1
|
Yamada M. Perspectives on push-pull chromophores derived from click-type [2 + 2] cycloaddition-retroelectrocyclization reactions of electron-rich alkynes and electron-deficient alkenes. Beilstein J Org Chem 2024; 20:125-154. [PMID: 38292046 PMCID: PMC10825803 DOI: 10.3762/bjoc.20.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/04/2024] [Indexed: 02/01/2024] Open
Abstract
Various push-pull chromophores can be synthesized in a single and atom-economical step through [2 + 2] cycloaddition-retroelectrocyclization (CA-RE) reactions involving diverse electron-rich alkynes and electron-deficient alkenes. In this review, a comprehensive investigation of the recent and noteworthy advancements in the research on push-pull chromophores prepared via the [2 + 2] CA-RE reaction is conducted. In particular, an overview of the physicochemical properties of the family of these compounds that have been investigated is provided to clarify their potential for future applications.
Collapse
Affiliation(s)
- Michio Yamada
- Department of Chemistry, Tokyo Gakugei University, Nukuikitamachi 4-1-1, Koganei, Tokyo 184-8501, Japan
| |
Collapse
|
2
|
Guragain M, Pinjari D, Misra R, D'Souza F. Zinc Tetrapyrrole Coordinated to Imidazole Functionalized Tetracyanobutadiene or Cyclohexa-2,5-diene-1,4-diylidene-expanded-tetracyanobutadiene Conjugates: Dark vs. Light-Induced Electron Transfer. Chemistry 2023; 29:e202302665. [PMID: 37704573 DOI: 10.1002/chem.202302665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/15/2023]
Abstract
Using the popular metal-ligand axial coordination self-assembly approach, donor-acceptor conjugates have been constructed using zinc tetrapyrroles (porphyrin (ZnP), phthalocyanine (ZnPc), and naphthalocyanine (ZnNc)) as electron donors and imidazole functionalized tetracyanobutadiene (Im-TCBD) and cyclohexa-2,5-diene-1,4-diylidene-expanded-tetracyanobutadiene (Im-DCNQ) as electron acceptors. The newly formed donor-acceptor conjugates were fully characterized by a suite of physicochemical methods, including absorption and emission, electrochemistry, and computational methods. The measured binding constants for the 1 : 1 complexes were in the order of 104 -105 M-1 in o-dichlorobenzene. Free-energy calculations and the energy level diagrams revealed the high exergonicity for the excited state electron transfer reactions. However, in the case of the ZnNc:Im-DCNQ complex, owing to the facile oxidation of ZnNc and facile reduction of Im-DCNQ, slow electron transfer was witnessed in the dark without the aid of light. Systematic transient pump-probe studies were performed to secure evidence of excited state charge separation and gather their kinetic parameters. The rate of charge separation was as high as 1011 s-1 suggesting efficient processes. These findings show that the present self-assembly approach could be utilized to build donor-acceptor constructs with powerful electron acceptors, TCBD and DCNQ, to witness ground and excited state charge transfer, fundamental events required in energy harvesting, and building optoelectronic devices.
Collapse
Affiliation(s)
- Manan Guragain
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, TX 76203-5017, USA
| | - Dilip Pinjari
- Department of Chemistry, Indian Institute of Technology, Indore, 453552, India
| | - Rajneesh Misra
- Department of Chemistry, Indian Institute of Technology, Indore, 453552, India
| | - Francis D'Souza
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, TX 76203-5017, USA
| |
Collapse
|
3
|
Tsuchiya T, Higashibeppu M, Mazaki Y. Synthesis and Properties of Twisted and Helical Azulene Oligomers and Azulene-Based Polycyclic Hydrocarbons. ChemistryOpen 2023; 12:e202100298. [PMID: 37195257 PMCID: PMC10661833 DOI: 10.1002/open.202100298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/27/2023] [Indexed: 05/18/2023] Open
Abstract
The construction of 1,2-position-connected azulene oligomers was achieved. In the crystal packing structure of the terazulene, two molecules of (Ra )- and (Sa )-configurations formed a pair. Variable temperature NMR measurements and theoretical calculations of the quaterazulene suggest that the helical and syn-type structure with terminal azulene overlap is more stable. Two kinds of fused terazulenes (1,2''-closed and 1,8''-closed) were also synthesized by intramolecular Pd-catalyzed C-H/C-Br arylation of the terazulene moieties. X-ray structure analysis of 1,2''-closed terazulene revealed a planar structure, while an analysis of 1,8''-closed terazulene performed on a C60 co-crystal revealed a curved structure forming a 1 : 1 complex covering the co-crystal. Nucleus-independent chemical shift (NICS) calculations carried out for the central seven-membered ring of 1,8''-closed terazulene showed a positive value, suggesting anti-aromatic properties.
Collapse
Affiliation(s)
- Takahiro Tsuchiya
- Department of ChemistryKitasato University1-15-1 Kitasato, Minami-ku SagamiharaKanagawa252-0373Japan
| | - Makoto Higashibeppu
- Department of ChemistryKitasato University1-15-1 Kitasato, Minami-ku SagamiharaKanagawa252-0373Japan
| | - Yasuhiro Mazaki
- Department of ChemistryKitasato University1-15-1 Kitasato, Minami-ku SagamiharaKanagawa252-0373Japan
| |
Collapse
|
4
|
Pigulski B, Misiak K, Męcik P, Szafert S. Cycloaddition-Retro-Electrocyclization Click Reaction of Amine End-Capped Oligoynes with Tetracyanoethylene. Chemistry 2023:e202302725. [PMID: 37702289 DOI: 10.1002/chem.202302725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/14/2023]
Abstract
This study shows the first example of cycloaddition-retro-electrocyclization (CA-RE) click reaction involving nitrogen end-capped push-pull oligoynes. The reported CA-RE reaction with TCNE (tetracyanoethylene) is fully regioselective and leads exclusively to the unprecedented TCBD (tetracyanobuta-1,3-diene-2,3-diyl) end-capped carbon rods. The molecular structure of the products was unambiguously confirmed using X-ray single crystal diffraction and their optical and electronic properties were investigated experimentally and rationalized using DFT (density functional theory) calculations.
Collapse
Affiliation(s)
- Bartłomiej Pigulski
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Klaudia Misiak
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Patrycja Męcik
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Sławomir Szafert
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383, Wrocław, Poland
| |
Collapse
|
5
|
Lin Z, Zhong YH, Zhong L, Ye X, Chung LH, Hu X, Xu Z, Yu L, He J. Minimalist Design for Solar Energy Conversion: Revamping the π-Grid of an Organic Framework into Open-Shell Superabsorbers. JACS AU 2023; 3:1711-1722. [PMID: 37388679 PMCID: PMC10302748 DOI: 10.1021/jacsau.3c00132] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/23/2023] [Accepted: 05/23/2023] [Indexed: 07/01/2023]
Abstract
We apply a versatile reaction to a versatile solid: the former involves the electron-deficient alkene tetracyanoethylene (TCNE) as the guest reactant; the latter consists of stacked 2D honeycomb covalent networks based on the electron-rich β-ketoenamine hinges that also activate the conjugated, connecting alkyne units. The TCNE/alkyne reaction is a [2 + 2] cycloaddition-retroelectrocyclization (CA-RE) that forms strong push-pull units directly into the backbone of the framework-i.e., using only the minimalist "bare-bones" scaffold, without the need for additional side groups of alkynes or other functions. The ability of the stacked alkyne units (i.e., as part of the honeycomb mass) to undergo such extensive rearrangement highlights the structural flexibility of these covalent organic framework (COF) hosts. The COF solids remain porous, crystalline, and air-/water-stable after the CA-RE modification, while the resulting push-pull units feature distinct open-shell/free-radical character, are strongly light-absorbing, and shift the absorption ends from 590 nm to around 1900 nm (band gaps from 2.17-2.23 to 0.87-0.95 eV), so as to better capture sunlight (especially the infrared region which takes up 52% of the solar energy). As a result, the modified COF materials achieve the highest photothermal conversion performances, holding promise in thermoelectric power generation and solar steam generation (e.g., with solar-vapor conversion efficiencies >96%).
Collapse
Affiliation(s)
- Zhiqing Lin
- School
of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuan-Hui Zhong
- School
of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Leheng Zhong
- School
of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Xinhe Ye
- School
of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Lai-Hon Chung
- School
of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Xuanhe Hu
- School
of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhengtao Xu
- Institute
of Materials Research and Engineering (IMRE), Agency for Science,
Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Lin Yu
- School
of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Jun He
- School
of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
6
|
Roger M, Bretonnière Y, Trolez Y, Vacher A, Arbouch I, Cornil J, Félix G, De Winter J, Richeter S, Clément S, Gerbier P. Synthesis and Characterization of Tetraphenylethene AIEgen-Based Push-Pull Chromophores for Photothermal Applications: Could the Cycloaddition-Retroelectrocyclization Click Reaction Make Any Molecule Photothermally Active? Int J Mol Sci 2023; 24:ijms24108715. [PMID: 37240061 DOI: 10.3390/ijms24108715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/04/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Three new tetraphenylethene (TPE) push-pull chromophores exhibiting strong intramolecular charge transfer (ICT) are described. They were obtained via [2 + 2] cycloaddition-retroelectrocyclization (CA-RE) click reactions on an electron-rich alkyne-tetrafunctionalized TPE (TPE-alkyne) using both 1,1,2,2-tetracyanoethene (TCNE), 7,7,8,8-tetracyanoquinodimethane (TCNQ) and 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ) as electron-deficient alkenes. Only the starting TPE-alkyne displayed significant AIE behavior, whereas for TPE-TCNE, a faint effect was observed, and for TPE-TCNQ and TPE-F4-TCNQ, no fluorescence was observed in any conditions. The main ICT bands that dominate the UV-Visible absorption spectra underwent a pronounced red-shift beyond the near-infrared (NIR) region for TPE-F4-TCNQ. Based on TD-DFT calculations, it was shown that the ICT character shown by the compounds exclusively originated from the clicked moieties independently of the nature of the central molecular platform. Photothermal (PT) studies conducted on both TPE-TCNQ and TPE-F4-TCNQ in the solid state revealed excellent properties, especially for TPE-F4-TCNQ. These results indicated that CA-RE reaction of TCNQ or F4-TCNQ with donor-substituted are promising candidates for PT applications.
Collapse
Affiliation(s)
- Maxime Roger
- ICGM, CNRS UMR 5253, ENSCM, University of Montpellier, 34293 Montpellier, France
| | - Yann Bretonnière
- ENS de Lyon, CNRS UMR 5182, Laboratoire de Chimie, University of Lyon, 69364 Lyon, France
| | - Yann Trolez
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, University of Rennes, 35065 Rennes, France
| | - Antoine Vacher
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, University of Rennes, 35065 Rennes, France
| | - Imane Arbouch
- Laboratory for Chemistry of Novel Materials, University of Mons-UMONS, 7000 Mons, Belgium
| | - Jérôme Cornil
- Laboratory for Chemistry of Novel Materials, University of Mons-UMONS, 7000 Mons, Belgium
| | - Gautier Félix
- ICGM, CNRS UMR 5253, ENSCM, University of Montpellier, 34293 Montpellier, France
| | - Julien De Winter
- Organic Synthesis and Mass Spectrometry Laboratory (S2MOs), University of Mons-UMONS, 7000 Mons, Belgium
| | - Sébastien Richeter
- ICGM, CNRS UMR 5253, ENSCM, University of Montpellier, 34293 Montpellier, France
| | - Sébastien Clément
- ICGM, CNRS UMR 5253, ENSCM, University of Montpellier, 34293 Montpellier, France
| | - Philippe Gerbier
- ICGM, CNRS UMR 5253, ENSCM, University of Montpellier, 34293 Montpellier, France
| |
Collapse
|
7
|
Iftikhar R, Mazhar A, Iqbal MS, Khan FZ, Askary SH, Sibtain H. Ring forming transformations of ynamides via cycloaddition. RSC Adv 2023; 13:10715-10756. [PMID: 37025669 PMCID: PMC10072253 DOI: 10.1039/d3ra00139c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023] Open
Abstract
Ynamides are N-alkyne compounds bearing an electron withdrawing group at the nitrogen atom. They offer unique pathways for the construction of versatile building blocks owing to their exceptional balance between reactivity and stability. Recently several studies have been reported that explore and illustrate the synthetic potential of ynamides and ynamide-derived advanced intermediates in cycloadditions with different reaction partners to yield heterocyclic cycloadducts of synthetic and pharmaceutical value. Cycloaddition reactions of ynamides are the facile and preferable routes for the construction of structural motifs having striking importance in synthetic, medicinal chemistry, and advanced materials. In this systematic review, we highlighted the recently reported novel transformations and synthetic applications that involved the cycloaddition reaction of ynamides. The scope along with the limitations of the transformations are discussed in detail.
Collapse
Affiliation(s)
- Ramsha Iftikhar
- Department of Chemistry, Government College University Faisalabad 38000-Faisalabad Pakistan
| | - Aqsa Mazhar
- Faculty of Health and Medicine, University of New South Wales 2033-Sydney Australia
| | - Muhammad Saqlain Iqbal
- Department of Electrical Information Engineering, Polytechnic University of Bari 70126-Bari Italy
| | - Faiza Zahid Khan
- Institute of Chemistry, RheinischeFriedrich-Wilhelms-Universität Bonn Bonn Germany
| | - Syed Hassan Askary
- Department of Chemistry, University of Management and Technology 54770-Lahore Pakistan
| | - Hifza Sibtain
- Department of Chemistry, University of Management and Technology 54770-Lahore Pakistan
| |
Collapse
|
8
|
Sheokand M, Alsaleh AZ, D'Souza F, Misra R. Excitation Wavelength-Dependent Charge Stabilization in Highly Interacting Phenothiazine Sulfone-Derived Donor-Acceptor Constructs. J Phys Chem B 2023; 127:2761-2773. [PMID: 36938962 DOI: 10.1021/acs.jpcb.2c08472] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Prolonging the lifetime of charge-separated states (CSS) is of paramount importance in artificial photosynthetic donor-acceptor (DA) constructs to build the next generation of light-energy-harvesting devices. This becomes especially important when the DA constructs are closely spaced and highly interacting. In the present study, we demonstrate extending the lifetime of the CSS in highly interacting DA constructs by making use of the triplet excited state of the electron donor and with the help of excitation wavelength selectivity. To demonstrate this, π-conjugated phenothiazine sulfone-based push-pull systems, PTS2-PTS6 have been newly designed and synthesized via the Pd-catalyzed Sonogashira cross-coupling followed by [2 + 2] cycloaddition-retroelectrocyclization reactions. Modulation of the spectral and photophysical properties of phenothiazine sulfones (PTZSO2) and terminal phenothiazines (PTZ) was possible by incorporating powerful electron acceptors, 1,1,4,4-tetracyanobutadiene (TCBD) and cyclohexa-2,5-diene-1,4-diylidene-expanded TCBD (exTCBD). The quadrupolar PTS2 displayed solvatochromism, aggregation-induced emission, and mechanochromic behaviors. From the energy calculations, excitation wavelength-dependent charge stabilization was envisioned in PTS2-PTS6, and the subsequent pump-probe spectroscopic studies revealed charge stabilization when the systems were excited at the locally excited peak positions, while such effect was minimal when the samples were excited at wavelengths corresponding to the CT transitions. This work reveals the impact of wavelength selectivity to induce charge separation from the triplet excited state in ultimately prolonging the lifetime of CCS in highly interacting push-pull systems.
Collapse
Affiliation(s)
- Manju Sheokand
- Department of Chemistry, Indian Institute of Technology, Indore 453552, India
| | - Ajyal Z Alsaleh
- Department of Chemistry, University of North Texas, Denton, Texas 76203-5017, United States
| | - Francis D'Souza
- Department of Chemistry, University of North Texas, Denton, Texas 76203-5017, United States
| | - Rajneesh Misra
- Department of Chemistry, Indian Institute of Technology, Indore 453552, India
| |
Collapse
|
9
|
Hansen JKS, Tortzen CG, Sørensen PG, Brøndsted Nielsen M. On the Mechanism of the Formal [2+2] Cycloaddition - Retro-electrocyclization (CA-RE) Reaction. Chemistry 2023; 29:e202202833. [PMID: 36217899 PMCID: PMC10099493 DOI: 10.1002/chem.202202833] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Indexed: 11/23/2022]
Abstract
The [2+2] cycloaddition - retro-electrocyclization (CA-RE) reaction is a "click-like" protocol for facile synthesis of donor-acceptor chromophores from an alkyne and tetracyanoethylene. Herein we shed light on the mechanism of this reaction by detailed kinetics studies using 1 H NMR spectroscopy. By considering several experiments simultaneously, a variety of mechanistic models was evaluated. Surprisingly, a model in which the final 1,1,4,4-tetracyanobuta-1,3-diene product promoted the first step was the only one that described well the experimental data. This autocatalysis model also involved a non-concerted, stepwise formation of the cyclobutene cycloaddition adduct. By proper choice of conditions, we were able to generate the transient cyclobutene in sufficient amount to verify it as an intermediate using 13 C NMR spectroscopy. For its final retro-electrocyclization step, simple first-order kinetics was observed and only minor solvent dependence, which indicates a concerted reaction.
Collapse
Affiliation(s)
| | - Christian G Tortzen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Preben Graae Sørensen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Mogens Brøndsted Nielsen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| |
Collapse
|
10
|
Patil Y, Butenschön H, Misra R. Tetracyanobutadiene Bridged Push-Pull Chromophores: Development of New Generation Optoelectronic Materials. CHEM REC 2023; 23:e202200208. [PMID: 36202630 DOI: 10.1002/tcr.202200208] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/09/2022] [Indexed: 01/21/2023]
Abstract
This review describes the design strategies used for the synthesis of various tetracyanobutadiene bridged donor-acceptor molecular architectures by a click type [2+2] cycloaddition-retroelectrocyclization (CA-RE) reaction sequence. The photophysical and electrochemical properties of the tetracyanobutadiene bridged molecular architectures based on various moieties including diketopyrrolopyrrole, isoindigo, benzothiadiazole, pyrene, pyrazabole, truxene, boron dipyrromethene (BODIPY), phenothiazine, triphenylamine, thiazole and bisthiazole are summarized. Further, we discuss some important applications of the tetracyanobutadiene bridged derivatives in dye sensitized solar cells, bulk heterojunction solar cells and photothermal cancer therapy.
Collapse
Affiliation(s)
- Yuvraj Patil
- Department of Chemistry, Indian Institute of Technology Indore, Indore, 453552, India.,Present Address: Institut des Sciences Chimiques de Rennes (ISCR) -, Université de Rennes 1, Rennes, 35700, France
| | - Holger Butenschön
- Institut für Organische Chemie, Leibniz Universität Hannover, Schneiderberg 1B, 30167, Hannover, Germany
| | - Rajneesh Misra
- Department of Chemistry, Indian Institute of Technology Indore, Indore, 453552, India
| |
Collapse
|
11
|
Bis(3-methylthio-1-azulenyl)phenylmethyl Cations and Dications Connected by a 1,4-Phenylene Spacer: Synthesis and Their Electrochemical Properties. ORGANICS 2022. [DOI: 10.3390/org3040034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The preparation of bis(3-methylthio-1-azulenyl)phenylmethyl cations and 1,4-phenylenebis[bis(3,6-di-tert-butyl-1-azulenyl)methyl] dications was accomplished by the hydride abstraction of the corresponding hydride derivatives, which were synthesized by the acid-catalyzed condensation of 1-azulenyl methyl sulfide with benzaldehyde and terephthalaldehyde with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone. The intramolecular charge transfer among the azulene ring and the methylium moieties of these cations and dications was investigated by UV–Vis spectroscopy and electrochemical analyses. The pKR+ values of the cations were examined for their thermodynamic stability spectrophotometrically. The voltammetry experiments of these cations revealed their reversible reduction waves on their cyclic voltammograms. Moreover, a notable spectral change of cations was observed by spectroelectrochemistry during electrochemical reduction conditions.
Collapse
|
12
|
Huang S, Ma J, Yi Y, Li M, Cai P, Wu N. Synthesis of orthogonal push-pull chromophores via click reaction of arylynamines. Org Biomol Chem 2022; 20:4081-4085. [PMID: 35521652 DOI: 10.1039/d2ob00677d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Herein, we report a catalyst-free 'click' reaction: metal-free [2 + 2] cycloaddition-retro-electrocyclisation (CA-RE) of arylynamines with the sluggish acceptor tetracyanoquinodimethane (TCNQ) to provide orthogonal electron-push-pull light-harvesting small molecules: N-heterocyclic dicyanoquinodimethane-substituted methylene malononitriles. Ynamines are reactive alkynes and tend to induce over-reactions with the CA-RE adducts. The reactivity of arylynamines was balanced properly by ensuring the electron-density of the nitrogen atom was delocalised more over the aromatic rings than the triple bond.
Collapse
Affiliation(s)
- Shuangping Huang
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, China
| | - Jing Ma
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, China
| | - Yikun Yi
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shann'xi, 710049, China
| | - Mingtao Li
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shann'xi, 710049, China
| | - Ping Cai
- School of Material Science and Engineering & Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, China
| | - Na Wu
- School of Chemistry and Biosciences, Faculty of Life Sciences, University of Bradford, Bradford, West Yorkshire, BD7 1DP, UK.
| |
Collapse
|
13
|
Yadav IS, Jang Y, Rout Y, Thomas MB, Misra R, D'Souza F. Near-IR Intramolecular Charge Transfer in Strongly Interacting Diphenothiazene-TCBD and Diphenothiazene-DCNQ Push-Pull Triads. Chemistry 2022; 28:e202200348. [PMID: 35275434 DOI: 10.1002/chem.202200348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Indexed: 12/15/2022]
Abstract
Three types of phenothiazines dimers (PTZ-PTZ, 1-3), covalently linked with one or two acetylene linkers, were synthesized by copper-mediated Eglinton and Pd-catalyzed Sonogashira coupling reactions in excellent yields. The dimers 1-3 were further engaged in [2+2] cycloaddition-retroelectrocyclization reactions with strong electron acceptors, tetracyanoethylene (TCNE) and 7,7,8,8-tetracyanoquinodimethane (TCNQ) to yield tetracyanobutadiene (TCBD, 1 a-3 a), and dicyanoquinodimethane (DCNQ, 1 b-3 b) functionalized donor-acceptor (D-A) conjugates, respectively. The conjugates were examined by a series of spectral, computational, and electrochemical studies. Strong ground state polarization leading to new optical transitions was witnessed in both series of D-A conjugates. In the case of DCNQ derived D-A system 1 b, the optical coverage extended until 1200 nm in benzonitrile, making this a rare class of D-A ICT system. Multiple redox processes were witnessed in these D-A systems, and the frontier orbitals generated on DFT optimized structures further supported the ICT phenomenon. Photochemical studies performed using femtosecond pump-probe studies confirmed solvent polarity dependent excited state charge transfer and separation in these novel multi-modular D-A conjugates. The charge-separated states lasted up to 70 ps in benzonitrile while in toluene slightly prolonged lifetime of up to 100 ps was witnessed. The significance of phenothiazine dimer in wide-band optical capture all the way into the near-IR region and promoting ultrafast photoinduced charge transfer in the D-A-D configured multi-modular systems, and the effect of donor-acceptor distance and the solvent polarity was the direct outcome of the present study.
Collapse
Affiliation(s)
- Indresh S Yadav
- Department of Chemistry, Indian Institute of Technology, 453552, Indore, India
| | - Youngwoo Jang
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, TX 76203-5017, USA
| | - Yogajivan Rout
- Department of Chemistry, Indian Institute of Technology, 453552, Indore, India
| | - Michael B Thomas
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, TX 76203-5017, USA
| | - Rajneesh Misra
- Department of Chemistry, Indian Institute of Technology, 453552, Indore, India
| | - Francis D'Souza
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, TX 76203-5017, USA
| |
Collapse
|
14
|
Shoji T, Yamazaki A, Katoh R, Shimamura K, Sakai R, Yasunami M, Okujima T, Ito S. Synthesis, Reactivity, and Properties of Benz[ a]azulenes via the [8 + 2] Cycloaddition of 2 H-Cyclohepta[ b]furan-2-ones with an Enamine. J Org Chem 2022; 87:5827-5845. [PMID: 35420822 DOI: 10.1021/acs.joc.2c00133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Starting with the reaction of 2H-cyclohepta[b]furan-2-ones with an enamine, which was prepared from 4-tert-butylcyclohexanone and pyrrolidine, benz[a]azulenes having both formyl and tert-butyl groups were obtained in the three-step sequence. Subsequently, both the formyl and tert-butyl groups were eliminated by heating the benz[a]azulene derivatives in 100% H3PO4 to give benz[a]azulenes without these substituents in high yields. In terms of product yield, this method is the best one ever reported for the synthesis of the parent benz[a]azulene so far. The conversion of the benz[a]azulene derivatives with a formyl group into cyclohept[a]acenaphthylen-3-one derivatives was also investigated via Knoevenagel condensation with dimethyl malonate, followed by Brønsted acid-mediated intramolecular cyclization. The structural features including the bond alternation in the benz[a]azulene derivatives were revealed by NMR studies, NICS calculations, and a single-crystal X-ray structural analysis. The optical and electrochemical properties of a series of benz[a]azulene derivatives were evaluated by UV/Vis, fluorescence spectroscopy, and voltammetry experiments. As a result, we found that some benz[a]azulene derivatives showed remarkable luminescence in acidic media. In addition, the benz[a]azulene derivatives with the electron-withdrawing group and cyclohept[a]acenaphthylen-3-one derivative displayed good reversibility in the spectral changes under the electrochemical redox conditions.
Collapse
Affiliation(s)
- Taku Shoji
- Graduate School of Science and Technology, Shinshu University, Matsumoto 390-8621, Japan.,Department of Chemical Biology and Applied Chemistry, College of Engineering, Nihon University, Koriyama 963-8642, Japan
| | - Akari Yamazaki
- Graduate School of Science and Technology, Shinshu University, Matsumoto 390-8621, Japan
| | - Ryuzi Katoh
- Department of Chemical Biology and Applied Chemistry, College of Engineering, Nihon University, Koriyama 963-8642, Japan
| | - Konomi Shimamura
- Department of Chemical Biology and Applied Chemistry, College of Engineering, Nihon University, Koriyama 963-8642, Japan
| | - Rina Sakai
- Department of Chemical Biology and Applied Chemistry, College of Engineering, Nihon University, Koriyama 963-8642, Japan
| | - Masafumi Yasunami
- Department of Chemical Biology and Applied Chemistry, College of Engineering, Nihon University, Koriyama 963-8642, Japan
| | - Tetsuo Okujima
- Department of Chemistry and Biology, Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577, Japan
| | - Shunji Ito
- Graduate School of Science and Technology, Hirosaki University, Hirosaki 036-8561, Japan
| |
Collapse
|
15
|
Harimoto T, Ishigaki Y. Redox‐Active Hydrocarbons: Isolation and Structural Determination of Cationic States toward Advanced Response Systems. Chempluschem 2022; 87:e202200013. [DOI: 10.1002/cplu.202200013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/17/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Takashi Harimoto
- Hokkaido University: Hokkaido Daigaku Department of Chemistry, Faculty of Science JAPAN
| | - Yusuke Ishigaki
- Hokkaido University: Hokkaido Daigaku Department of Chemistry, Faculty of Science North 10, West 8, North-ward 060-0810 Sapporo JAPAN
| |
Collapse
|
16
|
Philippe C, Coste M, Bretonnière Y, Lemiègre L, Ulrich S, Trolez Y. Quadruple Functionalization of a Tetraphenylethylene Aromatic Scaffold with Ynamides or Tetracyanobutadienes: Synthesis and Optical Properties. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Clotilde Philippe
- ENSCR: Ecole nationale superieure de chimie de Rennes ISCR UMR6226 FRANCE
| | - Maëva Coste
- CNRS: Centre National de la Recherche Scientifique IBMM UMR5247 FRANCE
| | - Yann Bretonnière
- Ecole normale superieure de Lyon Laboratoire de Chimie UMR5182 FRANCE
| | - Loïc Lemiègre
- ENSCR: Ecole nationale superieure de chimie de Rennes ISCR UMR6226 FRANCE
| | - Sebastien Ulrich
- CNRS: Centre National de la Recherche Scientifique Institut des Biomolécules Max Mousseron (IBMM) Pôle Chimie Balard RechercheIBMM - UMR 52471919, route de Mende 34293 MONTPELLIER FRANCE
| | - Yann Trolez
- ENSCR: Ecole nationale superieure de chimie de Rennes ISCR UMR6226 FRANCE
| |
Collapse
|
17
|
Shoji T, Ariga Y, Ito S, Yasunami M. Azuleno[6,5-b]indoles: Palladium-Catalyzed Oxidative Ring-Closing Reaction of 6-(Arylamino)azulenes. HETEROCYCLES 2022. [DOI: 10.3987/com-21-s(r)5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
18
|
Poddar M, Rout Y, Misra R. Donor‐Acceptor Based 1,8‐Naphthalimide Substituted Phenothiazines: Tuning of HOMO‐LUMO Gap. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Madhurima Poddar
- Discipline of Chemistry Indian Institute of Technology Indore Indore 453552 India
| | - Yogajivan Rout
- Discipline of Chemistry Indian Institute of Technology Indore Indore 453552 India
| | - Rajneesh Misra
- Discipline of Chemistry Indian Institute of Technology Indore Indore 453552 India
| |
Collapse
|
19
|
Ripoche N, Betou M, Philippe C, Trolez Y, Mongin O, Dudek M, Pokladek Z, Matczyszyn K, Samoc M, Sahnoune H, Halet JF, Roisnel T, Toupet L, Cordier M, Moxey GJ, Humphrey MG, Paul F. Two-photon absorption properties of multipolar triarylamino/tosylamido 1,1,4,4-tetracyanobutadienes. Phys Chem Chem Phys 2021; 23:22283-22297. [PMID: 34585692 DOI: 10.1039/d1cp03346h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis and characterization of four new tetracyanobutadiene (TCBD) derivatives (1, 3c and 4b-c) incorporating tosylamido and 4-triphenylamino moieties are reported. Along with those of five closely related or differently branched TCBDs derivatives (2, 3a-b, 4c and 5), their linear and (third-order) nonlinear optical properties were investigated by electronic absorption spectroscopy and Z-scan measurements. Among these compounds, the tri-branched compounds 3c and 5 are the most active two-photon absorbers, with effective cross-sections of 275 and 350 GM at 900 nm, respectively. These properties are briefly discussed with the help of DFT calculations, focussing on structural and electronic factors, and contextualized with results obtained previously for related compounds.
Collapse
Affiliation(s)
- Nicolas Ripoche
- Univ Rennes, CNRS, ENSCR, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France. .,Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.
| | - Marie Betou
- Univ Rennes, CNRS, ENSCR, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France.
| | - Clotilde Philippe
- Univ Rennes, CNRS, ENSCR, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France.
| | - Yann Trolez
- Univ Rennes, CNRS, ENSCR, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France.
| | - Olivier Mongin
- Univ Rennes, CNRS, ENSCR, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France.
| | - Marta Dudek
- Advanced Materials Engineering and Modelling Group, Faculty of Chemistry, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland.
| | - Ziemowit Pokladek
- Advanced Materials Engineering and Modelling Group, Faculty of Chemistry, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland.
| | - Katarzyna Matczyszyn
- Advanced Materials Engineering and Modelling Group, Faculty of Chemistry, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland.
| | - Marek Samoc
- Advanced Materials Engineering and Modelling Group, Faculty of Chemistry, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland.
| | - Hiba Sahnoune
- Département de Chimie, Faculté des Sciences, Université M'Hamed Bouguara de Boumerdes, 35000, Boumerdes, Algeria.,Laboratoire de Physique et Chimie Quantique, Université Mouloud Mammeri de Tizi Ouzou, 15000, Tizi Ouzou, Algeria
| | - Jean-François Halet
- Univ Rennes, CNRS, ENSCR, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France. .,CNRS-Saint-Gobain-NIMS, IRL 3629, Laboratory for Innovative Key Materials and Structures (LINK), National Institute for Materials Science (NIMS), Tsukuba, 305-0044, Japan.
| | - Thierry Roisnel
- Univ Rennes, CNRS, ENSCR, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France.
| | - Loic Toupet
- Univ Rennes, CNRS, Institut de Physique de Rennes (IPR) - UMR 6251, F-35000 Rennes, France
| | - Marie Cordier
- Univ Rennes, CNRS, ENSCR, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France.
| | - Graeme J Moxey
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.
| | - Mark G Humphrey
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.
| | - Frédéric Paul
- Univ Rennes, CNRS, ENSCR, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France.
| |
Collapse
|
20
|
Synthesis of Azulene Derivatives from 2 H-Cyclohepta[ b]furan-2-ones as Starting Materials: Their Reactivity and Properties. Int J Mol Sci 2021; 22:ijms221910686. [PMID: 34639027 PMCID: PMC8509482 DOI: 10.3390/ijms221910686] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 11/16/2022] Open
Abstract
A variety of synthetic methods have been developed for azulene derivatives due to their potential applications in pharmaceuticals and organic materials. Particularly, 2H-cyclohepta[b]furan-2-one and its derivatives have been frequently used as promising precursors for the synthesis of azulenes. In this review, we describe the development of the synthesis of azulenes by the reaction of 2H-cyclohepta[b]furan-2-ones with olefins, active methylenes, enamines, and silyl enol ethers as well as their reactivity and properties.
Collapse
|
21
|
Raheem AA, Murugan P, Shanmugam R, Praveen C. Azulene Bridged π-Distorted Chromophores: The Influence of Structural Symmetry on Optoelectrochemical and Photovoltaic Parameters. Chempluschem 2021; 86:1451-1460. [PMID: 34648248 DOI: 10.1002/cplu.202100392] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/29/2021] [Indexed: 11/09/2022]
Abstract
Conjugated chromophores possessing π-twisted functionality such as tetracyanobutadiene (TCBD) have emerged as promising active layer materials for organic photovoltaics (OPVs). In this study, we disclose the synthesis of two azulenyl chromophores containing one and two TCBD groups. The symmetrical and unsymmetrical structural characteristics of these molecules inflict dissimilar optoelectronic and electrochemical properties. Based on molar absorptivity, aggregation behavior, HOMO-LUMO energies and other quantum chemical parameters, the symmetrical molecule (TATC2) appears to be a better non-fullerene acceptor (NFA) compared to its unsymmetrical counterpart (TATC1). For instance, higher absorptivity and deeper HOMO-LUMO levels for TATC2 (23950 M-1 cm-1 ; -6.01 eV/-3.86 eV) over TATC1 (12200 M1 cm-1 ; -5.46 eV/-3.64 eV) was observed. Validating this structure-property relationship on solar cell prototypes exhibited higher photovoltaic parameters (VOC =0.54 V, FF=0.48, JSC =6.42 mA/cm2 ) for TATC2 than TATC1 (VOC =0.47 V, FF=0.38, JSC =5.77 mA/cm2 ). Though the device parameters are not high, this work uncovers the intrinsic properties of azulene-tethered twisted chromophores as potential π-semiconductor choice for NFA solar cells. In particular, this report explores the utility of azulene-based π-twisted semiconductors as acceptor material for OPVs with cell efficiencies of 1.70 and 1.04 % for TATC2 and TATC1 respectively.
Collapse
Affiliation(s)
- Abbasriyaludeen Abdul Raheem
- Electrochemical Power Sources Division, Central Electrochemical Research Institute (CSIR Laboratory), Karaikudi-630003, Sivagangai District, Tamil Nadu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, Ghaziabad District, Uttar Pradesh, India
| | - Palanichamy Murugan
- Electrochemical Power Sources Division, Central Electrochemical Research Institute (CSIR Laboratory), Karaikudi-630003, Sivagangai District, Tamil Nadu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, Ghaziabad District, Uttar Pradesh, India
| | - Ramasamy Shanmugam
- Department of Chemistry, Thiagarajar College, Madurai-625009, Madurai District, Tamil Nadu, India
| | - Chandrasekar Praveen
- Electrochemical Power Sources Division, Central Electrochemical Research Institute (CSIR Laboratory), Karaikudi-630003, Sivagangai District, Tamil Nadu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, Ghaziabad District, Uttar Pradesh, India
| |
Collapse
|
22
|
Elwahy AHM, Hafner K. Alkynylazulenes as Building Blocks for Highly Unsaturated Scaffolds. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
| | - Klaus Hafner
- Clemens Schöpf-Institut für Organische Chemie und Biochemie Technische Universität, Darmstadt Petersenstraβe 22 D-64287 Darmstadt Germany
| |
Collapse
|
23
|
Xin H, Hou B, Gao X. Azulene-Based π-Functional Materials: Design, Synthesis, and Applications. Acc Chem Res 2021; 54:1737-1753. [PMID: 33691401 DOI: 10.1021/acs.accounts.0c00893] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
ConspectusAzulene, an isomer of naphthalene, is a molecule of historical interest for its unusual photophysical properties, including a beautiful blue color derived from the narrow HOMO-LUMO energy gap and anti-Kasha fluorescence from S2 to S0. More recently, it has attracted increasing attention for its novel electronic structure, including an electron-rich five-membered ring and an electron-deficient seven-membered ring with a dipole moment of 1.08 D resulting from resonance delocalization, its different reactivities at odd and even positions, and its stimuli-responsive behavior. As a key building block, azulene has been used in various fields because of its unique physicochemical properties. Recent studies have demonstrated the great potential of azulene for constructing advanced organic materials. However, exploring azulene-based materials has long been hindered by challenges in molecular design and synthesis. Most of the reported azulene-based materials have the azulene unit incorporated through the five-membered ring or seven-membered ring. Creating azulene-based novel building blocks for optoelectronics and using 2,6-connected azulene units to construct conjugated polymers that can adequately utilize the "donor-acceptor" structure of azulene remained underexplored before our contributions. Besides, for most azulene-fused polycyclic aromatic hydrocarbons (PAHs) and heteroaromatics, the azulene substructures were created during later synthesis stages, and the use of azulene derivatives as starting materials to design and synthesize PAHs and heteroaromatics intelligently is still limited.In this Account, we summarize our efforts on the design, synthesis, and applications of azulene-based π-functional materials. Our studies start with the creation of novel π-conjugated structures based on azulene. The design strategy, synthesis, and optoelectronic performance of the first class of azulene-based aromatic diimides, 2,2'-biazulene-1,1',3,3'-tetracarboxylic diimide (BAzDI) and its π-extended and π-bridged derivatives, are presented. Notably, antiparallel stacking between adjacent azulene units derived from azulene's dipole was observed in single crystals of BAzDI and its derivatives. Besides, we developed an azulene-fused isoindigo analogue, azulenoisoindigo, which combines the merits of both isoindigo and azulene, including reversible redox behavior and reversible proton responsiveness. Then we discuss our contributions to the design and synthesis of 2,6-azulene-based conjugated polymers. By incorporation of 2,6-connected azulene units into the polymeric backbone, two conjugated polymers with high organic field-effect transistor (OFET) performance were developed. Two 2,6-azulene-based polymers with proton responsiveness and high electrical conductivity upon protonation were also provided. We also discuss our recent studies on azulene-based heteroaromatics. Two azulene-fused BN-heteroaromatics were designed and synthesized, and they exhibited a selective response to fluoride ion and unexpected deboronization upon the addition of trifluoroacetic acid. An unexpected synthesis of azulene-pyridine-fused heteroaromatics (Az-Py) by reductive cyclization of 1-nitroazulenes and the OFET performance of Az-Py-1 are included. Afterward, we discuss several examples of azulene-capped organic conjugated molecules. The molecules capped with the five-membered ring of azulene favor hole transport, whereas the ones capped with the seven-membered ring favor electron transport.
Collapse
Affiliation(s)
- Hanshen Xin
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Bin Hou
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xike Gao
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
24
|
Williams GE, Kociok-Köhn G, James TD, Lewis SE. C4-aldehyde of guaiazulene: synthesis and derivatisation. Org Biomol Chem 2021; 19:2502-2511. [PMID: 33661271 DOI: 10.1039/d0ob02567d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Guaiazulene is an alkyl-substituted azulene available from natural sources and is a much lower cost starting material for the synthesis of azulene derivatives than azulene itself. Here we report an approach for the selective functionalisation of guaiazulene which takes advantage of the acidity of the protons on the guaiazulene C4 methyl group. The aldehyde produced by this approach constitutes a building block for the construction of azulenes substituted on the seven-membered ring. Derivatives of this aldehyde synthesised by alkenylation, reduction and condensation are reported, and the halochromic properties of a subset of these derivatives have been studied.
Collapse
|
25
|
Philippe C, Bui AT, Batsongo-Boulingui S, Pokladek Z, Matczyszyn K, Mongin O, Lemiègre L, Paul F, Hamlin TA, Trolez Y. 1,1,4,4-Tetracyanobutadiene-Functionalized Anthracenes: Regioselectivity of Cycloadditions in the Synthesis of Small Near-IR Dyes. Org Lett 2021; 23:2007-2012. [PMID: 33635667 PMCID: PMC8155560 DOI: 10.1021/acs.orglett.1c00136] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two small 1,1,4,4-tetracyanobutadiene-functionalized chromophores were obtained by careful leverage of the regioselectivity of the cycloaddition reaction of tetracyanoethylene with anthracene-ynamide derivatives, inducing either a [2 + 2] or a [4 + 2] Diels-Alder process. DFT calculations unraveled the mechanism of the [2 + 2] cycloaddition-retroelectrocyclization reaction sequence with ynamides and elucidated the differing mechanisms in the two substrates. The synthesized dyes presented panchromatic absorption extending into the near-IR and far-red/near-IR photoluminescence in the solid state up to 1550 nm.
Collapse
Affiliation(s)
- Clotilde Philippe
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR6226, F-35000 Rennes, France
| | - Anh Thy Bui
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR6226, F-35000 Rennes, France
| | | | - Ziemowit Pokladek
- Faculty of Chemistry, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Katarzyna Matczyszyn
- Faculty of Chemistry, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Olivier Mongin
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR6226, F-35000 Rennes, France
| | - Loïc Lemiègre
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR6226, F-35000 Rennes, France
| | - Frédéric Paul
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR6226, F-35000 Rennes, France
| | - Trevor A Hamlin
- Department of Theoretical Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), and Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Yann Trolez
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR6226, F-35000 Rennes, France
| |
Collapse
|
26
|
Quantum-Chemical Search for Keto Tautomers of Azulenols in Vacuo and Aqueous Solution. Symmetry (Basel) 2021. [DOI: 10.3390/sym13030497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Keto-enol prototropic conversions for carbonyl compounds and phenols have been extensively studied, and many interesting review articles and even books appeared in the last 50 years. Quite a different situation takes place for derivatives of biologically active azulene, for which only scanty information on this phenomenon can be found in the literature. In this work, quantum-chemical studies have been undertaken for symmetrically and unsymmetrically substituted azulenols (constitutional isomers of naphthols). Stabilities of two enol (OH) rotamers and all possible keto (CH) tautomers have been analyzed in the gas phase {DFT(B3LYP)/6-311+G(d,p)} and also in aqueous solution {PCM(water)//DFT(B3LYP)/6-311+G(d,p)}. Contrary to naphthols, for which the keto forms can be neglected, at least one keto isomer (C1H, C2H, and/or C3H) contributes significantly to the tautomeric mixture of each azulenol to a higher degree in vacuo (non-polar environment) than in water (polar amphoteric solvent). The highest amounts of the CH forms have been found for 2- and 5-hydroxyazulenes, and the smallest ones for 1- and 6-hydroxy derivatives. The keto tautomer(s), together with the enol rotamers, can also participate in deprotonation reaction leading to a common anion and influence its acid-base properties. The strongest acidity in vacuo exhibits 6-hydroxyazulene, and the weakest one displays 1-hydroxyazulene, but all azulenols are stronger acids than phenol and naphthols. Bond length alternation in all DFT-optimized structures has been measured using the harmonic oscillator model of electron delocalization (HOMED) index. Generally, the HOMED values decrease for the keto tautomers, particularly for the ring containing the labile proton. Even for the keto tautomers possessing energetic parameters close to those of the enol isomers, the HOMED indices are low. However, some kind of parallelism exists for the keto forms between their relative energies and HOMEDs estimated for the entire molecules.
Collapse
|
27
|
Shoji T, Ariga Y, Yamazaki A, Uda M, Nagasawa T, Ito S. Synthesis, Photophysical and Electrochemical Properties of 1-, 2-, and 6-(2-Benzofuryl)azulenes. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Taku Shoji
- Graduate School of Science and Technology, Shinshu University, Matsumoto, Nagano 390-8621, Japam
| | - Yukino Ariga
- Graduate School of Science and Technology, Shinshu University, Matsumoto, Nagano 390-8621, Japam
| | - Akari Yamazaki
- Graduate School of Science and Technology, Shinshu University, Matsumoto, Nagano 390-8621, Japam
| | - Mayumi Uda
- Graduate School of Science and Technology, Shinshu University, Matsumoto, Nagano 390-8621, Japam
| | - Takuya Nagasawa
- Graduate School of Science and Technology, Hirosaki University, Hirosaki, Aomori 036-8561, Japam
| | - Shunji Ito
- Graduate School of Science and Technology, Hirosaki University, Hirosaki, Aomori 036-8561, Japam
| |
Collapse
|
28
|
Abstract
Simple grinding of azulenes with 1-haloalkynes and solid Al2O3 in a mortar leads to alkynylated azulenes without the use of solvents or precious metal catalysts. Such a method was used for the synthesis of azulene end-capped carbon molecular wires.
Collapse
Affiliation(s)
- Agata Jarszak-Tyl
- Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383 Wrocław, Poland
| | - Bartłomiej Pigulski
- Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383 Wrocław, Poland
| | - Sławomir Szafert
- Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383 Wrocław, Poland
| |
Collapse
|
29
|
Rout Y, Misra R. Design and synthesis of 1,8-naphthalimide functionalized benzothiadiazoles. NEW J CHEM 2021. [DOI: 10.1039/d1nj00919b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Push-pull derivatives BTD2–BTD5 were designed and synthesized via Pd-catalyzed Sonogashira cross-coupling reaction followed by [2+2] cycloaddition–electrocyclic ring-opening reaction.
Collapse
Affiliation(s)
- Yogajivan Rout
- Department of Chemistry
- Indian Institute of Technology
- Indore 453552
- India
| | - Rajneesh Misra
- Department of Chemistry
- Indian Institute of Technology
- Indore 453552
- India
| |
Collapse
|
30
|
Wang DL, Zhang SQ, Guo ST, Xu J, Zhang XL, Xiong XS, Zhang L. A Simple Route for Synthesis and Evaluation of Antioxidant Activity of (Guaiazulen-1-yl)furans. HETEROCYCLES 2021. [DOI: 10.3987/com-20-14362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
31
|
Wang DL, Yang S, Xiong XS. An Efficient Synthesis of 2-Amino-4-(guaiazulen-1-yl)-4H-chromenes via Cycloaddition of 1-Hydroxy-2-(3-guaiazulenylium)benzenes with Malononitrile/Ethyl Cyanoacetate. HETEROCYCLES 2021. [DOI: 10.3987/com-21-14518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
32
|
Simón Marqués P, Castán JMA, Raul BAL, Londi G, Ramirez I, Pshenichnikov MS, Beljonne D, Walzer K, Blais M, Allain M, Cabanetos C, Blanchard P. Triphenylamine/Tetracyanobutadiene-Based π-Conjugated Push-Pull Molecules End-Capped with Arene Platforms: Synthesis, Photophysics, and Photovoltaic Response. Chemistry 2020; 26:16422-16433. [PMID: 32701173 DOI: 10.1002/chem.202002810] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Indexed: 01/08/2023]
Abstract
π-Conjugated push-pull molecules based on triphenylamine and 1,1,4,4-tetracyanobuta-1,3-diene (TCBD) have been functionalized with different terminal arene units. In solution, these highly TCBD-twisted systems showed a strong internal charge transfer band in the visible spectrum and no detectable photoluminescence (PL). Photophysical and theoretical investigations revealed very short singlet excited state deactivation time of ≈10 ps resulting from significant conformational changes of the TCBD-arene moiety upon photoexcitation, opening a pathway for non-radiative decay. The PL was recovered in vacuum-processed films or when the molecules were dispersed in a PMMA matrix leading to a significant increase of the excited state deactivation time. As shown by cyclic voltammetry, these molecules can act as electron donors compared to C60 . Hence, vacuum-processed planar heterojunction organic solar cells were fabricated leading to a maximum power conversion efficiency of ca. 1.9 % which decreases with the increase of the arene size.
Collapse
Affiliation(s)
- Pablo Simón Marqués
- MOLTECH-Anjou, UMR CNRS 6200, UNIV Angers, SFR MATRIX, 2 bd Lavoisier, 49045, ANGERS Cedex, France
| | - José María Andrés Castán
- MOLTECH-Anjou, UMR CNRS 6200, UNIV Angers, SFR MATRIX, 2 bd Lavoisier, 49045, ANGERS Cedex, France
| | - Benedito A L Raul
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Giacomo Londi
- Laboratory for Chemistry of Novel Materials, University of Mons, Place du Parc, 20, 7000, Mons, Belgium
| | - Ivan Ramirez
- HELIATEK GmbH, Treidlerstraße 3, 01139, Dresden, Germany
| | - Maxim S Pshenichnikov
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - David Beljonne
- Laboratory for Chemistry of Novel Materials, University of Mons, Place du Parc, 20, 7000, Mons, Belgium
| | - Karsten Walzer
- HELIATEK GmbH, Treidlerstraße 3, 01139, Dresden, Germany
| | - Martin Blais
- MOLTECH-Anjou, UMR CNRS 6200, UNIV Angers, SFR MATRIX, 2 bd Lavoisier, 49045, ANGERS Cedex, France
| | - Magali Allain
- MOLTECH-Anjou, UMR CNRS 6200, UNIV Angers, SFR MATRIX, 2 bd Lavoisier, 49045, ANGERS Cedex, France
| | - Clément Cabanetos
- MOLTECH-Anjou, UMR CNRS 6200, UNIV Angers, SFR MATRIX, 2 bd Lavoisier, 49045, ANGERS Cedex, France
| | - Philippe Blanchard
- MOLTECH-Anjou, UMR CNRS 6200, UNIV Angers, SFR MATRIX, 2 bd Lavoisier, 49045, ANGERS Cedex, France
| |
Collapse
|
33
|
Dar AH, Gowri V, Neethu KM, Jayamurugan G. Synthesis of 1,1,4,4‐Tetracyanobuta‐1,3‐Dienes using Tetracyanoethylene Oxide via [3+2]‐Cycloaddition‐Ring Opening Reaction. ChemistrySelect 2020. [DOI: 10.1002/slct.202003179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Arif Hassan Dar
- Institute of Nano Science and Technology Mohali 160062 Punjab India
| | | | - K. M. Neethu
- Institute of Nano Science and Technology Mohali 160062 Punjab India
| | | |
Collapse
|
34
|
Development of Heterocycle-Substituted and Fused Azulenes in the Last Decade (2010-2020). Int J Mol Sci 2020; 21:ijms21197087. [PMID: 32992955 PMCID: PMC7582284 DOI: 10.3390/ijms21197087] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023] Open
Abstract
Azulene derivatives with heterocyclic moieties in the molecule have been synthesized for applications in materials science by taking advantage of their unique properties. These derivatives have been prepared by various methods, involving electrophilic substitution, condensation, cyclization, and transition metal-catalyzed cross-coupling reactions. Herein, we present the development of the synthetic methods, reactivities, and physical properties for the heterocycle-substituted and heterocycle-fused azulenes reported in the last decade.
Collapse
|
35
|
Shoji T, Miura K, Ariga Y, Yamazaki A, Ito S, Yasunami M. Synthesis of thiophene-fused heptalenes by cycloaddition of azulenothiophenes with dimethyl acetylenedicarboxylate. Sci Rep 2020; 10:12477. [PMID: 32719442 PMCID: PMC7385116 DOI: 10.1038/s41598-020-69425-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 07/06/2020] [Indexed: 11/09/2022] Open
Abstract
Heptalene has a fused structure of two cycloheptatrienes which is one of the non-aromatic bicyclic molecules with a 12π-electronic structure. We report herein the synthesis of thiophene-fused heptalene derivatives from the corresponding azulenothiophenes via cycloaddition reaction with dimethyl acetylenedicarboxylate. Their structure was clarified by single-crystal X-ray structural analysis. The electronic properties of the thiophene-fused heptalenes obtained by this study were characterized by UV/Vis and fluorescence spectroscopy measurements. The electrochemical features of these derivatives were also examined by voltammetry and spectroelectrochemical experiments.
Collapse
Affiliation(s)
- Taku Shoji
- Department of Material Science, Graduate School of Science and Technology, Shinshu University, Matsumoto, Nagano, 390-8621, Japan.
| | - Kota Miura
- Department of Material Science, Graduate School of Science and Technology, Shinshu University, Matsumoto, Nagano, 390-8621, Japan
| | - Yukino Ariga
- Department of Material Science, Graduate School of Science and Technology, Shinshu University, Matsumoto, Nagano, 390-8621, Japan
| | - Akari Yamazaki
- Department of Material Science, Graduate School of Science and Technology, Shinshu University, Matsumoto, Nagano, 390-8621, Japan
| | - Shunji Ito
- Graduate School of Science and Technology, Hirosaki University, Hirosaki, Aomori, 036-8561, Japan
| | - Masafumi Yasunami
- Department of Chemical Biology and Applied Chemistry, College of Engineering, Nihon University, Koriyama, Fukushima, 963-8642, Japan
| |
Collapse
|
36
|
Kumar NR, Agrawal AR, Choudhury A, Zade SS. The Effect of Base and Nucleophile on the Nucleophilic Substitution of Methoxytropone Derivatives: An Easy Access to 4- and 5-Substituted Multifunctional Azulenes. J Org Chem 2020; 85:9029-9041. [PMID: 32486646 DOI: 10.1021/acs.joc.0c00951] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The nucleophilic substitution on 3-substituted 2-methoxytropones to form azulenes is dependent on the nucleophile and base employed. With bulkier nucleophiles (ethyl/methyl cyanoacetate), the reaction proceeds with the abnormal nucleophilic substitution irrespective of the base and with smaller nucleophiles (malononitrile), the reaction follows base-dependent normal and abnormal nucleophilic substitution. Thus, the methodologies are developed to selectively obtain 4- and 5-substituted azulenes based on the nature of bases and nucleophiles employed.
Collapse
Affiliation(s)
- Neha R Kumar
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, Nadia, West Bengal, India
| | - Abhijeet R Agrawal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, Nadia, West Bengal, India
| | - Aditya Choudhury
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, Nadia, West Bengal, India
| | - Sanjio S Zade
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, Nadia, West Bengal, India
| |
Collapse
|
37
|
Kato SI, Kijima T, Shiota Y, Abe T, Kuwako S, Miyauchi H, Yoshikawa N, Yamamoto K, Yoshizawa K, Yoshihara T, Tobita S, Nakamura Y. Chemical transformations of push-pull fluorenones: push-pull dibenzodicyanofulvenes as well as fluorenone- and dibenzodicyanofulvene-tetracyanobutadiene conjugates. Org Biomol Chem 2020; 18:4198-4209. [PMID: 32191251 DOI: 10.1039/c9ob02706h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Push-pull fluorenones (FOs) were synthesized by treating a benzopentalenequinone (BPO) derivative with alkynes that bear an electron-rich aniline moiety via a regioselective [4 + 2] cycloaddition (CA) followed by a [4 + 1] retrocycloaddition (RCA). The resulting FOs were readily converted into dibenzodicyanofulvenes (DBDCFs) by treatment with malononitrile in the presence of TiCl4 and pyridine. The FOs and DBDCFs exhibit intramolecular charge-transfer (ICT) that manifests in absorptions at 350-650 nm and amphoteric electrochemical behavior. Furthermore, FOs and DBDCFs that contain a C[triple bond, length as m-dash]C bond react with tetracyanoethylene in a formal [2 + 2] CA followed by a retro-electrocyclization to afford sterically congested tetracyanobutadiene (TCBD) conjugates. The substituent (H or Me) on the aromatic ring adjacent to the butadiene moiety thereby determines whether the butadiene adopts an s-cis or s-trans conformation, and thus controls the physicochemical properties of the resulting TCBDs. The TCBD conjugates exhibit ICT absorptions (≤800 nm) together with up to four reversible reduction steps.
Collapse
Affiliation(s)
- Shin-Ichiro Kato
- Department of Materials Science, School of Engineering, The University of Shiga Prefecture, 2500 Hassaka-cho, Hikone, Shiga 522-8533, Japan.
| | - Tomokazu Kijima
- Division of Molecular Science, Faculty of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan.
| | - Yoshihito Shiota
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Tsukasa Abe
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Satoshi Kuwako
- Division of Molecular Science, Faculty of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan.
| | - Hidenori Miyauchi
- Division of Molecular Science, Faculty of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan.
| | - Naoki Yoshikawa
- Division of Molecular Science, Faculty of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan.
| | - Koji Yamamoto
- Division of Molecular Science, Faculty of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan.
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Toshitada Yoshihara
- Division of Molecular Science, Faculty of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan.
| | - Seiji Tobita
- Division of Molecular Science, Faculty of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan.
| | - Yosuke Nakamura
- Division of Molecular Science, Faculty of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan.
| |
Collapse
|
38
|
Ran H, Duan X, Zheng R, Xie F, Chen L, Zhao Z, Han R, Lei Z, Hu JY. Two Isomeric Azulene-Decorated Naphthodithiophene Diimide-based Triads: Molecular Orbital Distribution Controls Polarity Change of OFETs Through Connection Position. ACS APPLIED MATERIALS & INTERFACES 2020; 12:23225-23235. [PMID: 32252522 DOI: 10.1021/acsami.0c04552] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Altering the charge carrier transport polarities of organic semiconductors by molecular orbital distribution has gained great interest. Herein, we report two isomeric azulene-decorated naphthodithiophene diimide (NDTI)-based triads (e.g., NDTI-B2Az and NDTI-B6Az), in which two azulene units were connected with NDTI at the 2-position of the azulene ring in NDTI-B2Az, whereas two azulene units were incorporated with NDTI at the 6-position of the azulene ring in NDTI-B6Az. The two isomeric triads were excellently soluble in common organic solvents. Density functional theory calculations on the molecular orbital distributions of the triads reveal that the lowest unoccupied molecular orbitals are completely delocalized over the entire molecule for both NDTI-B2Az and NDTI-B6Az, indicating great potential for n-type transport behavior, whereas the highest occupied molecular orbitals are mainly delocalized over the entire molecule for NDTI-B2Az or only localized at the two terminal azulene units for NDTI-B6Az, implying great potential for p-type transport behavior for the former and a disadvantage of hole carrier transport for the latter. Under ambient conditions, solution-processed bottom-gate top-contact transistors based on NDTI-B2Az showed ambipolar field-effect transistor (FET) characteristics with high electron and hole mobilities of 0.32 (effective electron mobility ≈0.14 cm2 V-1 s-1 according to a reliability factor of 43%) and 0.03 cm2 V-1 s-1 (effective hole mobility ≈0.01 cm2 V-1 s-1 according to a reliability factor of 33%), respectively, whereas a typically unipolar n-channel behavior is found for a film of NDTI-B6Az with a high electron mobility up to 0.13 cm2 V-1 s-1 (effective electron mobility ≈0.06 cm2 V-1 s-1 according to a reliability factor of 43%). The results indicate that the polarity change of organic FETs based on the two isomeric triads could be controlled by the molecular orbital distributions through the connection position between the azulene unit and NDTI.
Collapse
Affiliation(s)
- Huijuan Ran
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education; Shaanxi Key Laboratory for Advanced Energy Devices; Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xian 710119, China
| | - Xuewei Duan
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education; Shaanxi Key Laboratory for Advanced Energy Devices; Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xian 710119, China
| | - Rong Zheng
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education; Shaanxi Key Laboratory for Advanced Energy Devices; Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xian 710119, China
| | - Fuli Xie
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education; Shaanxi Key Laboratory for Advanced Energy Devices; Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xian 710119, China
| | - Lijuan Chen
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education; Shaanxi Key Laboratory for Advanced Energy Devices; Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xian 710119, China
| | - Zhen Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education; Shaanxi Key Laboratory for Advanced Energy Devices; Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xian 710119, China
| | - Ruijun Han
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education; Shaanxi Key Laboratory for Advanced Energy Devices; Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xian 710119, China
| | - Zheng Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education; Shaanxi Key Laboratory for Advanced Energy Devices; Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xian 710119, China
| | - Jian-Yong Hu
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education; Shaanxi Key Laboratory for Advanced Energy Devices; Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xian 710119, China
| |
Collapse
|
39
|
Rout Y, Chauhan V, Misra R. Synthesis and Characterization of Isoindigo-Based Push-Pull Chromophores. J Org Chem 2020; 85:4611-4618. [PMID: 32126766 DOI: 10.1021/acs.joc.9b03267] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Symmetrical and unsymmetrical chromophores of isoindigo 3-7 were designed and synthesized, in which isoindigo was used as the central unit (electron acceptor unit A), triphenylamine as the end capping unit (electron donor group D), 1,1,4,4-tetracyanobutadiene (TCBD, A') and cyclohexa-2,5-diene-1,4-diylidene-expanded TCBD (A″) as the acceptor unit. The effects of multiacceptor units on photophysical, electrochemical, and computational studies were investigated. The photophysical properties of isoindigo 6 and 7 exhibit a strong intramolecular charge transfer (ICT) absorption band in the near IR region. The isoindigo 4-7 shows multi-redox waves with a low electrochemical band gap, which signifies the tuning of highest occupied molecular orbital-lowest unoccupied molecular orbital energy levels and enhance the π-conjugation. The computational studies demonstrate that there is a good agreement with experimental data. The molecular design and synthesis of isoindigo 4-7 gives a new avenue for the development of building blocks in organic electronics.
Collapse
Affiliation(s)
- Yogajivan Rout
- Department of Chemistry, Indian Institute of Technology, Indore 453552, India
| | - Vivek Chauhan
- Department of Chemistry, Indian Institute of Technology, Indore 453552, India
| | - Rajneesh Misra
- Department of Chemistry, Indian Institute of Technology, Indore 453552, India
| |
Collapse
|
40
|
Shoji T, Sugiyama S, Kobayashi Y, Yamazaki A, Ariga Y, Katoh R, Wakui H, Yasunami M, Ito S. Direct synthesis of 2-arylazulenes by [8+2] cycloaddition of 2H-cyclohepta[b]furan-2-ones with silyl enol ethers. Chem Commun (Camb) 2020; 56:1485-1488. [PMID: 31912824 DOI: 10.1039/c9cc09376a] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We developed a procedure for the direct synthesis of 2-arylazulenes, which were obtained in moderate to excellent yields, by [8+2] cycloaddition of 2H-cyclohepta[b]furan-2-ones with aryl-substituted silyl enol ethers. The structures of some 2-arylazulenes were clarified by single-crystal X-ray analysis. The 2-phenylazulene derivatives obtained by this study showed noticeable fluorescence in acidic media.
Collapse
Affiliation(s)
- Taku Shoji
- Department of Material Science, Graduate School of Science and Technology, Shinshu University, Matsumoto 390-8621, Nagano, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Shoji T, Takagaki S, Ariga Y, Yamazaki A, Takeuchi M, Ohta A, Sekiguchi R, Mori S, Okujima T, Ito S. Molecular Transformation to Pyrroles, Pentafulvenes, and Pyrrolopyridines by [2+2] Cycloaddition of Propargylamines with Tetracyanoethylene. Chemistry 2020; 26:1931-1935. [DOI: 10.1002/chem.201904926] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/14/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Taku Shoji
- Department of Material Science Graduate School of, Science and Technology Shinshu University Matsumoto 390-8621 Nagano Japan
| | - Sho Takagaki
- Department of Material Science Graduate School of, Science and Technology Shinshu University Matsumoto 390-8621 Nagano Japan
| | - Yukino Ariga
- Department of Material Science Graduate School of, Science and Technology Shinshu University Matsumoto 390-8621 Nagano Japan
| | - Akari Yamazaki
- Department of Material Science Graduate School of, Science and Technology Shinshu University Matsumoto 390-8621 Nagano Japan
| | - Mutsumi Takeuchi
- Department of Material Science Graduate School of, Science and Technology Shinshu University Matsumoto 390-8621 Nagano Japan
| | - Akira Ohta
- Department of Material Science Graduate School of, Science and Technology Shinshu University Matsumoto 390-8621 Nagano Japan
| | - Ryuta Sekiguchi
- Department of Material Science Graduate School of, Science and Technology Shinshu University Matsumoto 390-8621 Nagano Japan
| | - Shigeki Mori
- Advanced Research Support Center Ehime University Matsuyama 790-8577 Ehime Japan
| | - Tetsuo Okujima
- Department of Chemistry and Biology Graduate School of, Science and Engineering Ehime University Matsuyama 790-8577 Ehime Japan
| | - Shunji Ito
- Graduate School of Science and Technology Hirosaki University Hirosaki 036-8561 Aomori Japan
| |
Collapse
|
42
|
Bui AT, Philippe C, Beau M, Richy N, Cordier M, Roisnel T, Lemiègre L, Mongin O, Paul F, Trolez Y. Synthesis, characterization and unusual near-infrared luminescence of 1,1,4,4-tetracyanobutadiene derivatives. Chem Commun (Camb) 2020; 56:3571-3574. [DOI: 10.1039/c9cc09560h] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two 1,1,4,4-tetracyanobutadiene (TCBD) derivatives were prepared by reaction of tetracyanoethylene with ynamides bearing either a pyrene or a perylene unit. They display luminescence that could be detected up to 1350 nm in the solid state.
Collapse
|
43
|
Shoji T, Iida N, Yamazaki A, Ariga Y, Ohta A, Sekiguchi R, Nagahata T, Nagasawa T, Ito S. Synthesis of phthalimides cross-conjugated with an azulene ring, and their structural, optical and electrochemical properties. Org Biomol Chem 2020; 18:2274-2282. [PMID: 32150201 DOI: 10.1039/d0ob00164c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The preparation of phthalimides cross-conjugated with an azulene ring was established by a one-pot Diels-Alder reaction of the corresponding 2-aminofuran derivatives with several maleimides, without the isolation of the intermediately formed [4 + 2] cycloadducts. The structure, optical and electrochemical properties of the novel phthalimide derivatives were clarified by single-crystal X-ray analysis, UV/Vis and fluorescence spectra, spectroelectrochemistry and voltammetry experiments, and theoretical calculations. These results indicated that the substituents on the azulene ring greatly affect the optical and electrochemical properties of the molecules.
Collapse
Affiliation(s)
- Taku Shoji
- Graduate School of Science and Technology, Shinshu University, Matsumoto, 390-8621, Nagano, Japan.
| | - Nanami Iida
- Graduate School of Science and Technology, Shinshu University, Matsumoto, 390-8621, Nagano, Japan.
| | - Akari Yamazaki
- Graduate School of Science and Technology, Shinshu University, Matsumoto, 390-8621, Nagano, Japan.
| | - Yukino Ariga
- Graduate School of Science and Technology, Shinshu University, Matsumoto, 390-8621, Nagano, Japan.
| | - Akira Ohta
- Graduate School of Science and Technology, Shinshu University, Matsumoto, 390-8621, Nagano, Japan.
| | - Ryuta Sekiguchi
- Graduate School of Science and Technology, Shinshu University, Matsumoto, 390-8621, Nagano, Japan.
| | - Tatsuki Nagahata
- Graduate School of Science and Technology, Hirosaki University, Hirosaki 036-8561, Aomori, Japan
| | - Takuya Nagasawa
- Graduate School of Science and Technology, Hirosaki University, Hirosaki 036-8561, Aomori, Japan
| | - Shunji Ito
- Graduate School of Science and Technology, Hirosaki University, Hirosaki 036-8561, Aomori, Japan
| |
Collapse
|
44
|
Gong J, Peshkov AA, Yu J, Amandykova S, Gimnkhan A, Huang J, Kashtanov S, Pereshivko OP, Peshkov VA. Three-component reaction of azulene, aryl glyoxal and 1,3-dicarbonyl compound for the synthesis of various azulene derivatives. RSC Adv 2020; 10:10113-10117. [PMID: 35498572 PMCID: PMC9050217 DOI: 10.1039/d0ra00356e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 02/27/2020] [Indexed: 01/18/2023] Open
Abstract
A three-component reaction of an azulene, an aryl glyoxal and a 1,3-dicarbonyl compound has been elaborated to access a series of azulene derivatives. Some of these azulene-containing adducts were further subjected to post-MCR transformations to assemble azulene–heterocycle conjugates. Three-component reaction of azulene, aryl glyoxal and 1,3-dicarbonyl compound and subsequent post-transformations provide access to three distinct types of azulene derivatives.![]()
Collapse
Affiliation(s)
- Jing Gong
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
- P. R. China
| | - Anatoly A. Peshkov
- Department of Chemistry
- School of Sciences and Humanities
- Nazarbayev University
- Nur-Sultan 010000
- Republic of Kazakhstan
| | - Jiafeng Yu
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
- P. R. China
| | - Sagadat Amandykova
- Department of Chemistry
- School of Sciences and Humanities
- Nazarbayev University
- Nur-Sultan 010000
- Republic of Kazakhstan
| | - Aidana Gimnkhan
- Department of Chemistry
- School of Sciences and Humanities
- Nazarbayev University
- Nur-Sultan 010000
- Republic of Kazakhstan
| | - Jianjun Huang
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
- P. R. China
| | - Stepan Kashtanov
- Department of Chemistry
- Xi'an Jiaotong-Liverpool University
- Suzhou
- P. R. China
| | - Olga P. Pereshivko
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
- P. R. China
| | - Vsevolod A. Peshkov
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
- P. R. China
| |
Collapse
|
45
|
Kumar NR, Agrawal AR, Zade SS. Abnormal Nucleophilic Substitution on Methoxytropone Derivatives: Steric Strategy to Synthesize 5-Substituted Azulenes. Chemistry 2019; 25:14064-14071. [PMID: 31364221 DOI: 10.1002/chem.201902702] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Indexed: 11/08/2022]
Abstract
Azulene is a non-alternant non-benzenoid aromatic system, and in turn, it possesses unusual photophysical properties. Azulene-based conjugated systems have received increasing interest in recent years as optoelectronic materials. Despite the routes available for the preparation of substituted azulene derivatives, there remain few methods that allow regioselective substitution on the seven-membered ring of azulenes due to the subtle reactivity difference among the various positions. This report explores the reactivity of substituted tropolones as the azulene precursors and also provides a new method to create 5-substituted azulenes. The reaction of cyanoacetate enolate with unsubstituted 2-methoxytropone affords azulene through the attack of the nucleophile on the C-2 center (normal pathway). We have observed that 3-substituted 2-methoxytropones undergo steric-guided nucleophilic addition at the C-7 center (abnormal pathway) to afford 5-substituted azulene derivatives. Based on this observation and DFT calculation, a new synthetic strategy is devised for the regioselective synthesis of 5-substituted multifunctional azulenes, which cannot be accessed by any other method.
Collapse
Affiliation(s)
- Neha Rani Kumar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, Nadia, West Bengal, India
| | - Abhijeet R Agrawal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, Nadia, West Bengal, India
| | - Sanjio S Zade
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, Nadia, West Bengal, India
| |
Collapse
|
46
|
Abstract
Azulene, a nonalternant bicyclic aromatic hydrocarbon, has unique chemical and physical properties and is considered to be a promising building block for constructing novel polycyclic aromatic hydrocarbons (PAHs) and heteroaromatics. We present here the first two azulene-based BN-heteroaromatics Az-BN-1 and Az-BN-2. The chemical structures and optical and electrochemical properties of both compounds have been investigated, as well as their sensing behavior in response to fluoride ion. Az-BN-1 and Az-BN-2 show different photophysical properties from other reported BN-embedded PAHs, such as lower band gaps and unusual fluorescence. In addition, Az-BN-1 and Az-BN-2 exhibit unexpected deboronization upon addition of trifluoroacetic acid, which distinguishes them from other reported BN-heteroaromatics and can be ascribed to the unique property of the azulene unit.
Collapse
Affiliation(s)
- Hanshen Xin
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry , University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , China
| | - Jing Li
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry , University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , China
| | - Xiaodi Yang
- Innovation Research Institute of Traditional Chinese Medicine , Shanghai University of Traditional Chinese Medicine , 1200 Cailun Road , Shanghai 201203 , China
| | - Xike Gao
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry , University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , China
| |
Collapse
|
47
|
Pierrat P, Cebrián C, Beley M, Gros PC, Torres-Moya I, Prieto P, Hesse S. Synthesis and Properties of New Multiple TCNE Adducts from Dialkynyl-N
-(het)arylpyrroles. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900447] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Philippe Pierrat
- Université de Lorraine; CNRS, L2CM, UMR7053; B.P 95823 57078 Metz France
| | - Cristina Cebrián
- Université de Lorraine; CNRS, L2CM, UMR7053; B.P 95823 57078 Metz France
| | - Marc Beley
- Université de Lorraine; CNRS, L2CM, UMR7053; B.P 70239 54506 Vandoeuvre-lès-Nancy France
| | - Philippe C. Gros
- Université de Lorraine; CNRS, L2CM, UMR7053; B.P 70239 54506 Vandoeuvre-lès-Nancy France
| | - Iván Torres-Moya
- Department of Organic Chemistry; Faculty of Chemical and Technologies Sciences; University of Castilla La Mancha-IRICA; 13071 Ciudad Real Spain
| | - Pilar Prieto
- Department of Organic Chemistry; Faculty of Chemical and Technologies Sciences; University of Castilla La Mancha-IRICA; 13071 Ciudad Real Spain
| | - Stéphanie Hesse
- Université de Lorraine; CNRS, L2CM, UMR7053; B.P 95823 57078 Metz France
| |
Collapse
|
48
|
Dar AH, Gowri V, Gopal A, Muthukrishnan A, Bajaj A, Sartaliya S, Selim A, Ali ME, Jayamurugan G. Designing of Push–Pull Chromophores with Tunable Electronic and Luminescent Properties Using Urea as the Electron Donor. J Org Chem 2019; 84:8941-8947. [DOI: 10.1021/acs.joc.9b00841] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Arif Hassan Dar
- Institute of Nano Science and Technology (INST), Phase 10, Sector 64, Mohali, Punjab 160062, India
| | - Vijayendran Gowri
- Institute of Nano Science and Technology (INST), Phase 10, Sector 64, Mohali, Punjab 160062, India
| | - Arya Gopal
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram 695551, Kerala, India
| | - Azhagumuthu Muthukrishnan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram 695551, Kerala, India
| | - Ashima Bajaj
- Institute of Nano Science and Technology (INST), Phase 10, Sector 64, Mohali, Punjab 160062, India
| | - Shaifali Sartaliya
- Institute of Nano Science and Technology (INST), Phase 10, Sector 64, Mohali, Punjab 160062, India
| | - Abdul Selim
- Institute of Nano Science and Technology (INST), Phase 10, Sector 64, Mohali, Punjab 160062, India
| | - Md. Ehesan Ali
- Institute of Nano Science and Technology (INST), Phase 10, Sector 64, Mohali, Punjab 160062, India
| | - Govindasamy Jayamurugan
- Institute of Nano Science and Technology (INST), Phase 10, Sector 64, Mohali, Punjab 160062, India
| |
Collapse
|
49
|
Shoji T, Araki T, Iida N, Miura K, Ohta A, Sekiguchi R, Ito S, Okujima T. Synthesis of azulenophthalimides by phosphine-mediated annulation of 1,2-diformylazulenes with maleimides. Org Chem Front 2019. [DOI: 10.1039/c8qo01121d] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The reaction of 1,2-diformylazulene with maleimides in the presence of PPh3 gave the azulenophthalimides. The optical and electrochemical properties of the azulenophthalimides were investigated.
Collapse
Affiliation(s)
- Taku Shoji
- Graduate School of Science and Technology
- Shinshu University
- Nagano
- Japan
| | - Takanori Araki
- Graduate School of Science and Technology
- Shinshu University
- Nagano
- Japan
| | - Nanami Iida
- Graduate School of Science and Technology
- Shinshu University
- Nagano
- Japan
| | - Kota Miura
- Graduate School of Science and Technology
- Shinshu University
- Nagano
- Japan
| | - Akira Ohta
- Graduate School of Science and Technology
- Shinshu University
- Nagano
- Japan
| | - Ryuta Sekiguchi
- Graduate School of Science and Technology
- Shinshu University
- Nagano
- Japan
| | - Shunji Ito
- Graduate School of Science and Technology
- Hirosaki University
- Hirosaki 036-8561
- Japan
| | - Tetsuo Okujima
- Department of Chemistry and Biology
- Graduate School of Science and Engineering
- Ehime University
- Matsuyama 790-8577
- Japan
| |
Collapse
|
50
|
Shoji T, Miura K, Ohta A, Sekiguchi R, Ito S, Endo Y, Nagahata T, Mori S, Okujima T. Synthesis of azuleno[2,1-b]thiophenes by cycloaddition of azulenylalkynes with elemental sulfur and their structural, optical and electrochemical properties. Org Chem Front 2019. [DOI: 10.1039/c9qo00593e] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction of several azulenylalkynes having an aryl substituent with elemental sulfur afforded the corresponding azuleno[2,1-b]thiophenes in good yields.
Collapse
Affiliation(s)
- Taku Shoji
- Graduate School of Science and Technology
- Shinshu University
- Matsumoto
- Japan
| | - Kota Miura
- Graduate School of Science and Technology
- Shinshu University
- Matsumoto
- Japan
| | - Akira Ohta
- Graduate School of Science and Technology
- Shinshu University
- Matsumoto
- Japan
| | - Ryuta Sekiguchi
- Graduate School of Science and Technology
- Shinshu University
- Matsumoto
- Japan
| | - Shunji Ito
- Graduate School of Science and Technology
- Hirosaki University
- Hirosaki 036-8561
- Japan
| | - Yuya Endo
- Graduate School of Science and Technology
- Hirosaki University
- Hirosaki 036-8561
- Japan
| | - Tatsuki Nagahata
- Graduate School of Science and Technology
- Hirosaki University
- Hirosaki 036-8561
- Japan
| | - Shigeki Mori
- Advanced Research Support Center
- Ehime University
- Matsuyama 790-8577
- Japan
| | - Tetsuo Okujima
- Department of Chemistry and Biology
- Graduate School of Science and Engineering
- Ehime University
- Matsuyama 790-8577
- Japan
| |
Collapse
|