1
|
Bhunia S, Jana SK, Sarkar S, Das A, Mandal S, Samanta S. Direct Growth Control of Antibiotic-Resistant Bacteria Using Visible-Light-Responsive Novel Photoswitchable Antibiotics. Chemistry 2024; 30:e202303685. [PMID: 38217466 DOI: 10.1002/chem.202303685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/21/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
In addition to the discovery of new (modified) potent antibiotics to combat antibiotic resistance, there is a critical need to develop novel strategies that would restrict their off-target effects and unnecessary exposure to bacteria in our body and environment. We report a set of new photoswitchable arylazopyrazole-modified norfloxacin antibiotics that present a high degree of bidirectional photoisomerization, impressive fatigue resistance and reasonably high cis half-lives. The irradiated isomers of most compounds were found to exhibit nearly equal or higher antibacterial activity than norfloxacin against Gram-positive bacteria. Notably, against norfloxacin-resistant S. aureus bacteria, the visible-light-responsive p-SMe-substituted derivative showed remarkably high antimicrobial potency (MIC of 0.25 μg/mL) in the irradiated state, while the potency was reduced by 24-fold in case of its non-irradiated state. The activity was estimated to be retained for more than 7 hours. This is the first report to demonstrate direct photochemical control of the growth of antibiotic-resistant bacteria and to show the highest activity difference between irradiated and non-irradiated states of a photoswitchable antibiotic. Additionally, both isomers were found to be non-harmful to human cells. Molecular modellings were performed to identify the underlying reason behind the high-affinity binding of the irradiated isomer to topoisomerase IV enzyme.
Collapse
Affiliation(s)
- Supriya Bhunia
- Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata, 700009, West Bengal, India
| | - Santosh Kumar Jana
- Department of Microbiology, University of Calcutta, 35-Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Soumik Sarkar
- Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata, 700009, West Bengal, India
| | - Arpan Das
- Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata, 700009, West Bengal, India
| | - Sukhendu Mandal
- Department of Microbiology, University of Calcutta, 35-Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Subhas Samanta
- Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata, 700009, West Bengal, India
| |
Collapse
|
2
|
Bhunia S, Das A, Jana SK, Mandal S, Samanta S. Photoswitchable Antibiotic Hybrids: Spacer Length-Dependent Photochemical Control of Antibacterial Activity. Bioconjug Chem 2024; 35:92-98. [PMID: 38111208 DOI: 10.1021/acs.bioconjchem.3c00488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Photopharmacology holds huge potential for the permanent (long-term) eradication of antibiotic resistance by the application of photoswitchable antibiotics. To construct such antibiotics, various methods have been employed to modify known antibiotics with photoswitches, such that the irradiated state shows activity comparable to or higher than that of the parent antibiotic and that a large activity difference between irradiated and nonirradiated states is achieved. However, most of those methods are ineffective when dealing with more than one drug with dissimilar structures. Here, we have demonstrated a new approach, in which two pharmacophores, one being a photoswitch, are covalently linked via a spacer of variable lengths, leading to a set of azopyrazole-norfloxacin antibiotic hybrids. All compounds showed a high degree of bidirectional photoisomerization, long thermal cis half-lives, and excellent photoresistance. Notably, the hybrid with an optimal four-carbon spacer length enabled the irradiated state to become 12-fold more potent than its nonirradiated state without losing much antimicrobial activity of norfloxacin. Only Gram-positive bacteria were found to be sensitive to this hybrid, and the full antibacterial potency of its irradiated state was found to be retained for nearly 24 h.
Collapse
Affiliation(s)
- Supriya Bhunia
- Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata 700009, West Bengal, India
| | - Arpan Das
- Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata 700009, West Bengal, India
| | - Santosh Kumar Jana
- Department of Microbiology, University of Calcutta, 35-Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - Sukhendu Mandal
- Department of Microbiology, University of Calcutta, 35-Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - Subhas Samanta
- Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata 700009, West Bengal, India
| |
Collapse
|
3
|
Di Martino M, Sessa L, Di Matteo M, Panunzi B, Piotto S, Concilio S. Azobenzene as Antimicrobial Molecules. Molecules 2022; 27:5643. [PMID: 36080413 PMCID: PMC9457709 DOI: 10.3390/molecules27175643] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Azo molecules, characterized by the presence of a -N=N- double bond, are widely used in various fields due to their sensitivity to external stimuli, ch as light. The emergence of bacterial resistance has pushed research towards designing new antimicrobial molecules that are more efficient than those currently in use. Many authors have attempted to exploit the antimicrobial activity of azobenzene and to utilize their photoisomerization for selective control of the bioactivities of antimicrobial molecules, which is necessary for antibacterial therapy. This review will provide a systematic and consequential approach to coupling azobenzene moiety with active antimicrobial molecules and drugs, including small and large organic molecules, such as peptides. A selection of significant cutting-edge articles collected in recent years has been discussed, based on the structural pattern and antimicrobial performance, focusing especially on the photoactivity of azobenzene and the design of smart materials as the most targeted and desirable application.
Collapse
Affiliation(s)
- Miriam Di Martino
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Lucia Sessa
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Martina Di Matteo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Barbara Panunzi
- Department of Agriculture, University of Napoli Federico II, 80126 Naples, Italy
| | - Stefano Piotto
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
- Bionam Research Center for Biomaterials, University of Salerno, 84084 Fisciano, Italy
| | - Simona Concilio
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
- Bionam Research Center for Biomaterials, University of Salerno, 84084 Fisciano, Italy
| |
Collapse
|
4
|
Zhu Y, Li P, Liu C, Jia M, Luo Y, He D, Liao C, Zhang S. Azobenzene quaternary ammonium salt for photo-controlled and reusable disinfection without drug resistance. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.05.057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Cooper C, Peterson EJR, Bailo R, Pan M, Singh A, Moynihan P, Nakaya M, Fujiwara N, Baliga N, Bhatt A. MadR mediates acyl CoA-dependent regulation of mycolic acid desaturation in mycobacteria. Proc Natl Acad Sci U S A 2022; 119:e2111059119. [PMID: 35165190 PMCID: PMC8872791 DOI: 10.1073/pnas.2111059119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 12/28/2021] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium tuberculosis has a lipid-rich cell envelope that is remodeled throughout infection to enable adaptation within the host. Few transcriptional regulators have been characterized that coordinate synthesis of mycolic acids, the major cell wall lipids of mycobacteria. Here, we show that the mycolic acid desaturase regulator (MadR), a transcriptional repressor of the mycolate desaturase genes desA1 and desA2, controls mycolic acid desaturation and biosynthesis in response to cell envelope stress. A madR-null mutant of M. smegmatis exhibited traits of an impaired cell wall with an altered outer mycomembrane, accumulation of a desaturated α-mycolate, susceptibility to antimycobacterials, and cell surface disruption. Transcriptomic profiling showed that enriched lipid metabolism genes that were significantly down-regulated upon madR deletion included acyl-coenzyme A (aceyl-CoA) dehydrogenases, implicating it in the indirect control of β-oxidation pathways. Electromobility shift assays and binding affinities suggest a unique acyl-CoA pool-sensing mechanism, whereby MadR is able to bind a range of acyl-CoAs, including those with unsaturated as well as saturated acyl chains. MadR repression of desA1/desA2 is relieved upon binding of saturated acyl-CoAs of chain length C16 to C24, while no impact is observed upon binding of shorter chain and unsaturated acyl-CoAs. We propose this mechanism of regulation as distinct to other mycolic acid and fatty acid synthesis regulators and place MadR as the key regulatory checkpoint that coordinates mycolic acid remodeling during infection in response to host-derived cell surface perturbation.
Collapse
Affiliation(s)
- Charlotte Cooper
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK
| | | | - Rebeca Bailo
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK
| | - Min Pan
- Institute for Systems Biology, Seattle, WA 98109
| | - Albel Singh
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK
| | - Patrick Moynihan
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK
| | | | - Nagatoshi Fujiwara
- Department of Food and Nutrition, Faculty of Contemporary Human Life Science, Tezukayama University, Nara 631-8585, Japan
| | - Nitin Baliga
- Institute for Systems Biology, Seattle, WA 98109;
- Department of Biology, University of Washington, Seattle, WA 98105
- Department of Microbiology, University of Washington, Seattle, WA 98105
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98105
- Lawrence Berkeley National Lab, Berkeley, CA 94720
| | - Apoorva Bhatt
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK;
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
6
|
Synthesis and characterization of azobenzene derivatives and azobenzene-imidazolium conjugates with selective antimicrobial potential. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130049] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
7
|
Banaszak-Leonard E, Fayeulle A, Franche A, Sagadevan S, Billamboz M. Antimicrobial azo molecules: a review. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2021. [DOI: 10.1007/s13738-021-02238-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Logviniuk D, Fridman M. Serum Prevents Interactions between Antimicrobial Amphiphilic Aminoglycosides and Plasma Membranes. ACS Infect Dis 2020; 6:3212-3223. [PMID: 33174428 DOI: 10.1021/acsinfecdis.0c00588] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Antimicrobial cationic amphiphiles have broad-spectrum activity, and microbes do not readily develop resistance to these agents, highlighting their clinical and industrial potential. Cationic amphiphiles perturb the integrity of membranes leading to cell death, and the lack of discrimination between microbial and mammalian plasma membranes is thought to be one of the main barriers of using these agents for the treatment of systemic infections. Here, we describe the synthesis and study of 20 antimicrobial cationic amphiphiles that are derivatives of the aminoglycoside nebramine with different numbers of alkyl chain ethers that differ in length and degree of unsaturation. We determined antifungal activities and evaluated hemoglobin release from red blood cells as a measure of membrane selectivity and analyzed how serum influences these activities. Microscopic images revealed morphological transformations of red blood cells from the normal double-disc shape to empty ghost cells upon treatment with the cationic amphiphiles. Antifungal activity, hemolysis, and morphological changes in red blood cells decreased as the percentage of serum in the culture medium was increased. In images of red blood cells treated with fluorescently labeled amphiphilic nebramine probes, the accumulation of the cationic amphiphiles in the membranes decreased as serum concentration increased. This suggests that, in addition to its known effect of preventing the deformability of red blood cells, serum prevents interactions between cationic amphiphiles and the plasma membrane. The results of this study indicate that biological activities of cationic amphiphiles are abrogated in serum. Thus, these agents are suitable for external and industrial uses but probably not for effective treatment of systemic infections.
Collapse
Affiliation(s)
- Dana Logviniuk
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Micha Fridman
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
9
|
Song X, Deng X, Wang Q, Tian J, He FL, Hu HY, Tian W. Self-assembling morphology-tunable single-component supramolecular antibiotics for enhanced antibacterial manipulation. Polym Chem 2020. [DOI: 10.1039/c9py01440c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
This single-component supramolecular antibiotic can undergo reversible self-assembling morphology transitions under sequential ultrasonic and redox stimuli. The self-assemblies with different morphologies display effective antibacterial regulation.
Collapse
Affiliation(s)
- Xin Song
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions and Shaanxi Key Laboratory of Macromolecular Science and Technology
- School of Science
- Northwestern Polytechnical University
- Xi'an
- P. R. China
| | - Xudong Deng
- Key Laboratory for Space Bioscience and Biotechnology
- School of Life Sciences
- Northwestern Polytechnical University
- Xi'an 710072
- P. R. China
| | - Qinghua Wang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine
- and Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation
- Institute of Materia Medica
- Peking Union Medical College and Chinese Academy of Medical Sciences
- Beijing 100050
| | - Jinjin Tian
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions and Shaanxi Key Laboratory of Macromolecular Science and Technology
- School of Science
- Northwestern Polytechnical University
- Xi'an
- P. R. China
| | - Feng-Li He
- Key Laboratory for Space Bioscience and Biotechnology
- School of Life Sciences
- Northwestern Polytechnical University
- Xi'an 710072
- P. R. China
| | - Hai-Yu Hu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine
- and Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation
- Institute of Materia Medica
- Peking Union Medical College and Chinese Academy of Medical Sciences
- Beijing 100050
| | - Wei Tian
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions and Shaanxi Key Laboratory of Macromolecular Science and Technology
- School of Science
- Northwestern Polytechnical University
- Xi'an
- P. R. China
| |
Collapse
|
10
|
Franche A, Fayeulle A, Lins L, Billamboz M, Pezron I, Deleu M, Léonard E. Amphiphilic azobenzenes: Antibacterial activities and biophysical investigation of their interaction with bacterial membrane lipids. Bioorg Chem 2020; 94:103399. [DOI: 10.1016/j.bioorg.2019.103399] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 01/22/2023]
|
11
|
Alfindee MN, Subedi YP, Grilley MM, Takemoto JY, Chang CWT. Antifungal Activities of 4″,6″-Disubstituted Amphiphilic Kanamycins. Molecules 2019; 24:molecules24101882. [PMID: 31100822 PMCID: PMC6571828 DOI: 10.3390/molecules24101882] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/10/2019] [Accepted: 05/14/2019] [Indexed: 12/17/2022] Open
Abstract
Amphiphilic kanamycins derived from the classic antibiotic kanamycin have attracted interest due to their novel bioactivities beyond inhibition of bacteria. In this study, the recently described 4″,6″-diaryl amphiphilic kanamycins reported as inhibitors of connexin were examined for their antifungal activities. Nearly all 4″,6″-diaryl amphiphilic kanamycins tested had antifungal activities comparable to those of 4″,6″-dialkyl amphiphilic kanamycins, reported previously against several fungal strains. The minimal growth inhibitory concentrations (MICs) correlated with the degree of amphiphilicity (cLogD) of the di-substituted amphiphilic kanamycins. Using the fluorogenic dyes, SYTOXTM Green and propidium iodide, the most active compounds at the corresponding MICs or at 2×MICs caused biphasic dye fluorescence increases over time with intact cells. Further lowering the concentrations to half MICs caused first-order dye fluorescence increases. Interestingly, 4×MIC or 8×MIC levels resulted in fluorescence suppression that did not correlate with the MIC and plasma membrane permeabilization. The results show that 4″,6″-diaryl amphiphilic kanamycins are antifungal and that amphiphilicity parameter cLogD is useful for the design of the most membrane-active versions. A cautionary limitation of fluorescence suppression was revealed when using fluorogenic dyes to measure cell-permeation mechanisms with these antifungals at high concentrations. Finally, 4″,6″-diaryl amphiphilic kanamycins elevate the production of cellular reactive oxygen species as other reported amphiphilic kanamycins.
Collapse
Affiliation(s)
- Madher N Alfindee
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT 84322-0300, USA.
| | - Yagya P Subedi
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT 84322-0300, USA.
| | - Michelle M Grilley
- Department of Biology, Utah State University, 5305 Old Main Hill, Logan, UT 84322-5305, USA.
| | - Jon Y Takemoto
- Department of Biology, Utah State University, 5305 Old Main Hill, Logan, UT 84322-5305, USA.
| | - Cheng-Wei T Chang
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT 84322-0300, USA.
| |
Collapse
|
12
|
Wang X, Liu Y, Lin Y, Han Y, Huang J, Zhou J, Yan Y. Trojan Antibiotics: New Weapons for Fighting Against Drug Resistance. ACS APPLIED BIO MATERIALS 2019; 2:447-453. [PMID: 35016308 DOI: 10.1021/acsabm.8b00648] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bacterial resistance has caused a global healthcare emergency due to the buildup of antibiotics in the environment. Novel approaches that enable highly efficient bactericide and auto inactivation are highly desired. Past researches mainly focused on the on-off bactericidal ability of antibiotics, which often displays unsatisfactory bactericidal efficiency. Herein, we report a Trojan antibiotic that considers the affinity of antibiotics to bacteria. A disguised host-guest supramolecule based on cucurbituril (CB[7]) and a bola-type azobenzene compound with glycosylamine heads at both ends is synthesized. This supramolecule has a surface fully decorated with sugar-like components, which are highly analogous to wall components of bacteria. This Trojan antibiotic is benign to a wide spectrum of bacteria at a weak basic pH of approximately 9.0 under daylight conditions. However, this antibiotic becomes a potent bactericide toward both Gram-negative and Gram-positive bacteria at pH 4.0 under 365 nm UV irradiation. The dual use of pH and UV light greatly enhances the efficiency of the bactericidal effect so that the 50% minimum inhibitory concentration (MIC50) of the Trojan antibiotic is at least 10 times smaller than that of conventional drugs, and the removal of the UV source and reversal of pH automatically stop the antibacterial behavior, which prevents the buildup of active antimicrobial materials in the environment. We expect that the presented Trojan supramolecular strategy may open up a new paradigm in the fight against bacterial resistance.
Collapse
Affiliation(s)
- Xuejiao Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Chengfu Road 202, Beijing 100871, China
| | - Yuxin Liu
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Yiyang Lin
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Chengfu Road 202, Beijing 100871, China
| | - Yuchun Han
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jianbin Huang
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Chengfu Road 202, Beijing 100871, China
| | - Jing Zhou
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Yun Yan
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Chengfu Road 202, Beijing 100871, China
| |
Collapse
|
13
|
Chen L, Yang D, Feng J, Zhang M, Qian Q, Zhou Y. Switchable modulation of bacterial growth and biofilm formation based on supramolecular tripeptide amphiphiles. J Mater Chem B 2019; 7:6420-6427. [DOI: 10.1039/c9tb00973f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A minimalistic dual-responsive supramolecular tripeptide system was developed for switchable control of bacterial growth and biofilm formation.
Collapse
Affiliation(s)
- Limin Chen
- School of Ophthalmology and Optometry
- Eye Hospital
- School of Biomedical Engineering
- Wenzhou Medical University
- Wenzhou 325000
| | - Dan Yang
- School of Ophthalmology and Optometry
- Eye Hospital
- School of Biomedical Engineering
- Wenzhou Medical University
- Wenzhou 325000
| | - Jie Feng
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province
- Wenzhou Institute
- University of Chinese Academy of Sciences
- Wenzhou 325000
- P. R. China
| | - Min Zhang
- School of Ophthalmology and Optometry
- Eye Hospital
- School of Biomedical Engineering
- Wenzhou Medical University
- Wenzhou 325000
| | - Qiuping Qian
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province
- Wenzhou Institute
- University of Chinese Academy of Sciences
- Wenzhou 325000
- P. R. China
| | - Yunlong Zhou
- School of Ophthalmology and Optometry
- Eye Hospital
- School of Biomedical Engineering
- Wenzhou Medical University
- Wenzhou 325000
| |
Collapse
|
14
|
Poonthiyil V, Reise F, Despras G, Lindhorst TK. Microwave-Assisted Facile Synthesis of Red-Shifted Azobenzene Glycoconjugates. European J Org Chem 2018. [DOI: 10.1002/ejoc.201801078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Vivek Poonthiyil
- Otto Diels Institute of Organic Chemistry; Christiana Albertina University of Kiel; Otto-Hahn-Platz 3/4 24118 Kiel Germany
| | - Franziska Reise
- Otto Diels Institute of Organic Chemistry; Christiana Albertina University of Kiel; Otto-Hahn-Platz 3/4 24118 Kiel Germany
| | - Guillaume Despras
- Otto Diels Institute of Organic Chemistry; Christiana Albertina University of Kiel; Otto-Hahn-Platz 3/4 24118 Kiel Germany
| | - Thisbe K. Lindhorst
- Otto Diels Institute of Organic Chemistry; Christiana Albertina University of Kiel; Otto-Hahn-Platz 3/4 24118 Kiel Germany
| |
Collapse
|
15
|
Louzoun Zada S, Green KD, Shrestha SK, Herzog IM, Garneau-Tsodikova S, Fridman M. Derivatives of Ribosome-Inhibiting Antibiotic Chloramphenicol Inhibit the Biosynthesis of Bacterial Cell Wall. ACS Infect Dis 2018; 4:1121-1129. [PMID: 29714997 DOI: 10.1021/acsinfecdis.8b00078] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Here, we describe the preparation and evaluation of α,β-unsaturated carbonyl derivatives of the bacterial translation inhibiting antibiotic chloramphenicol (CAM). Compared to the parent antibiotic, two compounds containing α,β-unsaturated ketones (1 and 4) displayed a broader spectrum of activity against a panel of Gram-positive pathogens with a minimum inhibitory concentration range of 2-32 μg/mL. Interestingly, unlike the parent CAM, these compounds do not inhibit bacterial translation. Microscopic evidence and metabolic labeling of a cell wall peptidoglycan suggested that compounds 1 and 4 caused extensive damage to the envelope of Staphylococcus aureus cells by inhibition of the early stage of cell wall peptidoglycan biosynthesis. Unlike the effect of membrane-disrupting antimicrobial cationic amphiphiles, these compounds did not rapidly permeabilize the bacterial membrane. Like the parent antibiotic CAM, compounds 1 and 4 had a bacteriostatic effect on S. aureus. Both compounds 1 and 4 were cytotoxic to immortalized nucleated mammalian cells; however, neither caused measurable membrane damage to mammalian red blood cells. These data suggest that the reported CAM-derived antimicrobial agents offer a new molecular scaffold for development of novel bacterial cell wall biosynthesis inhibiting antibiotics.
Collapse
Affiliation(s)
- Sivan Louzoun Zada
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Keith D. Green
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40536-0596, United States
| | - Sanjib K. Shrestha
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40536-0596, United States
| | - Ido M. Herzog
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Sylvie Garneau-Tsodikova
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40536-0596, United States
| | - Micha Fridman
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv, 6997801, Israel
| |
Collapse
|