituted ester that yields signal gains of >9000-fold at 9.4 T (>28% spin polarisation).
Collapse
Affiliation(s)
- Peter J. Rayner
- Centre for Hyperpolarisation in Magnetic Resonance, Department of ChemistryUniversity of YorkYorkUK
| | - Michael J. Burns
- Centre for Hyperpolarisation in Magnetic Resonance, Department of ChemistryUniversity of YorkYorkUK
| | - Elizabeth J. Fear
- Centre for Hyperpolarisation in Magnetic Resonance, Department of ChemistryUniversity of YorkYorkUK
| | - Simon B. Duckett
- Centre for Hyperpolarisation in Magnetic Resonance, Department of ChemistryUniversity of YorkYorkUK
| |
Collapse
|
5
|
Bengs C, Dagys L, Moustafa GAI, Whipham JW, Sabba M, Kiryutin AS, Ivanov KL, Levitt MH. Nuclear singlet relaxation by chemical exchange. J Chem Phys 2021; 155:124311. [PMID: 34598559 DOI: 10.1063/5.0066182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The population imbalance between nuclear singlet states and triplet states of strongly coupled spin-1/2 pairs, also known as nuclear singlet order, is well protected against several common relaxation mechanisms. We study the nuclear singlet relaxation of 13C pairs in aqueous solutions of 1,2-13C2 squarate over a range of pH values. The 13C singlet order is accessed by introducing 18O nuclei in order to break the chemical equivalence. The squarate dianion is in chemical equilibrium with hydrogen-squarate (SqH-) and squaric acid (SqH2) characterized by the dissociation constants pK1 = 1.5 and pK2 = 3.4. Surprisingly, we observe a striking increase in the singlet decay time constants TS when the pH of the solution exceeds ∼10, which is far above the acid-base equilibrium points. We derive general rate expressions for chemical-exchange-induced nuclear singlet relaxation and provide a qualitative explanation of the TS behavior of the squarate dianion. We identify a kinetic contribution to the singlet relaxation rate constant, which explicitly depends on kinetic rate constants. Qualitative agreement is achieved between the theory and the experimental data. This study shows that infrequent chemical events may have a strong effect on the relaxation of nuclear singlet order.
Collapse
Affiliation(s)
- Christian Bengs
- School of Chemistry, University of Southampton, Southampton, United Kingdom
| | - Laurynas Dagys
- School of Chemistry, University of Southampton, Southampton, United Kingdom
| | - Gamal A I Moustafa
- School of Chemistry, University of Southampton, Southampton, United Kingdom
| | - James W Whipham
- School of Chemistry, University of Southampton, Southampton, United Kingdom
| | - Mohamed Sabba
- School of Chemistry, University of Southampton, Southampton, United Kingdom
| | | | | | - Malcolm H Levitt
- School of Chemistry, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
6
|
Steverlynck J, Sitdikov R, Rueping M. The Deuterated "Magic Methyl" Group: A Guide to Site-Selective Trideuteromethyl Incorporation and Labeling by Using CD 3 Reagents. Chemistry 2021; 27:11751-11772. [PMID: 34076925 PMCID: PMC8457246 DOI: 10.1002/chem.202101179] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Indexed: 12/12/2022]
Abstract
In the field of medicinal chemistry, the precise installation of a trideuteromethyl group is gaining ever-increasing attention. Site-selective incorporation of the deuterated "magic methyl" group can provide profound pharmacological benefits and can be considered an important tool for drug optimization and development. This review provides a structured overview, according to trideuteromethylation reagent, of currently established methods for site-selective trideuteromethylation of carbon atoms. In addition to CD3 , the selective introduction of CD2 H and CDH2 groups is also considered. For all methods, the corresponding mechanism and scope are discussed whenever reported. As such, this review can be a starting point for synthetic chemists to further advance trideuteromethylation methodologies. At the same time, this review aims to be a guide for medicinal chemists, offering them the available C-CD3 formation strategies for the preparation of new or modified drugs.
Collapse
Affiliation(s)
- Joost Steverlynck
- Kaust Catalysis Center (KCC)King Abdullah University Science and Technology (KAUST)Thuwal23955-6900Saudi Arabia
| | - Ruzal Sitdikov
- Kaust Catalysis Center (KCC)King Abdullah University Science and Technology (KAUST)Thuwal23955-6900Saudi Arabia
| | - Magnus Rueping
- Kaust Catalysis Center (KCC)King Abdullah University Science and Technology (KAUST)Thuwal23955-6900Saudi Arabia
- Institute for Experimental Molecular ImagingRWTH Aachen UniversityForckenbeckstrasse 5552074Aachen
| |
Collapse
|
7
|
Birchall JR, Kabir MSH, Salnikov OG, Chukanov NV, Svyatova A, Kovtunov KV, Koptyug IV, Gelovani JG, Goodson BM, Pham W, Chekmenev EY. Quantifying the effects of quadrupolar sinks via 15N relaxation dynamics in metronidazoles hyperpolarized via SABRE-SHEATH. Chem Commun (Camb) 2020; 56:9098-9101. [PMID: 32661534 PMCID: PMC7441520 DOI: 10.1039/d0cc03994b] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
15N spin-lattice relaxation dynamics in metronidazole-15N3 and metronidazole-15N2 isotopologues are studied for rational design of 15N-enriched biomolecules for signal amplification by reversible exchange in microtesla fields. 15N relaxation dynamics mapping reveals the deleterious effects of interactions with the polarization transfer catalyst and a quadrupolar 14N nucleus within the spin-relayed 15N-15N network.
Collapse
Affiliation(s)
- Jonathan R Birchall
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Fekete M, Ahwal F, Duckett SB. Remarkable Levels of 15N Polarization Delivered through SABRE into Unlabeled Pyridine, Pyrazine, or Metronidazole Enable Single Scan NMR Quantification at the mM Level. J Phys Chem B 2020; 124:4573-4580. [PMID: 32383603 PMCID: PMC7277555 DOI: 10.1021/acs.jpcb.0c02583] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
While many drugs and metabolites contain nitrogen, harnessing their diagnostic 15N NMR signature for their characterization is underutilized because of inherent detection difficulties. Here, we demonstrate how precise ultralow field signal amplification by reversible exchange (±0.2 mG) in conjunction parahydrogen and an iridium precatalyst of the form IrCl(COD)(NHC) with the coligand d9-benzylamine allows the naturally abundant 15N NMR signatures of pyridine, pyrazine, metronidazole, and acetonitrile to be readily detected at 9.4 T in single NMR observations through >50% 15N polarization levels. These signals allow for rapid and precise reagent quantification via a response that varies linearly over the 2-70 mM concentration range.
Collapse
Affiliation(s)
- Marianna Fekete
- Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| | - Fadi Ahwal
- Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| | - Simon B Duckett
- Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| |
Collapse
|
9
|
Bengs C, Sabba M, Jerschow A, Levitt MH. Generalised magnetisation-to-singlet-order transfer in nuclear magnetic resonance. Phys Chem Chem Phys 2020; 22:9703-9712. [PMID: 32329499 DOI: 10.1039/d0cp00935k] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A variety of pulse sequences have been described for converting nuclear spin magnetisation into long-lived singlet order for nuclear spin-1/2 pairs. Existing sequences operate well in two extreme parameter regimes. The magnetisation-to-singlet (M2S) pulse sequence performs a robust conversion of nuclear spin magnetisation into singlet order in the near-equivalent limit, meaning that the difference in chemical shift frequencies of the two spins is much smaller than the spin-spin coupling. Other pulse sequences operate in the strong-inequivalence regime, where the shift difference is much larger than the spin-spin coupling. However both sets of pulse sequences fail in the intermediate regime, where the chemical shift difference and the spin-spin coupling are roughly equal in magnitude. We describe a generalised version of M2S, called gM2S, which achieves robust singlet order excitation for spin systems ranging from the near-equivalence limit well into the intermediate regime. This closes an important gap left by existing pulse sequences. The efficiency of the gM2S sequence is demonstrated numerically and experimentally for near-equivalent and intermediate-regime cases.
Collapse
Affiliation(s)
- Christian Bengs
- School of Chemistry, University of Southampton, University Road, SO17 1BJ, UK.
| | - Mohamed Sabba
- School of Chemistry, University of Southampton, University Road, SO17 1BJ, UK.
| | - Alexej Jerschow
- Department of Chemistry, New York University, New York, NY 10003, USA.
| | - Malcolm H Levitt
- School of Chemistry, University of Southampton, University Road, SO17 1BJ, UK.
| |
Collapse
|
10
|
Fekete M, Roy SS, Duckett SB. A role for low concentration reaction intermediates in the signal amplification by reversible exchange process revealed by theory and experiment. Phys Chem Chem Phys 2020; 22:5033-5037. [PMID: 32073077 DOI: 10.1039/c9cp06386b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A route to monitor the involvement of less abundant species during the catalytic transfer of hyperpolarisation from parahydrogen into a substrate is detailed. It involves probing how the degree of hyperpolarisation transfer catalysis is affected by the magnetic field experienced by the catalyst during this process as a function of temperature. The resulting data allow the ready differentiation of the roles played by hard to detect and highly reactive complexes, such as [Ir(H)2(NHC)(substrate)2(methanol)]Cl, from dominant species such as [Ir(H)2(NHC)(substrate)3]Cl. The difference in behaviour results from changes in the interligand spin-spin coupling network within the active SABRE catalysts.
Collapse
Affiliation(s)
- Marianna Fekete
- Centre for Hyperpolarisation in Magnetic Resonance, Department of Chemistry, University of York, Heslington, York, YO10 5NY, UK.
| | | | | |
Collapse
|
11
|
Roy SS, Rayner PJ, Burns MJ, Duckett SB. A simple and cost-efficient technique to generate hyperpolarized long-lived 15N- 15N nuclear spin order in a diazine by signal amplification by reversible exchange. J Chem Phys 2020; 152:014201. [PMID: 31914733 PMCID: PMC7351221 DOI: 10.1063/1.5132308] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Signal Amplification by Reversible Exchange (SABRE) is an inexpensive and simple hyperpolarization technique that is capable of boosting nuclear magnetic resonance sensitivity by several orders of magnitude. It utilizes the reversible binding of para-hydrogen, as hydride ligands, and a substrate of interest to a metal catalyst to allow for polarization transfer from para-hydrogen into substrate nuclear spins. While the resulting nuclear spin populations can be dramatically larger than those normally created, their lifetime sets a strict upper limit on the experimental timeframe. Consequently, short nuclear spin lifetimes are a challenge for hyperpolarized metabolic imaging. In this report, we demonstrate how both hyperpolarization and long nuclear spin lifetime can be simultaneously achieved in nitrogen-15 containing derivatives of pyridazine and phthalazine by SABRE. These substrates were chosen to reflect two distinct classes of 15N2-coupled species that differ according to their chemical symmetry and thereby achieve different nuclear spin lifetimes. The pyridazine derivative proves to exhibit a signal lifetime of ∼2.5 min and can be produced with a signal enhancement of ∼2700. In contrast, while the phthalazine derivative yields a superior 15 000-fold 15N signal enhancement at 11.7 T, it has a much shorter signal lifetime.
Collapse
Affiliation(s)
- Soumya S Roy
- Centre for Hyperpolarisation in Magnetic Resonance (CHyM), Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Peter J Rayner
- Centre for Hyperpolarisation in Magnetic Resonance (CHyM), Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Michael J Burns
- Centre for Hyperpolarisation in Magnetic Resonance (CHyM), Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Simon B Duckett
- Centre for Hyperpolarisation in Magnetic Resonance (CHyM), Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| |
Collapse
|
12
|
Barskiy DA, Knecht S, Yurkovskaya AV, Ivanov KL. SABRE: Chemical kinetics and spin dynamics of the formation of hyperpolarization. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2019; 114-115:33-70. [PMID: 31779885 DOI: 10.1016/j.pnmrs.2019.05.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 05/16/2019] [Indexed: 05/22/2023]
Abstract
In this review, we present the physical principles of the SABRE (Signal Amplification By Reversible Exchange) method. SABRE is a promising hyperpolarization technique that enhances NMR signals by transferring spin order from parahydrogen (an isomer of the H2 molecule that is in a singlet nuclear spin state) to a substrate that is to be polarized. Spin order transfer takes place in a transient organometallic complex which binds both parahydrogen and substrate molecules; after dissociation of the SABRE complex, free hyperpolarized substrate molecules are accumulated in solution. An advantage of this method is that the substrate is not modified chemically, and its polarization can be regenerated multiple times by bubbling fresh parahydrogen through the solution. Thus, SABRE requires two key ingredients: (i) polarization transfer and (ii) chemical exchange of both parahydrogen and substrate. While there are several excellent reviews on applications of SABRE, the background of the method is discussed less frequently. In this review we aim to explain in detail how SABRE hyperpolarization is formed, focusing on key aspects of both spin dynamics and chemical kinetics, as well as on the interplay between them. Hence, we first cover the known spin order transfer methods applicable to SABRE - cross-relaxation, coherent spin mixing at avoided level crossings, and coherence transfer - and discuss their practical implementation for obtaining SABRE polarization in the most efficient way. Second, we introduce and explain the principle of SABRE hyperpolarization techniques that operate at ultralow (<1 μT), at low (1μT to 0.1 T) and at high (>0.1 T) magnetic fields. Finally, chemical aspects of SABRE are discussed in detail, including chemical systems that are amenable to SABRE and the exchange processes that are required for polarization formation. A theoretical treatment of the spin dynamics and their interplay with chemical kinetics is also presented. This review outlines known aspects of SABRE and provides guidelines for the design of new SABRE experiments, with the goal of solving practical problems of enhancing weak NMR signals.
Collapse
Affiliation(s)
- Danila A Barskiy
- Department of Chemistry, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Stephan Knecht
- Eduard-Zintl Institute for Inorganic and Physical Chemistry, TU Darmstadt, Darmstadt 64287, Germany; Department of Radiology, Medical Physics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Alexandra V Yurkovskaya
- International Tomography Center, Siberian Branch of the Russian Academy of Science, Novosibirsk 630090, Russia; Novosibirsk State University, Novosibirsk 630090, Russia
| | - Konstantin L Ivanov
- International Tomography Center, Siberian Branch of the Russian Academy of Science, Novosibirsk 630090, Russia; Novosibirsk State University, Novosibirsk 630090, Russia.
| |
Collapse
|
13
|
Iali W, Roy SS, Tickner BJ, Ahwal F, Kennerley AJ, Duckett SB. Hyperpolarising Pyruvate through Signal Amplification by Reversible Exchange (SABRE). Angew Chem Int Ed Engl 2019; 58:10271-10275. [PMID: 31115970 PMCID: PMC7004201 DOI: 10.1002/anie.201905483] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Indexed: 11/10/2022]
Abstract
Hyperpolarisation methods that premagnetise agents such as pyruvate are currently receiving significant attention because they produce sensitivity gains that allow disease tracking and interrogation of cellular metabolism by magnetic resonance. Here, we communicate how signal amplification by reversible exchange (SABRE) can provide strong 13 C pyruvate signal enhancements in seconds through the formation of the novel polarisation transfer catalyst [Ir(H)2 (η2 -pyruvate)(DMSO)(IMes)]. By harnessing SABRE, strong signals for [1-13 C]- and [2-13 C]pyruvate in addition to a long-lived singlet state in the [1,2-13 C2 ] form are readily created; the latter can be observed five minutes after the initial hyperpolarisation step. We also demonstrate how this development may help with future studies of chemical reactivity.
Collapse
Affiliation(s)
- Wissam Iali
- Centre for Hyperpolarisation in Magnetic Resonance (CHyM)Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5NYUK
| | - Soumya S. Roy
- Centre for Hyperpolarisation in Magnetic Resonance (CHyM)Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5NYUK
- Present address: Department of Inorganic and Physical ChemistryIndian Institute of ScienceBangalore560012India
| | - Ben J. Tickner
- Centre for Hyperpolarisation in Magnetic Resonance (CHyM)Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5NYUK
| | - Fadi Ahwal
- Centre for Hyperpolarisation in Magnetic Resonance (CHyM)Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5NYUK
| | - Aneurin J. Kennerley
- Centre for Hyperpolarisation in Magnetic Resonance (CHyM)Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5NYUK
| | - Simon B. Duckett
- Centre for Hyperpolarisation in Magnetic Resonance (CHyM)Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5NYUK
| |
Collapse
|
14
|
Iali W, Roy SS, Tickner BJ, Ahwal F, Kennerley AJ, Duckett SB. Hyperpolarising Pyruvate through Signal Amplification by Reversible Exchange (SABRE). Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905483] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Wissam Iali
- Centre for Hyperpolarisation in Magnetic Resonance (CHyM)Department of ChemistryUniversity of York Heslington York YO10 5NY UK
| | - Soumya S. Roy
- Centre for Hyperpolarisation in Magnetic Resonance (CHyM)Department of ChemistryUniversity of York Heslington York YO10 5NY UK
- Present address: Department of Inorganic and Physical ChemistryIndian Institute of Science Bangalore 560012 India
| | - Ben J. Tickner
- Centre for Hyperpolarisation in Magnetic Resonance (CHyM)Department of ChemistryUniversity of York Heslington York YO10 5NY UK
| | - Fadi Ahwal
- Centre for Hyperpolarisation in Magnetic Resonance (CHyM)Department of ChemistryUniversity of York Heslington York YO10 5NY UK
| | - Aneurin J. Kennerley
- Centre for Hyperpolarisation in Magnetic Resonance (CHyM)Department of ChemistryUniversity of York Heslington York YO10 5NY UK
| | - Simon B. Duckett
- Centre for Hyperpolarisation in Magnetic Resonance (CHyM)Department of ChemistryUniversity of York Heslington York YO10 5NY UK
| |
Collapse
|
15
|
Tickner BJ, John RO, Roy SS, Hart SJ, Whitwood AC, Duckett SB. Using coligands to gain mechanistic insight into iridium complexes hyperpolarized with para-hydrogen. Chem Sci 2019; 10:5235-5245. [PMID: 31191878 PMCID: PMC6540910 DOI: 10.1039/c9sc00444k] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/15/2019] [Indexed: 12/11/2022] Open
Abstract
We report the formation of a series of novel [Ir(H)2(IMes)(α-13C2-carboxyimine)L] complexes in which the identity of the coligand L is varied. When examined with para-hydrogen, complexes in which L is benzylamine or phenethylamine show significant 1H hydride and 13C2 imine enhancements and may exist in 13C2 singlet spin order. Isotopic labeling techniques are used to double 13C2 enhancements (up to 750-fold) and singlet state lifetimes (up to 20 seconds) compared to those previously reported. Exchange spectroscopy and Density Functional Theory are used to investigate the stability and mechanism of rapid hydrogen exchange in these complexes, a process driven by dissociative coligand loss to form a key five coordinate intermediate. When L is pyridine or imidazole, competitive binding to such intermediates leads to novel complexes whose formation, kinetics, behaviour, structure, and hyperpolarization is investigated. The ratio of the observed PHIP enhancements were found to be affected not only by the hydrogen exchange rates but the identity of the coligands. This ligand reactivity is accompanied by decoherence of any 13C2 singlet order which can be preserved by isotopic labeling. Addition of a thiol coligand proved to yield a thiol oxidative addition product which is characterized by NMR and MS techniques. Significant 870-fold 13C enhancements of pyridine can be achieved using the Signal Amplification By Reversible Exchange (SABRE) process when α-carboxyimines are used to block active coordination sites. [Ir(H)2(IMes)(α-13C2-carboxyimine)L] therefore acts as unique sensors whose 1H hydride chemical shifts and corresponding hyperpolarization levels are indicative of the identity of a coligand and its binding strength.
Collapse
Affiliation(s)
- Ben J Tickner
- Center for Hyperpolarization in Magnetic Resonance (CHyM) , University of York , Heslington , York , YO10 5NY , UK .
| | - Richard O John
- Center for Hyperpolarization in Magnetic Resonance (CHyM) , University of York , Heslington , York , YO10 5NY , UK .
| | - Soumya S Roy
- Center for Hyperpolarization in Magnetic Resonance (CHyM) , University of York , Heslington , York , YO10 5NY , UK .
| | - Sam J Hart
- Department of Chemistry , University of York , Heslington , York , YO10 5DD , UK
| | - Adrian C Whitwood
- Department of Chemistry , University of York , Heslington , York , YO10 5DD , UK
| | - Simon B Duckett
- Center for Hyperpolarization in Magnetic Resonance (CHyM) , University of York , Heslington , York , YO10 5NY , UK .
| |
Collapse
|
16
|
Manoharan A, Rayner PJ, Fekete M, Iali W, Norcott P, Hugh Perry V, Duckett SB. Catalyst-Substrate Effects on Biocompatible SABRE Hyperpolarization. Chemphyschem 2018; 20:285-294. [DOI: 10.1002/cphc.201800915] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/02/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Anand Manoharan
- University of York; Department of Chemistry Heslington; York YO10 5DD UK
| | - Peter J. Rayner
- University of York; Department of Chemistry Heslington; York YO10 5DD UK
| | - Marianna Fekete
- University of York; Department of Chemistry Heslington; York YO10 5DD UK
| | - Wissam Iali
- University of York; Department of Chemistry Heslington; York YO10 5DD UK
| | - Philip Norcott
- University of York; Department of Chemistry Heslington; York YO10 5DD UK
| | - V. Hugh Perry
- School of Biological Sciences; University of Southampton; Southampton UK
| | - Simon B. Duckett
- University of York; Department of Chemistry Heslington; York YO10 5DD UK
| |
Collapse
|
17
|
|
18
|
Rayner PJ, Norcott P, Appleby KM, Iali W, John RO, Hart SJ, Whitwood AC, Duckett SB. Fine-tuning the efficiency of para-hydrogen-induced hyperpolarization by rational N-heterocyclic carbene design. Nat Commun 2018; 9:4251. [PMID: 30315170 PMCID: PMC6185983 DOI: 10.1038/s41467-018-06766-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 09/24/2018] [Indexed: 11/24/2022] Open
Abstract
Iridium N-heterocyclic carbene (NHC) complexes catalyse the para-hydrogen-induced hyperpolarization process, Signal Amplification by Reversible Exchange (SABRE). This process transfers the latent magnetism of para-hydrogen into a substrate, without changing its chemical identity, to dramatically improve its nuclear magnetic resonance (NMR) detectability. By synthesizing and examining over 30 NHC containing complexes, here we rationalize the key characteristics of efficient SABRE catalysis prior to using appropriate catalyst-substrate combinations to quantify the substrate's NMR detectability. These optimizations deliver polarizations of 63% for 1H nuclei in methyl 4,6-d2-nicotinate, 25% for 13C nuclei in a 13C2-diphenylpyridazine and 43% for the 15N nucleus of pyridine-15N. These high detectability levels compare favourably with the 0.0005% 1H value harnessed by a routine 1.5 T clinical MRI system. As signal strength scales with the square of the number of observations, these low cost innovations offer remarkable improvements in detectability threshold that offer routes to significantly reduce measurement time.
Collapse
Affiliation(s)
- Peter J Rayner
- Centre for Hyperpolarisation in Magnetic Resonance, Department of Chemistry, University of York, Heslington, YO10 5NY, UK
| | - Philip Norcott
- Centre for Hyperpolarisation in Magnetic Resonance, Department of Chemistry, University of York, Heslington, YO10 5NY, UK
| | - Kate M Appleby
- Centre for Hyperpolarisation in Magnetic Resonance, Department of Chemistry, University of York, Heslington, YO10 5NY, UK
| | - Wissam Iali
- Centre for Hyperpolarisation in Magnetic Resonance, Department of Chemistry, University of York, Heslington, YO10 5NY, UK
| | - Richard O John
- Centre for Hyperpolarisation in Magnetic Resonance, Department of Chemistry, University of York, Heslington, YO10 5NY, UK
| | - Sam J Hart
- Centre for Hyperpolarisation in Magnetic Resonance, Department of Chemistry, University of York, Heslington, YO10 5NY, UK
| | - Adrian C Whitwood
- Centre for Hyperpolarisation in Magnetic Resonance, Department of Chemistry, University of York, Heslington, YO10 5NY, UK
| | - Simon B Duckett
- Centre for Hyperpolarisation in Magnetic Resonance, Department of Chemistry, University of York, Heslington, YO10 5NY, UK.
| |
Collapse
|
19
|
Tickner BJ, Iali W, Roy SS, Whitwood AC, Duckett SB. Iridium α
-Carboxyimine Complexes Hyperpolarized with para
-Hydrogen Exist in Nuclear Singlet States before Conversion into Iridium Carbonates. Chemphyschem 2018; 20:241-245. [DOI: 10.1002/cphc.201800829] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Indexed: 01/31/2023]
Affiliation(s)
- Ben. J. Tickner
- Centre for Hyperpolarisation in Magnetic Resonance; University of York; Heslington U.K. YO10 5NY
| | - Wissam Iali
- Centre for Hyperpolarisation in Magnetic Resonance; University of York; Heslington U.K. YO10 5NY
| | - Soumya S. Roy
- Centre for Hyperpolarisation in Magnetic Resonance; University of York; Heslington U.K. YO10 5NY
| | - Adrian C. Whitwood
- Department of Chemistry; University of York; Heslington U.K. Kingdom YO10 5DD
| | - Simon B. Duckett
- Centre for Hyperpolarisation in Magnetic Resonance; University of York; Heslington U.K. YO10 5NY
| |
Collapse
|
20
|
Richardson PM, Parrott AJ, Semenova O, Nordon A, Duckett SB, Halse ME. SABRE hyperpolarization enables high-sensitivity 1H and 13C benchtop NMR spectroscopy. Analyst 2018; 143:3442-3450. [PMID: 29917031 PMCID: PMC6040279 DOI: 10.1039/c8an00596f] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 06/01/2018] [Indexed: 12/13/2022]
Abstract
Benchtop NMR spectrometers operating with low magnetic fields of 1-2 T at sub-ppm resolution show great promise as analytical platforms that can be used outside the traditional laboratory environment for industrial process monitoring. One current limitation that reduces the uptake of benchtop NMR is associated with the detection fields' reduced sensitivity. Here we demonstrate how para-hydrogen (p-H2) based signal amplification by reversible exchange (SABRE), a simple to achieve hyperpolarization technique, enhances agent detectability within the environment of a benchtop (1 T) NMR spectrometer so that informative 1H and 13C NMR spectra can be readily recorded for low-concentration analytes. SABRE-derived 1H NMR signal enhancements of up to 17 000-fold, corresponding to 1H polarization levels of P = 5.9%, were achieved for 26 mM pyridine in d4-methanol in a matter of seconds. Comparable enhancement levels can be achieved in both deuterated and protio solvents but now the SABRE-enhanced analyte signals dominate due to the comparatively weak thermally-polarized solvent response. The SABRE approach also enables the acquisition of 13C NMR spectra of analytes at natural isotopic abundance in a single scan as evidenced by hyperpolarized 13C NMR spectra of tens of millimolar concentrations of 4-methylpyridine. Now the associated signal enhancement factors are up to 45 500 fold (P = 4.0%) and achieved in just 15 s. Integration of an automated SABRE polarization system with the benchtop NMR spectrometer framework produces renewable and reproducible NMR signal enhancements that can be exploited for the collection of multi-dimensional NMR spectra, exemplified here by a SABRE-enhanced 2D COSY NMR spectrum.
Collapse
Affiliation(s)
- Peter M. Richardson
- Centre for Hyperpolarisation in Magnetic Resonance
, Department of Chemistry
, University of York
,
UK
.
;
| | - Andrew J. Parrott
- WestCHEM
, Department of Pure and Applied Chemistry and CPACT
, University of Strathclyde
,
Glasgow
, UK
| | - Olga Semenova
- Centre for Hyperpolarisation in Magnetic Resonance
, Department of Chemistry
, University of York
,
UK
.
;
| | - Alison Nordon
- WestCHEM
, Department of Pure and Applied Chemistry and CPACT
, University of Strathclyde
,
Glasgow
, UK
| | - Simon B. Duckett
- Centre for Hyperpolarisation in Magnetic Resonance
, Department of Chemistry
, University of York
,
UK
.
;
| | - Meghan E. Halse
- Centre for Hyperpolarisation in Magnetic Resonance
, Department of Chemistry
, University of York
,
UK
.
;
| |
Collapse
|
21
|
Norcott P, Burns MJ, Rayner PJ, Mewis RE, Duckett SB. Using 2 H labelling to improve the NMR detectability of pyridine and its derivatives by SABRE. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2018; 56:663-671. [PMID: 29274294 PMCID: PMC6001449 DOI: 10.1002/mrc.4703] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/07/2017] [Accepted: 12/10/2017] [Indexed: 05/08/2023]
Abstract
By introducing a range of 2 H labels into pyridine and the para-substituted agents, methyl isonicotinate and isonicotinamide, we significantly improve their NMR detectability in conjunction with the signal amplification by reversible exchange process. We describe how the rates of T1 relaxation for the remaining 1 H nuclei are increased and show how this leads to a concomitant increase in the level of 1 H and 13 C hyperpolarization that can ultimately be detected.
Collapse
Affiliation(s)
| | | | | | - Ryan E. Mewis
- Department of ChemistryUniversity of YorkYorkYO10 5DDUK
- Division of Chemistry and Environmental ScienceManchester Metropolitan UniversityManchesterGreater ManchesterUK
| | | |
Collapse
|
22
|
Kiryutin AS, Yurkovskaya AV, Zimmermann H, Vieth HM, Ivanov KL. Complete magnetic field dependence of SABRE-derived polarization. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2018; 56:651-662. [PMID: 29230864 DOI: 10.1002/mrc.4694] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/09/2017] [Accepted: 11/29/2017] [Indexed: 05/22/2023]
Abstract
Signal amplification by reversible exchange (SABRE) is a promising hyperpolarization technique, which makes use of spin-order transfer from parahydrogen (the H2 molecule in its singlet spin state) to a to-be-polarized substrate in a transient organometallic complex, termed the SABRE complex. In this work, we present an experimental method for measuring the magnetic field dependence of the SABRE effect over an ultrawide field range, namely, from 10 nT to 10 T. This approach gives a way to determine the complete magnetic field dependence of SABRE-derived polarization. Here, we focus on SABRE polarization of spin-1/2 hetero-nuclei, such as 13 C and 15 N and measure their polarization in the entire accessible field range; experimental studies are supported by calculations of polarization. Features of the field dependence of polarization can be attributed to level anticrossings in the spin system of the SABRE complex. Features at magnetic fields of the order of 100 nT-1 μT correspond to "strong coupling" of protons and hetero-nuclei, whereas features found in the mT field range stem from "strong coupling" of the proton system. Our approach gives a way to measuring and analyzing the complete SABRE field dependence, to probing NMR parameters of SABRE complexes and to optimizing the polarization value.
Collapse
Affiliation(s)
- Alexey S Kiryutin
- International Tomography Center SB RAS, Novosibirsk, 630090, Russia
- Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Alexandra V Yurkovskaya
- International Tomography Center SB RAS, Novosibirsk, 630090, Russia
- Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Herbert Zimmermann
- Max-Planck-Institut für Medizinische Forschung, Dept. of Biomolecular Mechanisms, Jahnstrasse 29, Heidelberg, 69028, Germany
| | - Hans-Martin Vieth
- International Tomography Center SB RAS, Novosibirsk, 630090, Russia
- Freie Universität Berlin, Berlin, 14195, Germany
| | - Konstantin L Ivanov
- International Tomography Center SB RAS, Novosibirsk, 630090, Russia
- Novosibirsk State University, Novosibirsk, 630090, Russia
| |
Collapse
|
23
|
Lehmkuhl S, Wiese M, Schubert L, Held M, Küppers M, Wessling M, Blümich B. Continuous hyperpolarization with parahydrogen in a membrane reactor. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 291:8-13. [PMID: 29625356 DOI: 10.1016/j.jmr.2018.03.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/29/2018] [Accepted: 03/30/2018] [Indexed: 05/22/2023]
Abstract
Hyperpolarization methods entail a high potential to boost the sensitivity of NMR. Even though the "Signal Amplification by Reversible Exchange" (SABRE) approach uses para-enriched hydrogen, p-H2, to repeatedly achieve high polarization levels on target molecules without altering their chemical structure, such studies are often limited to batch experiments in NMR tubes. Alternatively, this work introduces a continuous flow setup including a membrane reactor for the p-H2, supply and consecutive detection in a 1 T NMR spectrometer. Two SABRE substrates pyridine and nicotinamide were hyperpolarized, and more than 1000-fold signal enhancement was found. Our strategy combines low-field NMR spectrometry and a membrane flow reactor. This enables precise control of the experimental conditions such as liquid and gas pressures, and volume flow for ensuring repeatable maximum polarization.
Collapse
Affiliation(s)
- Sören Lehmkuhl
- Institute of Technical and Macromolecular Chemistry, Worringerweg 2, 52056 Aachen, Germany.
| | - Martin Wiese
- Chemical Process Engineering, RWTH Aachen University, Forckenbeckstrasse 51, 52056 Aachen, Germany
| | - Lukas Schubert
- Institute of Technical and Macromolecular Chemistry, Worringerweg 2, 52056 Aachen, Germany
| | - Mathias Held
- Chemical Process Engineering, RWTH Aachen University, Forckenbeckstrasse 51, 52056 Aachen, Germany
| | - Markus Küppers
- Institute of Technical and Macromolecular Chemistry, Worringerweg 2, 52056 Aachen, Germany
| | - Matthias Wessling
- Chemical Process Engineering, RWTH Aachen University, Forckenbeckstrasse 51, 52056 Aachen, Germany; DWI-Leibniz-Institute for Interactive Materials, Forckenbeckstrasse 50, 52056 Aachen, Germany
| | - Bernhard Blümich
- Institute of Technical and Macromolecular Chemistry, Worringerweg 2, 52056 Aachen, Germany
| |
Collapse
|
24
|
Rayner PJ, Duckett SB. Signal Amplification by Reversible Exchange (SABRE): From Discovery to Diagnosis. Angew Chem Int Ed Engl 2018; 57:6742-6753. [DOI: 10.1002/anie.201710406] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/12/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Peter J. Rayner
- Centre of Hyperpolarisation in Magnetic Resonance, Department of Chemistry; University of York; Heslington YO10 5DD UK
| | - Simon B. Duckett
- Centre of Hyperpolarisation in Magnetic Resonance, Department of Chemistry; University of York; Heslington YO10 5DD UK
| |
Collapse
|
25
|
Rayner PJ, Duckett SB. Signalverstärkung durch reversiblen Austausch (SABRE): von der Entdeckung zur diagnostischen Anwendung. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201710406] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Peter J. Rayner
- Centre of Hyperpolarisation in Magnetic Resonance, Department of Chemistry; University of York; Heslington YO10 5DD Großbritannien
| | - Simon B. Duckett
- Centre of Hyperpolarisation in Magnetic Resonance, Department of Chemistry; University of York; Heslington YO10 5DD Großbritannien
| |
Collapse
|
26
|
Iali W, Rayner PJ, Alshehri A, Holmes AJ, Ruddlesden AJ, Duckett SB. Direct and indirect hyperpolarisation of amines using parahydrogen. Chem Sci 2018; 9:3677-3684. [PMID: 29780498 PMCID: PMC5935062 DOI: 10.1039/c8sc00526e] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/06/2018] [Indexed: 01/13/2023] Open
Abstract
Nuclear Magnetic Resonance (NMR) and Magnetic Resonance Imaging (MRI) are two widely used techniques for the study of molecules and materials. Hyperpolarisation methods, such as Signal Amplification By Reversible Exchange (SABRE), turn typically weak magnetic resonance responses into strong signals. In this article we detail how it is possible to hyperpolarise the 1H, 13C and 15N nuclei of a range of amines. This involved showing how primary amines form stable but labile complexes of the type [Ir(H)2(IMes)(amine)3]Cl that allow parahydrogen to relay its latent polarisation into the amine. By optimising the temperature and parahydrogen pressure a 1000-fold per proton NH signal gain for deuterated benzylamine is achieved at 9.4 T. Additionally, we show that sterically hindered and electron poor amines that bind poorly to iridium can be hyperpolarised by either employing a co-ligand for complex stabilisation, or harnessing the fact that it is possible to exchange hyperpolarised protons between amines in a mixture, through the recently reported SABRE-RELAY method. These chemical refinements have significant potential to extend the classes of agent that can be hyperpolarised by readily accessible parahydrogen.
Collapse
Affiliation(s)
- Wissam Iali
- Centre for Hyperpolarisation in Magnetic Resonance (CHyM) , Department of Chemistry , University of York , Heslington , YO10 5DD , UK .
| | - Peter J Rayner
- Centre for Hyperpolarisation in Magnetic Resonance (CHyM) , Department of Chemistry , University of York , Heslington , YO10 5DD , UK .
| | - Adel Alshehri
- Centre for Hyperpolarisation in Magnetic Resonance (CHyM) , Department of Chemistry , University of York , Heslington , YO10 5DD , UK .
| | - A Jonathan Holmes
- Centre for Hyperpolarisation in Magnetic Resonance (CHyM) , Department of Chemistry , University of York , Heslington , YO10 5DD , UK .
| | - Amy J Ruddlesden
- Centre for Hyperpolarisation in Magnetic Resonance (CHyM) , Department of Chemistry , University of York , Heslington , YO10 5DD , UK .
| | - Simon B Duckett
- Centre for Hyperpolarisation in Magnetic Resonance (CHyM) , Department of Chemistry , University of York , Heslington , YO10 5DD , UK .
| |
Collapse
|
27
|
Shchepin RV, Jaigirdar L, Chekmenev EY. Spin-Lattice Relaxation of Hyperpolarized Metronidazole in Signal Amplification by Reversible Exchange in Micro-Tesla Fields. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2018; 122:4984-4996. [PMID: 29955244 PMCID: PMC6017983 DOI: 10.1021/acs.jpcc.8b00283] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Simultaneous reversible chemical exchange of parahydrogen and to-be-hyperpolarized substrate on metal centers enables spontaneous transfer of spin order from parahydrogen singlet to nuclear spins of the substrate. When performed at sub-micro-Tesla magnetic field, this technique of NMR Signal Amplification by Reversible Exchange in SHield Enables Alignment Transfer to Heteronuclei (SABRE-SHEATH). SABRE-SHEATH has been shown to hyperpolarize nitrogen-15 sites of a wide range of biologically interesting molecules to a high polarization level (P > 20%) in one minute. Here, we report on a systematic study of 1H, 13C and 15N spin-lattice relaxation (T1) of metronidazole-13C2-15N2 in SABRE-SHEATH hyperpolarization process. In micro-Tesla range, we find that all 1H, 13C and 15N spins studied share approximately the same T1 values (ca. 4 s at the conditions studied) due to mixing of their Zeeman levels, which is consistent with the model of relayed SABRE-SHEATH effect. These T1 values are significantly lower than those at higher magnetic (i.e. the Earth's magnetic field and above), which exceed 3 minutes in some cases. Moreover, these relatively short T1 values observed below 1 micro-Tesla limit the polarization build-up process of SABRE-SHEATH- thereby, limiting maximum attainable 15N polarization. The relatively short nature of T1 values observed below 1 micro-Tesla is primarily caused by intermolecular interactions with quadrupolar iridium centers or dihydride protons of the employed polarization transfer catalyst, whereas intramolecular spin-spin interactions with 14N quadrupolar centers have significantly smaller contribution. The presented experimental results and their analysis will be beneficial for more rational design of SABRE-SHEATH (i) polarization transfer catalyst, and (ii) hyperpolarized molecular probes in the context of biomedical imaging and other applications.
Collapse
Affiliation(s)
- Roman V. Shchepin
- Vanderbilt University Institute of Imaging Science (VUIIS), Department of Radiology, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee 37232-2310 United States
| | - Lamya Jaigirdar
- Vanderbilt University Institute of Imaging Science (VUIIS), Department of Radiology, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee 37232-2310 United States
- Vanderbilt University, School of Engineering, Nashville, Tennessee 37232 United States
| | - Eduard Y. Chekmenev
- Vanderbilt University Institute of Imaging Science (VUIIS), Department of Radiology, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee 37232-2310 United States
- Department of Biomedical Engineering, Vanderbilt University, Vanderbilt-Ingram Cancer Center (VICC), Nashville, Tennessee 37232-2310, United States
- Russian Academy of Sciences, Leninskiy Prospekt 14, Moscow, 119991, Russia
| |
Collapse
|
28
|
Roy S, Appleby KM, Fear EJ, Duckett SB. SABRE-Relay: A Versatile Route to Hyperpolarization. J Phys Chem Lett 2018; 9:1112-1117. [PMID: 29432020 PMCID: PMC5840861 DOI: 10.1021/acs.jpclett.7b03026] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 02/12/2018] [Indexed: 05/22/2023]
Abstract
Signal Amplification by Reversible Exchange (SABRE) is used to switch on the latent singlet spin order of para-hydrogen (p-H2) so that it can hyperpolarize a substrate (sub = nicotinamide, nicotinate, niacin, pyrimidine, and pyrazine). The substrate then reacts reversibly with [Pt(OTf)2(bis-diphenylphosphinopropane)] by displacing OTf- to form [Pt(OTf)(sub)(bis-diphenylphosphinopropane)]OTf. The 31P NMR signals of these metal complexes prove to be enhanced when the substrate possesses an accessible singlet state or long-lived Zeeman polarization. In the case of pyrazine, the corresponding 31P signal was 105 ± 8 times larger than expected, which equated to an 8 h reduction in total scan time for an equivalent signal-to-noise ratio under normal acquisition conditions. Hence, p-H2 derived spin order is successfully relayed into a second metal complex via a suitable polarization carrier (sub). When fully developed, we expect this route involving a second catalyst to successfully hyperpolarize many classes of substrates that are not amenable to the original SABRE method.
Collapse
|
29
|
Manoharan A, Rayner PJ, Iali W, Burns MJ, Perry VH, Duckett SB. Achieving Biocompatible SABRE: An in vitro Cytotoxicity Study. ChemMedChem 2018; 13:352-359. [PMID: 29232489 PMCID: PMC5838797 DOI: 10.1002/cmdc.201700725] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Indexed: 01/09/2023]
Abstract
Production of a biocompatible hyperpolarized bolus for signal amplification by reversible exchange (SABRE) could open the door to simple clinical diagnosis via magnetic resonance imaging. Essential to successful progression to preclinical/clinical applications is the determination of the toxicology profile of the SABRE reaction mixture. Herein, we exemplify the cytotoxicity of the SABRE approach using in vitro cell assays. We conclude that the main cause of the observed toxicity is due to the SABRE catalyst. We therefore illustrate two catalyst removal methods: one involving deactivation and ion-exchange chromatography, and the second using biphasic catalysis. These routes produce a bolus suitable for future in vivo study.
Collapse
Affiliation(s)
- Anand Manoharan
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - Peter J. Rayner
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - Wissam Iali
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - Michael J. Burns
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - V. Hugh Perry
- School of Biological SciencesUniversity of SouthamptonSouthamptonUK
| | - Simon B. Duckett
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| |
Collapse
|
30
|
Roy SS, Stevanato G, Rayner PJ, Duckett SB. Direct enhancement of nitrogen-15 targets at high-field by fast ADAPT-SABRE. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2017; 285:55-60. [PMID: 29102821 PMCID: PMC5720475 DOI: 10.1016/j.jmr.2017.10.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/13/2017] [Accepted: 10/14/2017] [Indexed: 05/21/2023]
Abstract
Signal Amplification by Reversible Exchange (SABRE) is an attractive nuclear spin hyperpolarization technique capable of huge sensitivity enhancement in nuclear magnetic resonance (NMR) detection. The resonance condition of SABRE hyperpolarization depends on coherent spin mixing, which can be achieved naturally at a low magnetic field. The optimum transfer field to spin-1/2 heteronuclei is technically demanding, as it requires field strengths weaker than the earth's magnetic field for efficient spin mixing. In this paper, we illustrate an approach to achieve strong 15N SABRE hyperpolarization at high magnetic field by a radio frequency (RF) driven coherent transfer mechanism based on alternate pulsing and delay to achieve polarization transfer. The presented scheme is found to be highly robust and much faster than existing related methods, producing ∼3 orders of magnitude 15N signal enhancement within 2 s of RF pulsing.
Collapse
Affiliation(s)
- Soumya S Roy
- Department of Chemistry, University of York, Heslington, YO10 5DD York, United Kingdom.
| | - Gabriele Stevanato
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland.
| | - Peter J Rayner
- Department of Chemistry, University of York, Heslington, YO10 5DD York, United Kingdom
| | - Simon B Duckett
- Department of Chemistry, University of York, Heslington, YO10 5DD York, United Kingdom.
| |
Collapse
|
31
|
Kovtunov KV, Kidd BE, Salnikov OG, Bales LB, Gemeinhardt ME, Gesiorski J, Shchepin RV, Chekmenev EY, Goodson BM, Koptyug IV. Imaging of Biomolecular NMR Signals Amplified by Reversible Exchange with Parahydrogen Inside an MRI Scanner. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2017; 121:25994-25999. [PMID: 30701013 PMCID: PMC6349396 DOI: 10.1021/acs.jpcc.7b10549] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The Signal Amplification by Reversible Exchange (SABRE) technique employs exchange with singlet-state parahydrogen to efficiently generate high levels of nuclear spin polarization. Spontaneous SABRE has been shown previously to be efficient in the milli-Tesla and micro-Tesla regimes. We have recently demonstrated that high-field SABRE is also possible, where proton sites of molecules that are able to reversibly coordinate to a metal center can be hyperpolarized directly within high-field magnets, potentially offering the convenience of in situ hyperpolarization-based spectroscopy and imaging without sample shuttling. Here, we show efficient polarization transfer from parahydrogen (para-H2) to the 15N atoms of imidazole-15N2 and nicotinamide-15N achieved via high-field SABRE (HF-SABRE). Spontaneous transfer of spin order from the para-H2 protons to 15N atoms at the high magnetic field of an MRI scanner allows one not only to record enhanced 15N NMR spectra of in situ hyperpolarized biomolecules, but also to perform imaging using conventional MRI sequences. 2D 15N MRI of high-field SABRE-hyperpolarized imidazole with spatial resolution of 0.3×0.3 mm2 at 9.4 T magnetic field and a high signal-to-noise ratio (SNR) of ~99 was demonstrated. We show that 1H MRI of in situ HF-SABRE hyperpolarized biomolecules (e.g. imidazole-15N2) is also feasible. Taken together, these results show that heteronuclear (15N) and 1H spectroscopic detection and imaging of high-field-SABRE-hyperpolarized molecules are promising tools for a number of emerging applications.
Collapse
Affiliation(s)
- Kirill V. Kovtunov
- International Tomography Center SB RAS, Novosibirsk, 630090, Russia
- Novosibirsk State University, Novosibirsk, 630090, Russia
- Corresponding Author, ,
| | - Bryce E. Kidd
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL 62901, USA
- Corresponding Author, ,
| | - Oleg G. Salnikov
- International Tomography Center SB RAS, Novosibirsk, 630090, Russia
- Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Liana B. Bales
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL 62901, USA
| | - Max E. Gemeinhardt
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL 62901, USA
| | - Jonathan Gesiorski
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL 62901, USA
| | - Roman V. Shchepin
- Vanderbilt Institute of Imaging Science (VUIIS), Department of Radiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Eduard Y. Chekmenev
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL 62901, USA
- Russian Academy of Sciences, Moscow, 119991, Russia
- Vanderbilt Institute of Imaging Science (VUIIS), Department of Radiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Boyd M. Goodson
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL 62901, USA
- Materials Technology Center, Southern Illinois University, Carbondale, IL 62901, USA
| | - Igor V. Koptyug
- International Tomography Center SB RAS, Novosibirsk, 630090, Russia
- Novosibirsk State University, Novosibirsk, 630090, Russia
| |
Collapse
|
32
|
Roy SS, Norcott P, Rayner PJ, Green GGR, Duckett SB. A Simple Route to Strong Carbon-13 NMR Signals Detectable for Several Minutes. Chemistry 2017; 23:10496-10500. [PMID: 28627764 PMCID: PMC5582603 DOI: 10.1002/chem.201702767] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Indexed: 01/14/2023]
Abstract
Nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) suffer from low sensitivity and limited nuclear spin memory lifetimes. Although hyperpolarization techniques increase sensitivity, there is also a desire to increase relaxation times to expand the range of applications addressable by these methods. Here, we demonstrate a route to create hyperpolarized magnetization in 13 C nuclear spin pairs that last much longer than normal lifetimes by storage in a singlet state. By combining molecular design and low-field storage with para-hydrogen derived hyperpolarization, we achieve more than three orders of signal amplification relative to equilibrium Zeeman polarization and an order of magnitude extension in state lifetime. These studies use a range of specifically synthesized pyridazine derivatives and dimethyl p-tolyl phenyl pyridazine is the most successful, achieving a lifetime of about 190 s in low-field, which leads to a 13 C-signal that is visible for 10 minutes.
Collapse
Affiliation(s)
- Soumya S. Roy
- Department of ChemistryUniversity of YorkHeslington, YorkYO10 5DDUK
| | - Philip Norcott
- Department of ChemistryUniversity of YorkHeslington, YorkYO10 5DDUK
| | - Peter J. Rayner
- Department of ChemistryUniversity of YorkHeslington, YorkYO10 5DDUK
| | - Gary G. R. Green
- York Neuroimaging CentreThe Biocentre, York Science Park Innovation Way, HeslingtonYorkYO10 5NYUK
| | - Simon B. Duckett
- Department of ChemistryUniversity of YorkHeslington, YorkYO10 5DDUK
| |
Collapse
|