1
|
Tu JL, Huang B. Titanium in photocatalytic organic transformations: current applications and future developments. Org Biomol Chem 2024; 22:6650-6664. [PMID: 39118484 DOI: 10.1039/d4ob01152j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Titanium, as an important transition metal, has garnered extensive attention in both industry and academia due to its excellent mechanical properties, corrosion resistance, and unique reactivity in organic synthesis. In the field of organic photocatalysis, titanium-based compounds such as titanium dioxide (TiO2), titanocenes (Cp2TiCl2, CpTiCl3), titanium tetrachloride (TiCl4), tetrakis(isopropoxy)titanium (Ti(OiPr)4), and chiral titanium complexes have demonstrated distinct reactivity and selectivity. This review focuses on the roles of these titanium compounds in photocatalytic organic reactions, and highlights the reaction pathways such as photo-induced single-electron transfer (SET) and ligand-to-metal charge transfer (LMCT). By systematically surveying the latest advancements in titanium-involved organic photocatalysis, this review aims to provide references for further research and technological innovation within this fast-developing field.
Collapse
Affiliation(s)
- Jia-Lin Tu
- Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519085, China.
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| | - Binbin Huang
- Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519085, China.
| |
Collapse
|
2
|
Pathania V, Roy SR. Phenalenyl-Based Photocatalyst for Bioinspired Oxidative Dehydrogenation of N-Heterocycles and Benzyl Alcohols. J Org Chem 2024; 89:4145-4155. [PMID: 38415655 DOI: 10.1021/acs.joc.4c00081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
The environmental benefits of molecular oxygen as the oxidizing agent in oxidation reactions that synthesize fine chemicals cannot be overstated. Increased interest in developing robust photocatalysts is stimulated by the fact that the current photocatalytic transformation boom has made previously inaccessible synthetic approaches possible. Motivated by enzymatic catalysis, employing a reusable phenalenyl-based photocatalyst, we have successfully developed oxidative dehydrogenation utilizing molecular oxygen as a greener oxidant. Under photoinduced oxidative dehydrogenation conditions, different types of saturated N-heterocycles and alcohols were successfully dehydrogenated. The versatility of this bioinspired protocol is demonstrated by the fact that a wide variety of N-heteroaromatics, such as quinoline, carbazole, quinoxaline, acridine, and indole derivatives, as well as aldehydes and ketones, were successfully synthesized. Detailed mechanistic studies validate the proposed mechanism. Fluorescence lifetime and CV experiments revealed the crucial role of water on the efficiency of the reaction. The present protocol also provides chemoselectivity and scalability, leading to superior results and allowing for the functionalization of bioactive molecules at a late stage in a sustainable manner.
Collapse
Affiliation(s)
- Vishali Pathania
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Sudipta Raha Roy
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
3
|
Tan Z, Chen T, Zhu J, Luo W, Yu D, Guo W. Visible Light Mediated Chemoselective Hydroxylation of Benzylic Methylenes. J Org Chem 2024; 89:2656-2664. [PMID: 38324782 DOI: 10.1021/acs.joc.3c02683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
We have developed a metal-free photocatalytic selective hydroxylation of benzylic methylenes to secondary alcohols. This approach utilizes low-cost eosin Y as photocatalyst, O2 as green oxidant, and inexpensive triethylamine as inhibitor for overoxidation. The mild reaction conditions enable the production of secondary alcohols with 56-95% yields, making it a promising and environmental-friendly method for the synthesis of secondary alcohols from benzylic methylenes.
Collapse
Affiliation(s)
- Zhiyong Tan
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Tingting Chen
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Jinbin Zhu
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Wenjun Luo
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Daohong Yu
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Wei Guo
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| |
Collapse
|
4
|
Manikpuri D, Pradhan DR, Chatterjee B, Gunanathan C. Ruthenium-catalyzed acceptorless dehydrogenation of heterocycles. J CHEM SCI 2022. [DOI: 10.1007/s12039-022-02108-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
Zhang Z, Gu J, Ji L, Liu X, Zhang T, Lv Y, Liu F, Jia Z, Loh TP. Triaryl Carbonium Ion-Pair-Mediated Cooperative Aerobic Dehydrogenation of N-Heterocycles. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zhenguo Zhang
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, People’s Republic of China
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, People’s Republic of China
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Jun Gu
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
| | - Liang Ji
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, People’s Republic of China
| | - Xiaoxiao Liu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, People’s Republic of China
| | - Ting Zhang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, People’s Republic of China
| | - Yongheng Lv
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, People’s Republic of China
| | - Fang Liu
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
| | - Zhenhua Jia
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, People’s Republic of China
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, People’s Republic of China
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Teck-Peng Loh
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, People’s Republic of China
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, People’s Republic of China
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
6
|
Dasi R, Villinger A, Brasholz M. Photocatalytic Azetidine Synthesis by Aerobic Dehydrogenative [2 + 2] Cycloadditions of Amines with Alkenes. Org Lett 2022; 24:8041-8046. [PMID: 36264267 DOI: 10.1021/acs.orglett.2c03291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Photocatalytic dehydrogenative [2 + 2] cycloadditions between amines and alkenes were developed that allow for the stereoselective and high-yielding synthesis of functionalized azetidines. The oxidative formal Aza Paternò-Büchi reactions are induced by photoredox-catalyzed aerobic oxidation of dihydroquinoxalinones 1 as the amines, and in the presence of structurally diverse alkenes 3 intermolecular [2 + 2] cyclization to dihydro-1H-azeto[1,2-a]quinoxalin-3(4H)-ones 4 occurs. The utility of the method is illustrated by the selective conversion of amino acid derived dihydroquinoxalinones 1, including oxidation-prone lysine and tryptophan derivatives.
Collapse
Affiliation(s)
- Rajesh Dasi
- University of Rostock, Institute of Chemistry, Albert-Einstein-Str. 3a, 18059 Rostock, Germany
| | - Alexander Villinger
- University of Rostock, Institute of Chemistry, Albert-Einstein-Str. 3a, 18059 Rostock, Germany
| | - Malte Brasholz
- University of Rostock, Institute of Chemistry, Albert-Einstein-Str. 3a, 18059 Rostock, Germany.,Leibniz-Institut für Katalyse e.V., Albert-Einstein-Str. 29a, 18059 Rostock, Germany
| |
Collapse
|
7
|
Fu X, Wang Y, Liu L, Li C, Huang L, Huang J. KO
t
Bu/O
2
Mediated Dehydrogenation of
N
‐Heterocycles, Alcohols. ChemistrySelect 2022. [DOI: 10.1002/slct.202202338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xuegang Fu
- School of Pharmaceutical Science and Technology Tianjin University 92 Weijin Road, Nankai District Tianjin 300072 P. R. of China
- Collaborative Innovation Center of Chemical Science and Engineering Tianjin 300072 P. R. of China
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology Tianjin University Tianjin 300072 P. R. of China
| | - Yue Wang
- School of Pharmaceutical Science and Technology Tianjin University 92 Weijin Road, Nankai District Tianjin 300072 P. R. of China
- Weifang Inspection and Testing Center Weifang Administration for Market Regulation Building K, China Food Valley Headquarter, Beihai Road, Hanting District, Weifang 261000 Shandong P. R. of China
| | - Liu Liu
- School of Pharmaceutical Science and Technology Tianjin University 92 Weijin Road, Nankai District Tianjin 300072 P. R. of China
- Collaborative Innovation Center of Chemical Science and Engineering Tianjin 300072 P. R. of China
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology Tianjin University Tianjin 300072 P. R. of China
| | - Caifeng Li
- School of Pharmaceutical Science and Technology Tianjin University 92 Weijin Road, Nankai District Tianjin 300072 P. R. of China
- Collaborative Innovation Center of Chemical Science and Engineering Tianjin 300072 P. R. of China
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology Tianjin University Tianjin 300072 P. R. of China
| | - Lin Huang
- School of Pharmaceutical Science and Technology Tianjin University 92 Weijin Road, Nankai District Tianjin 300072 P. R. of China
- Collaborative Innovation Center of Chemical Science and Engineering Tianjin 300072 P. R. of China
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology Tianjin University Tianjin 300072 P. R. of China
| | - Jianhui Huang
- School of Pharmaceutical Science and Technology Tianjin University 92 Weijin Road, Nankai District Tianjin 300072 P. R. of China
- Collaborative Innovation Center of Chemical Science and Engineering Tianjin 300072 P. R. of China
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology Tianjin University Tianjin 300072 P. R. of China
| |
Collapse
|
8
|
Li X, Yuan Z, Liu Y, Yang H, Nie J, Wang G, Liu B. Nitrogen-Doped Carbon as a Highly Active Metal-Free Catalyst for the Selective Oxidative Dehydrogenation of N-Heterocycles. CHEMSUSCHEM 2022; 15:e202200753. [PMID: 35504842 DOI: 10.1002/cssc.202200753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 04/29/2022] [Indexed: 06/14/2023]
Abstract
N-heteroarenes represents one of the most important chemicals in pharmaceuticals and other bio-active molecules, which can be easily accessed from the oxidation of N-heterocycles over metal catalysts. Herein, the metal-free oxidative dehydrogenation of N-heterocycles into N-heteroarenes was developed using molecular oxygen as the terminal oxidant. The nitrogen-doped carbon materials were facilely prepared via the simple pyrolysis process using biomass (carboxymethyl cellulose sodium) and dicyandiamide as the carbon and nitrogen source, respectively, and they were discovered to be robust for the oxidative dehydrogenation of N-heterocycles into N-heteroarenes under mild conditions (80 °C under 1 bar O2 ) with water as the green solvent. Diverse N-heterocycles including 1,2,3,4-tetrahydroisoquinolines, indolines and 1,2,3,4-tetrahydroquinoxalines were smoothly converted into N-heteroarenes with high to excellent yields (76->99 %). Superoxide radical (⋅O2 - ) and hydroxyl radical (⋅OH) were probed as the reactive oxygen species for the oxidation of N-heterocycles into N-heteroarenes. More importantly, the nitrogen-doped carbon catalyst can be reused with a high stability. The method provides an environmentally friendly and economical route to access important N-hetero-aromatic commodities.
Collapse
Affiliation(s)
- Xun Li
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, South-Central Minzu University, Wuhan, 430074, P. R. China
| | - Ziliang Yuan
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, South-Central Minzu University, Wuhan, 430074, P. R. China
- Hubei Coal Conversion and New Carbon Materials Key Laboratory, College of Chemical Engineering and Technology, Wuhan University of Science and Technology, Wuhan, 430081, P. R. China
| | - Yi Liu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Hanmin Yang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, South-Central Minzu University, Wuhan, 430074, P. R. China
| | - Jiabao Nie
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, South-Central Minzu University, Wuhan, 430074, P. R. China
| | - Guanghui Wang
- Hubei Coal Conversion and New Carbon Materials Key Laboratory, College of Chemical Engineering and Technology, Wuhan University of Science and Technology, Wuhan, 430081, P. R. China
| | - Bing Liu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, South-Central Minzu University, Wuhan, 430074, P. R. China
| |
Collapse
|
9
|
Mejuto C, Ibáñez-Ibáñez L, Guisado-Barrios G, Mata JA. Visible-Light-Promoted Iridium(III)-Catalyzed Acceptorless Dehydrogenation of N-Heterocycles at Room Temperature. ACS Catal 2022; 12:6238-6245. [PMID: 35633898 PMCID: PMC9128065 DOI: 10.1021/acscatal.2c01224] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/29/2022] [Indexed: 12/14/2022]
Abstract
![]()
An effective visible-light-promoted
iridium(III)-catalyzed hydrogen
production from N-heterocycles is described. A single iridium complex
constitutes the photocatalytic system playing a dual task, harvesting
visible-light and facilitating C–H cleavage and H2 formation at room temperature and without additives. The presence
of a chelating C–N ligand combining a mesoionic carbene ligand
along with an amido functionality in the IrIII complex
is essential to attain the photocatalytic transformation. Furthermore,
the IrIII complex is also an efficient catalyst for the
thermal reverse process under mild conditions, positioning itself
as a proficient candidate for liquid organic hydrogen carrier technologies
(LOHCs). Mechanistic studies support a light-induced formation of
H2 from the Ir–H intermediate as the operating mode
of the iridium complex.
Collapse
Affiliation(s)
- Carmen Mejuto
- Institute of Advanced Materials (INAM), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Jaume I, Avda. Sos Baynat s/n, 12006 Castellón, Spain
| | - Laura Ibáñez-Ibáñez
- Institute of Advanced Materials (INAM), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Jaume I, Avda. Sos Baynat s/n, 12006 Castellón, Spain
| | - Gregorio Guisado-Barrios
- Departamento de Química Inorgánica. Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Jose A. Mata
- Institute of Advanced Materials (INAM), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Jaume I, Avda. Sos Baynat s/n, 12006 Castellón, Spain
| |
Collapse
|
10
|
Echevarría I, Vaquero M, Manzano BR, Jalón FA, Quesada R, Espino G. Photocatalytic Aerobic Dehydrogenation of N-Heterocycles with Ir(III) Photosensitizers Bearing the 2(2'-Pyridyl)benzimidazole Scaffold. Inorg Chem 2022; 61:6193-6208. [PMID: 35394766 PMCID: PMC9044454 DOI: 10.1021/acs.inorgchem.2c00358] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Photoredox catalysis constitutes a very powerful tool in organic synthesis, due to its versatility, efficiency, and the mild conditions required by photoinduced transformations. In this paper, we present an efficient and selective photocatalytic procedure for the aerobic oxidative dehydrogenation of partially saturated N-heterocycles to afford the respective N-heteroarenes (indoles, quinolines, acridines, and quinoxalines). The protocol involves the use of new Ir(III) biscyclometalated photocatalysts of the general formula [Ir(C^N)2(N^N')]Cl, where the C^N ligand is 2-(2,4-difluorophenyl)pyridinate, and N^N' are different ligands based on the 2-(2'-pyridyl)benzimidazole scaffold. In-depth electrochemical and photophysical studies as well as DFT calculations have allowed us to establish structure-activity relationships, which provide insights for the rational design of efficient metal-based dyes in photocatalytic oxidation reactions. In addition, we have formulated a dual mechanism, mediated by the radical anion superoxide, for the above-mentioned transformations.
Collapse
Affiliation(s)
- Igor Echevarría
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Mónica Vaquero
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Blanca R Manzano
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Avda. Camilo J. Cela 10, 13071 Ciudad Real, Spain
| | - Félix A Jalón
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Avda. Camilo J. Cela 10, 13071 Ciudad Real, Spain
| | - Roberto Quesada
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Gustavo Espino
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain
| |
Collapse
|
11
|
Torregrosa-Chinillach A, Chinchilla R. Visible Light-Induced Aerobic Oxidative Dehydrogenation of C-N/C-O to C=N/C=O Bonds Using Metal-Free Photocatalysts: Recent Developments. Molecules 2022; 27:497. [PMID: 35056812 PMCID: PMC8780101 DOI: 10.3390/molecules27020497] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 12/31/2021] [Accepted: 01/11/2022] [Indexed: 12/14/2022] Open
Abstract
Performing synthetic transformation using visible light as energy source, in the presence of a photocatalyst as a promoter, is currently of high interest, and oxidation reactions carried out under these conditions using oxygen as the final oxidant are particularly convenient from an environmental point of view. This review summarizes the recent developments achieved in the oxidative dehydrogenation of C-N and C-O bonds, leading to C=N and C=O bonds, respectively, using air or pure oxygen as oxidant and metal-free homogeneous or recyclable heterogeneous photocatalysts under visible light irradiation.
Collapse
Affiliation(s)
| | - Rafael Chinchilla
- Department of Organic Chemistry, Faculty of Sciences, Institute of Organic Synthesis (ISO), University of Alicante, Apdo. 99, 03080 Alicante, Spain;
| |
Collapse
|
12
|
Xu X, Xia T, Chen XL, Hao X, Liang T, Li HR, Gong HY. Tetrabenzo[ b, de, gh, j][1,10]phenanthroline: a nitrogen-doped nanographene as a selective metal cation and proton fluorophore. NEW J CHEM 2022. [DOI: 10.1039/d2nj01861f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A nitrogen-doped nanographene molecule tetrabenzo[b,de,gh,j]-[1,10]phenanthroline (TB(phen)) was generated for selective transition metal cation sensing or as a proton fluorophore.
Collapse
Affiliation(s)
- Xiao Xu
- Department of Chemistry, Renmin University of China, No. 59, Zhongguancun St., HaiDian District, Beijing, 100872, P. R. China
- College of Chemistry, Beijing Normal University, No. 19, XinJieKouWai St., HaiDian District, Beijing 100875, P. R. China
| | - Ting Xia
- Department of Chemistry, Renmin University of China, No. 59, Zhongguancun St., HaiDian District, Beijing, 100872, P. R. China
- College of Chemistry, Beijing Normal University, No. 19, XinJieKouWai St., HaiDian District, Beijing 100875, P. R. China
| | - Xu-Lang Chen
- College of Chemistry, Beijing Normal University, No. 19, XinJieKouWai St., HaiDian District, Beijing 100875, P. R. China
- College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, Hubei Normal University, Huangshi 435002, P. R. China
| | - Xiang Hao
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Tongling Liang
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Huan-Rong Li
- Department of Chemistry, Renmin University of China, No. 59, Zhongguancun St., HaiDian District, Beijing, 100872, P. R. China
| | - Han-Yuan Gong
- College of Chemistry, Beijing Normal University, No. 19, XinJieKouWai St., HaiDian District, Beijing 100875, P. R. China
| |
Collapse
|
13
|
Liu JJ, Guo FH, Cui FJ, Zhu JH, Liu XY, Ullah A, Wang XC, Quan ZJ. A biomass-derived N-doped porous carbon catalyst for the aerobic dehydrogenation of nitrogen heterocycles. NEW J CHEM 2022. [DOI: 10.1039/d1nj05411b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
N-doped porous carbon (NC) was synthesized from sugar cane bagasse, which is a sustainable and widely available biomass waste.
Collapse
Affiliation(s)
- Jing-Jiang Liu
- Gansu International Scientific and Technological Cooperation Base of Water Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People's Republic of China
- Gansu Police Vocational College, Lanzhou, Gansu 730046, China
| | - Fu-Hu Guo
- Gansu International Scientific and Technological Cooperation Base of Water Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People's Republic of China
| | - Fu-Jun Cui
- Gansu Police Vocational College, Lanzhou, Gansu 730046, China
| | - Ji-Hua Zhu
- College of Chemistry and Chemical Engineering, Qinghai Normal University, Xining, Qinghai, 810016, China
| | - Xiao-Yu Liu
- Gansu International Scientific and Technological Cooperation Base of Water Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People's Republic of China
| | - Arif Ullah
- Gansu International Scientific and Technological Cooperation Base of Water Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People's Republic of China
| | - Xi-Cun Wang
- Gansu International Scientific and Technological Cooperation Base of Water Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People's Republic of China
| | - Zheng-Jun Quan
- Gansu International Scientific and Technological Cooperation Base of Water Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People's Republic of China
| |
Collapse
|
14
|
Bera A, Bera S, Banerjee D. Recent advances in the synthesis of N-heteroarenes via catalytic dehydrogenation of N-heterocycles. Chem Commun (Camb) 2021; 57:13042-13058. [PMID: 34781335 DOI: 10.1039/d1cc04919d] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Bio-active molecules having N-heteroarene core are widely used for numerous medicinal applications and as lifesaving drugs. In this direction, dehydrogenation of partially saturated aromatic N-heterocycles shows utmost importance for the synthesis of heterocycles. This feature article highlights the recent advances, from 2009 to April 2021, on the dehydrogenation of N-heteroaromatics. Notable features considering the development of newer catalysis for dehydrogenations are: (i) approaches based on precious metal catalysis, (ii) newer strategies and catalyst development technology using non-precious metal-catalysts for N-heterocycles having one or more heteroatoms, (iii) Synthesis of five or six-membered N-heterocycles using photocatalysis, electrocatalytic, and organo-catalytic approaches using different homogeneous and heterogeneous conditions' (iv) metal free (base and acid-promoted) dehydrogenation along with I2, N-hydroxyphthalimide (NHPI) and bio catalyzed miscellaneous examples have also been discussed, (v) mechanistic studies for various dehydrogenation reactions and (vi) synthetic applications of various bio-active molecules including post-drug derivatization are discussed.
Collapse
Affiliation(s)
- Atanu Bera
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| | - Sourajit Bera
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| | - Debasis Banerjee
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| |
Collapse
|
15
|
Song G, Kim KM, Lee S, Jeong KS. Subtle Modification of Imine-linked Helical Receptors to Significantly Alter their Binding Affinities and Selectivities for Chiral Guests. Chem Asian J 2021; 16:2958-2966. [PMID: 34378325 DOI: 10.1002/asia.202100768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/04/2021] [Indexed: 11/07/2022]
Abstract
Aromatic helical receptors P-1 and P-2 were slightly modified by aerobic oxidation to afford new receptors P-7 and P-8 with right-handed helical cavities. This subtle modification induced significant changes in the binding properties for chiral guests. Specifically, P-1 was reported to bind d-tartaric acid (Ka =35500 M-1 ), used as a template, much strongly than l-tartaric acid (326 M-1 ). In contrast, its modified receptor P-7 exhibited significantly reduced affinities for d-tartaric acid (3600 M-1 ) and l-tartaric acid (125 M-1 ). More dramatic changes in the affinities and selectivities were observed for P-2 and P-8 upon binding of polyol guests. P-2 was determined to selectively bind d-sorbitol (52000 M-1 ) over analogous guests, but P-8 showed no binding selectivity: d-sorbitol (1890 M-1 ), l-sorbitol (3330 M-1 ), d-arabitol (959 M-1 ), l-arabitol (4970 M-1 ) and xylitol (4960 M-1 ) in 5% (v/v) DMSO/CH2 Cl2 at 25±1 °C. These results clearly demonstrate that even subtle post-modifications of synthetic receptors may significantly alter their binding affinities and selectivities, in particular for guests of long and flexible chains.
Collapse
Affiliation(s)
- Geunmoo Song
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| | - Kyung Mog Kim
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| | - Seungwon Lee
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| | - Kyu-Sung Jeong
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
16
|
DNA interaction, anticancer, antibacterial, ROS and lipid peroxidation studies of quinoxaline based organometallic Re(I) carbonyls. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130529] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
17
|
Subaramanian M, Sivakumar G, Balaraman E. First-Row Transition-Metal Catalyzed Acceptorless Dehydrogenation and Related Reactions: A Personal Account. CHEM REC 2021; 21:3839-3871. [PMID: 34415674 DOI: 10.1002/tcr.202100165] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/17/2021] [Accepted: 08/04/2021] [Indexed: 12/17/2022]
Abstract
The development of sustainable catalytic protocols that circumvent the use of expensive and precious metal catalysts and avoid toxic reagents plays a crucial role in organic synthesis. Indeed, the direct employment of simple and abundantly available feedstock chemicals as the starting materials broadens their synthetic application in contemporary research. In particular, the transition metal-catalyzed diversification of alcohols with various nucleophilic partners to construct a wide range of building blocks is a powerful and highly desirable methodology. Moreover, the replacement of precious metal catalysts by non-precious and less toxic metals for selective transformations is one of the main goals and has been paid significant attention to in modern chemistry. In view of this, the first-row transition metal catalysts find extensive applications in various synthetic transformations such as catalytic hydrogenation, dehydrogenation, and related reactions. Herein, we have disclosed our recent developments on the base-metal catalysis such as Mn, Fe, Co, and Ni for the acceptorless dehydrogenation reactions and its application in the C-C and C-N bond formation via hydrogen auto-transfer (HA) and acceptorless dehydrogenation coupling (ADC) reactions. These HA/ADC protocols employ alcohol as alkylating agents and eliminate water and/or hydrogen gas as by-products, representing highly atom-efficient and environmentally benign reactions. Furthermore, diverse simple to complex organic molecules synthesis by C-C and C-N bond formation using feedstock alcohols are also overviewed. Overall, this account deals with the contribution and development of efficient and novel homogeneous as well as heterogeneous base-metal catalysts for sustainable chemical synthesis.
Collapse
Affiliation(s)
- Murugan Subaramanian
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, 517507, India
| | - Ganesan Sivakumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, 517507, India
| | - Ekambaram Balaraman
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, 517507, India
| |
Collapse
|
18
|
Liu S, Tian M, Bu X, Tian H, Yang X. Covalent Organic Frameworks toward Diverse Photocatalytic Aerobic Oxidations. Chemistry 2021; 27:7738-7744. [PMID: 33788327 DOI: 10.1002/chem.202100398] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Indexed: 12/18/2022]
Abstract
Photoactive two-dimensional covalent organic frameworks (2D-COFs) have become promising heterogenous photocatalysts in visible-light-driven organic transformations. Herein, a visible-light-driven selective aerobic oxidation of various small organic molecules by using 2D-COFs as the photocatalyst was developed. In this protocol, due to the remarkable photocatalytic capability of hydrazone-based 2D-COF-1 on molecular oxygen activation, a wide range of amides, quinolones, heterocyclic compounds, and sulfoxides were obtained with high efficiency and excellent functional group tolerance under very mild reaction conditions. Furthermore, benefiting from the inherent advantage of heterogenous photocatalysis, prominent sustainability and easy photocatalyst recyclability, a drug molecule (modafinil) and an oxidized mustard gas simulant (2-chloroethyl ethyl sulfoxide) were selectively and easily obtained in scale-up reactions. Mechanistic investigations were conducted using radical quenching experiments and in situ ESR spectroscopy, all corroborating the proposed role of 2D-COF-1 in photocatalytic cycle.
Collapse
Affiliation(s)
- Shuyang Liu
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, 110034, Shenyang, P. R. China
| | - Miao Tian
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, 110034, Shenyang, P. R. China
| | - Xiubin Bu
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, 110034, Shenyang, P. R. China
| | - Hua Tian
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, and Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, P. R. China
| | - Xiaobo Yang
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, 110034, Shenyang, P. R. China.,Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, 100084, Beijing, P. R. China
| |
Collapse
|
19
|
Torregrosa-Chinillach A, Chinchilla R. Synthesis of Xanthones, Thioxanthones and Acridones by a Metal-Free Photocatalytic Oxidation Using Visible Light and Molecular Oxygen. Molecules 2021; 26:molecules26040974. [PMID: 33673146 PMCID: PMC7918112 DOI: 10.3390/molecules26040974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/03/2021] [Accepted: 02/09/2021] [Indexed: 11/22/2022] Open
Abstract
9H-Xanthenes, 9H-thioxanthenes and 9,10-dihydroacridines can be easily oxidized to the corresponding xanthones, thioxanthones and acridones, respectively, by a simple photo-oxidation procedure carried out using molecular oxygen as oxidant under the irradiation of visible blue light and in the presence of riboflavin tetraacetate as a metal-free photocatalyst. The obtained yields are high or quantitative.
Collapse
|
20
|
Abstract
Visible light promoted synthetic routes of quinolines using different strategies are hereby documented.
Collapse
Affiliation(s)
- Ajay Kumar Dhiya
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee-247667
- India
| | - Aparna Monga
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee-247667
- India
| | - Anuj Sharma
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee-247667
- India
| |
Collapse
|
21
|
Abstract
Quinoxalines are observed in several bioactive molecules and have been widely employed in designing molecules for DSSC's, optoelectronics, and sensing applications. Therefore, developing newer synthetic routes as well as novel ways for their functionalization is apparent.
Collapse
Affiliation(s)
- Gauravi Yashwantrao
- Department of Speciality Chemicals Technology
- Institute of Chemical Technology
- Mumbai-400019
- India
| | - Satyajit Saha
- Department of Speciality Chemicals Technology
- Institute of Chemical Technology
- Mumbai-400019
- India
| |
Collapse
|
22
|
Sanz-Villafruela J, Martínez-Alonso C, Echevarría I, Vaquero M, Carbayo A, Fidalgo J, Rodríguez AM, Cuevas-Vicario JV, Lima JC, Moro AJ, Manzano BR, Jalón FA, Espino G. One-pot photocatalytic transformation of indolines into 3-thiocyanate indoles with new Ir( iii) photosensitizers bearing β-carbolines. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01307b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Herein, we harness the combination of two photocatalytic reactions, promoted by new Ir(iii) photosensitizers, for the direct access to 3-thiocyanato indoles from indolines in a one-pot process.
Collapse
|
23
|
Kim J, Kim S, Choi G, Lee GS, Kim D, Choi J, Ihee H, Hong SH. Synthesis of N-aryl amines enabled by photocatalytic dehydrogenation. Chem Sci 2020; 12:1915-1923. [PMID: 34163955 PMCID: PMC8179191 DOI: 10.1039/d0sc04890a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/23/2020] [Indexed: 01/22/2023] Open
Abstract
Catalytic dehydrogenation (CD) via visible-light photoredox catalysis provides an efficient route for the synthesis of aromatic compounds. However, access to N-aryl amines, which are widely utilized synthetic moieties, via visible-light-induced CD remains a significant challenge, because of the difficulty in controlling the reactivity of amines under photocatalytic conditions. Here, the visible-light-induced photocatalytic synthesis of N-aryl amines was achieved by the CD of allylic amines. The unusual strategy using C6F5I as an hydrogen-atom acceptor enables the mild and controlled CD of amines bearing various functional groups and activated C-H bonds, suppressing side-reaction of the reactive N-aryl amine products. Thorough mechanistic studies suggest the involvement of single-electron and hydrogen-atom transfers in a well-defined order to provide a synergistic effect in the control of the reactivity. Notably, the back-electron transfer process prevents the desired product from further reacting under oxidative conditions.
Collapse
Affiliation(s)
- Jungwon Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Siin Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science Daejeon 34141 Republic of Korea
| | - Geunho Choi
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Geun Seok Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Donghyeok Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science Daejeon 34141 Republic of Korea
| | - Jungkweon Choi
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science Daejeon 34141 Republic of Korea
| | - Hyotcherl Ihee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science Daejeon 34141 Republic of Korea
| | - Soon Hyeok Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| |
Collapse
|
24
|
Shen G, Wang Z, Huang X, Gong S, Zhang J, Tang Z, Sun M, Lv X. Bonded- and discreted-Lindqvist hexatungstate-based copper hybrids as heterogeneous catalysts for the one-pot synthesis of 2-phenylquinoxalines via 2-haloanilines with vinyl azides or 3-phenyl-2 H-azirines. Dalton Trans 2020; 49:13993-13998. [PMID: 33078802 DOI: 10.1039/d0dt02625e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
One bonded- and one discreted-Lindqvist hexatungstate-based copper hybrids (Cu-POMs) ([Cu2(O)OH(phen)2]2[W6O19]·6H2O (1) and [Cu2(phen)4Cl] [HW6O19]·2H2O (2) (phen = 1,10-phenanthroline)) were controllably synthesized and routinely characterized. Cu-POMs 1-2 consisted of identical [W6O19] unit and similar copper-phen complexes, the two units are bonded via four Cu-O chemical bonds in compound 1; however, compound 2 is discreted and stabilized by intermolecular electrostatic interactions. Importantly, these Cu-POMs catalysts were first applied in the novel reaction for the preparation of 2-phenylquinoxalines via the one-pot coupling and oxidation reactions of 2-haloanilines with vinyl azides or 3-phenyl-2H-azirines under mild conditions, and Cu-POMs 1 showed higher catalytic performance in good yields (79-84%). The reactions exhibit some functional group tolerance and allow for the preparation of a number of 2-phenylquinoxalines.
Collapse
Affiliation(s)
- Guodong Shen
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, 1 Hunan Avenue, Liaocheng 252000, Shandong, P. R. China.
| | - Zeyou Wang
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, 1 Hunan Avenue, Liaocheng 252000, Shandong, P. R. China.
| | - Xianqiang Huang
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, 1 Hunan Avenue, Liaocheng 252000, Shandong, P. R. China.
| | - Shuwen Gong
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, 1 Hunan Avenue, Liaocheng 252000, Shandong, P. R. China.
| | - Jiangong Zhang
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, 1 Hunan Avenue, Liaocheng 252000, Shandong, P. R. China.
| | - Zhenfei Tang
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, 1 Hunan Avenue, Liaocheng 252000, Shandong, P. R. China.
| | - Manman Sun
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, Zhejiang, P. R. China
| | - Xin Lv
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, P. R. China
| |
Collapse
|
25
|
Catalytically Active Co−N
x
Species Stabilized on Nitrogen‐doped Porous Carbon for Efficient Hydrogenation and Dehydrogenation of N‐heteroarenes. ChemCatChem 2020. [DOI: 10.1002/cctc.202000826] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
26
|
Bera S, Bera A, Banerjee D. Nickel-Catalyzed Dehydrogenation of N-Heterocycles Using Molecular Oxygen. Org Lett 2020; 22:6458-6463. [DOI: 10.1021/acs.orglett.0c02271] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Sourajit Bera
- Laboratory of Catalysis and Organic Synthesis, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Atanu Bera
- Laboratory of Catalysis and Organic Synthesis, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Debasis Banerjee
- Laboratory of Catalysis and Organic Synthesis, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| |
Collapse
|
27
|
Chen W, Tang H, Wang W, Fu Q, Luo J. Catalytic Aerobic Dehydrogenatin of
N
‐Heterocycles by
N
‐Hydoxyphthalimide. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000767] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Weidong Chen
- School of Materials Science and Chemical Engineering Ningbo University Ningbo Zhejiang 315211 People's Republic of China
| | - Hao Tang
- School of Materials Science and Chemical Engineering Ningbo University Ningbo Zhejiang 315211 People's Republic of China
| | - Weilin Wang
- School of Materials Science and Chemical Engineering Ningbo University Ningbo Zhejiang 315211 People's Republic of China
| | - Qiang Fu
- School of Pharmacy Southwest Medical University Luzhou 610041 People's Republic of China
| | - Junfei Luo
- School of Materials Science and Chemical Engineering Ningbo University Ningbo Zhejiang 315211 People's Republic of China
| |
Collapse
|
28
|
Yu K, Zhang H, Sheng Y, Zhu Y. Visible-light-promoted aerobic oxidative hydroxylation of arylboronic acids in water by hydrophilic organic semiconductor. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
29
|
Yang R, Yue S, Tan W, Xie Y, Cai H. DMSO/ t-BuONa/O 2-Mediated Aerobic Dehydrogenation of Saturated N-Heterocycles. J Org Chem 2020; 85:7501-7509. [PMID: 32368910 DOI: 10.1021/acs.joc.9b03447] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Aromatic N-heterocycles such as quinolines, isoquinolines, and indolines are synthesized via sodium tert-butoxide-promoted oxidative dehydrogenation of the saturated heterocycles in DMSO solution. This reaction proceeds under mild reaction conditions and has a good functional group tolerance. Mechanistic studies suggest a radical pathway involving hydrogen abstraction of dimsyl radicals from the N-H bond or α-C-H of the substrates and subsequent oxidation of the nitrogen or α-aminoalkyl radicals.
Collapse
Affiliation(s)
- Ruchun Yang
- College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, China.,Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Key Laboratory of Organic Chemistry, Nanchang, Jiangxi 330013, China
| | - Shusheng Yue
- College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Wei Tan
- Clinic Laboratory, People's Hospital of Yichun City, Yichun, Jiangxi 336000, China
| | - Yongfa Xie
- College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Hu Cai
- College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, China
| |
Collapse
|
30
|
Jiang X, Zhao Z, Shen Z, Chen K, Fang L, Yu C. Flavin/I2
-Catalyzed Aerobic Oxidative C-H Sulfenylation of Aryl-Fused Cyclic Amines. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000508] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Xinpeng Jiang
- College of Pharmaceutical Sciences; Zhejiang University of Technology; Hangzhou P.R. China
| | - Zongchen Zhao
- College of Pharmaceutical Sciences; Zhejiang University of Technology; Hangzhou P.R. China
| | - Zhifeng Shen
- College of Pharmaceutical Sciences; Zhejiang University of Technology; Hangzhou P.R. China
| | - Keda Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals; Zhejiang University of Technology; Hangzhou P.R. China
| | - Liyun Fang
- College of Pharmaceutical Sciences; Zhejiang University of Technology; Hangzhou P.R. China
| | - Chuanming Yu
- College of Pharmaceutical Sciences; Zhejiang University of Technology; Hangzhou P.R. China
| |
Collapse
|
31
|
Jiang J, Liang Z, Xiong X, Zhou X, Ji H. A Carbazolyl Porphyrin‐Based Conjugated Microporous Polymer for Metal‐Free Photocatalytic Aerobic Oxidation Reactions. ChemCatChem 2020. [DOI: 10.1002/cctc.202000199] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Jun Jiang
- Guangdong Industrial Analysis and Testing CenterGuangdong Academy of Sciences Guangzhou 510650 P. R. China
| | - Zhongxiu Liang
- Guangdong Industrial Analysis and Testing CenterGuangdong Academy of Sciences Guangzhou 510650 P. R. China
| | - Xiaoyan Xiong
- Guangdong Industrial Analysis and Testing CenterGuangdong Academy of Sciences Guangzhou 510650 P. R. China
| | - Xiantai Zhou
- School of Chemical Engineering and TechnologySun Yat-sen University Zhuhai 519082 P. R. China
| | - Hongbing Ji
- Fine Chemical Industry Research Institute School of ChemistrySun Yat-sen University Guangzhou 510275 P. R. China
| |
Collapse
|
32
|
Zhao F, Masci D, Ferla S, Varricchio C, Brancale A, Colonna S, Black GW, Turner NJ, Castagnolo D. Monoamine Oxidase (MAO-N) Biocatalyzed Synthesis of Indoles from Indolines Prepared via Photocatalytic Cyclization/Arylative Dearomatization. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01351] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Fei Zhao
- School of Cancer and Pharmaceutical Sciences, King’s College London, London SE1 9NH, United Kingdom
| | - Domiziana Masci
- School of Cancer and Pharmaceutical Sciences, King’s College London, London SE1 9NH, United Kingdom
| | - Salvatore Ferla
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff CF10 3NB, United Kingdom
| | - Carmine Varricchio
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff CF10 3NB, United Kingdom
| | - Andrea Brancale
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff CF10 3NB, United Kingdom
| | - Serena Colonna
- School of Cancer and Pharmaceutical Sciences, King’s College London, London SE1 9NH, United Kingdom
| | - Gary W. Black
- Department of Applied Sciences, Northumbria University, Ellison Place, Newcastle upon Tyne NE1 8ST, United Kingdom
| | - Nicholas J. Turner
- School of Chemistry, Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Daniele Castagnolo
- School of Cancer and Pharmaceutical Sciences, King’s College London, London SE1 9NH, United Kingdom
| |
Collapse
|
33
|
Yu K, Zhang H, Su C, Zhu Y. Visible-Light-Promoted Efficient Aerobic Dehydrogenation of N-Heterocycles by a Tiny Organic Semiconductor Under Ambient Conditions. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000170] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Kunyi Yu
- Department of Chemistry; Tsinghua University; 100084 Beijing PR China
| | - Hanjie Zhang
- Department of Chemistry; Tsinghua University; 100084 Beijing PR China
| | - Chenliang Su
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Engineering Technology Research Center for 2D Materials Information Functional Devices and Systems of Guangdong Province; Institute of Microscale Optoelectronics; Shenzhen University; 518060 Shenzhen PR China
| | - Yongfa Zhu
- Department of Chemistry; Tsinghua University; 100084 Beijing PR China
| |
Collapse
|
34
|
Srivastava A, Singh PK, Ali A, Singh PP, Srivastava V. Recent applications of Rose Bengal catalysis in N-heterocycles: a short review. RSC Adv 2020; 10:39495-39508. [PMID: 35515398 PMCID: PMC9057485 DOI: 10.1039/d0ra07400d] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/18/2020] [Indexed: 11/21/2022] Open
Abstract
The visible light harnessing ability of Rose Bengal, an organic dye, has been extensively employed in organic chemistry over the last few years. In visible light mediated reactions, this photoredox catalyst operates through multiple pathways and has the ability to provide distinctly different and valuable results. The most significant of these results are bond creation, bond functionalization, particularly for C–H and C–heteroatom bonds, and cross couplings. It is crucial to study these cases whenever these bond formations and couplings lead to the formation of heterocyclic compounds or their functionalization. The diverse biological activity and medicinal applications of heterocyclic compounds is an extensively explored area. This review primarily attempts to demonstrate the synthetic potential of Rose Bengal for synthesis and site selective functionalization of nitrogen containing heterocycles. The recent applications of Rose Bengal as a photocatalyst for the synthesis and functionalization of N-heterocycles have been discussed.![]()
Collapse
Affiliation(s)
| | | | - Akram Ali
- Department of Chemistry
- CMP Degree College
- Prayagraj
- India
| | - Praveen P. Singh
- Department of Chemistry
- United College of Engineering and Research
- Prayagraj
- India
| | | |
Collapse
|
35
|
Bi X, Tang T, Meng X, Gou M, Liu X, Zhao P. Aerobic oxidative dehydrogenation of N-heterocycles over OMS-2-based nanocomposite catalysts: preparation, characterization and kinetic study. Catal Sci Technol 2020. [DOI: 10.1039/c9cy01968e] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
OMS-2-based nanocomposites doped with sodium phosphotungstate were prepared and their remarkably enhanced catalytic activity and recyclability in aerobic oxidative dehydrogenation of N-heterocycles were examined in detail.
Collapse
Affiliation(s)
- Xiuru Bi
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Suzhou Research Institute of LICP
- Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences
- Lanzhou 730000
- China
| | - Tao Tang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Suzhou Research Institute of LICP
- Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences
- Lanzhou 730000
- China
| | - Xu Meng
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Suzhou Research Institute of LICP
- Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences
- Lanzhou 730000
- China
| | - Mingxia Gou
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Suzhou Research Institute of LICP
- Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences
- Lanzhou 730000
- China
| | - Xiang Liu
- College of Materials and Chemical Engineering
- Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials
- China Three Gorges University
- Yichang
- China
| | - Peiqing Zhao
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Suzhou Research Institute of LICP
- Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences
- Lanzhou 730000
- China
| |
Collapse
|
36
|
Tuo X, Chen S, Jiang P, Ni P, Wang X, Deng GJ. Iodine-catalyzed convergent aerobic dehydro-aromatization toward benzazoles and benzazines. RSC Adv 2020; 10:8348-8351. [PMID: 35497844 PMCID: PMC9049994 DOI: 10.1039/c9ra10964a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 02/15/2020] [Indexed: 02/02/2023] Open
Abstract
An iodine-catalyzed aerobic dehydro-aromatization has been developed, providing straightforward and efficient access to various benzoazoles and benzoazines. The present transition-metal-free protocol enables the dehydro-aromatization of tetrahydrobenzazoles and tetrahydroquinolines with molecular oxygen as the green oxidant, along with some other N-heterocycles. Hence, a broad range of heteroaromatic compounds are generated in moderate to good yields under facile reaction conditions. An iodine-catalyzed aerobic dehydro-aromatization has been developed, providing a straightforward and efficient access to various benzoazoles and benzoazines.![]()
Collapse
Affiliation(s)
- Xiaolong Tuo
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
- China
| | - Shanping Chen
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
- China
| | - Pingyu Jiang
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
- China
| | - Penghui Ni
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
- China
| | - Xiaodong Wang
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
- China
| | - Guo-Jun Deng
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
- China
| |
Collapse
|
37
|
Cheng X, Zhou S, Xu G, Wang L, Yang Q, Xuan J. [4+2]‐Cycloaddition of
para
‐Quinone Methides with Hexahydro‐1,3,5‐Triazines: Access to 1,3‐Benzoxazine Derivatives. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901169] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Xiao Cheng
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering Anhui University, Hefei Anhui 230601 People's Republic of China
| | - Shuang‐Jing Zhou
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering Anhui University, Hefei Anhui 230601 People's Republic of China
| | - Guo‐Yong Xu
- Institute of Physical Science and Information Technology Anhui University, Hefei Anhui 230601 People's Republic of China
| | - Long Wang
- China Three Gorges University, College of Materials and Chemical Engineering Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, Yichang Hubei 443002 People's Republic of China
| | - Qing‐Qing Yang
- China Three Gorges University, College of Materials and Chemical Engineering Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, Yichang Hubei 443002 People's Republic of China
| | - Jun Xuan
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering Anhui University, Hefei Anhui 230601 People's Republic of China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education Hefei 230601 People's Republic of China
| |
Collapse
|
38
|
Balayeva NO, Zheng N, Dillert R, Bahnemann DW. Visible-Light-Mediated Photocatalytic Aerobic Dehydrogenation of N-heterocycles by Surface-Grafted TiO2 and 4-amino-TEMPO. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03322] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Narmina O. Balayeva
- Institute of Technical Chemistry, Gottfried Wilhelm Leibniz University of Hannover, Callinstr. 5, D-30167 Hannover, Germany
| | - Nan Zheng
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Ralf Dillert
- Institute of Technical Chemistry, Gottfried Wilhelm Leibniz University of Hannover, Callinstr. 5, D-30167 Hannover, Germany
- Laboratory of Nano and Quantum Engineering, Gottfried Wilhelm Leibniz University of Hannover, Schneiderberg 39, D-30167 Hannover, Germany
| | - Detlef W. Bahnemann
- Institute of Technical Chemistry, Gottfried Wilhelm Leibniz University of Hannover, Callinstr. 5, D-30167 Hannover, Germany
- Laboratory of Nano and Quantum Engineering, Gottfried Wilhelm Leibniz University of Hannover, Schneiderberg 39, D-30167 Hannover, Germany
- Laboratory “Photoactive Nanocomposite Materials”, Saint-Petersburg State University, Ulyanovskaya str. 1, Peterhof, 198504 Saint Petersburg, Russia
| |
Collapse
|
39
|
Xu D, Zhao H, Dong Z, Ma J. Cobalt Nanoparticles Apically Encapsulated by Nitrogen‐doped Carbon Nanotubes for Oxidative Dehydrogenation and Transfer Hydrogenation of N‐Heterocycles. ChemCatChem 2019. [DOI: 10.1002/cctc.201901304] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Dan Xu
- College of Chemistry and Chemical Engineering Gansu Provincial Engineering Laboratory for Chemical Catalysis Laboratory of Special Function Materials and Structure Design of the Ministry of EducationLanzhou University No.222, South Tianshui Road Lanzhou P. R. China
| | - Hong Zhao
- College of Chemistry and Chemical Engineering Gansu Provincial Engineering Laboratory for Chemical Catalysis Laboratory of Special Function Materials and Structure Design of the Ministry of EducationLanzhou University No.222, South Tianshui Road Lanzhou P. R. China
| | - Zhengping Dong
- College of Chemistry and Chemical Engineering Gansu Provincial Engineering Laboratory for Chemical Catalysis Laboratory of Special Function Materials and Structure Design of the Ministry of EducationLanzhou University No.222, South Tianshui Road Lanzhou P. R. China
| | - Jiantai Ma
- College of Chemistry and Chemical Engineering Gansu Provincial Engineering Laboratory for Chemical Catalysis Laboratory of Special Function Materials and Structure Design of the Ministry of EducationLanzhou University No.222, South Tianshui Road Lanzhou P. R. China
| |
Collapse
|
40
|
Zhang Y, Schilling W, Das S. Metal-Free Photocatalysts for C-H Bond Oxygenation Reactions with Oxygen as the Oxidant. CHEMSUSCHEM 2019; 12:2898-2910. [PMID: 30934144 DOI: 10.1002/cssc.201900414] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/01/2019] [Indexed: 06/09/2023]
Abstract
Direct and selective oxygenation of C-H bonds to C-O bonds is regarded as an effective tool to generate high-value products. However, these reactions are still subject to challenges such as harsh reaction conditions, use of expensive transition metal catalysts, and involvement of stoichiometric oxidants. To avoid these, molecular oxygen would be ideal as oxidant, as the byproduct is water or hydrogen peroxide. Additionally, achieving these reactions by using metal-free catalysts would contribute to green and sustainable chemical synthesis. This Minireview summarizes recent reports on C-H oxygenation reactions with metal-free catalysts and molecular oxygen under visible-light conditions.
Collapse
Affiliation(s)
- Yu Zhang
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstrasse 2, 37077, Göttingen, Germany
| | - Waldemar Schilling
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstrasse 2, 37077, Göttingen, Germany
| | - Shoubhik Das
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstrasse 2, 37077, Göttingen, Germany
| |
Collapse
|
41
|
Muthukrishnan I, Sridharan V, Menéndez JC. Progress in the Chemistry of Tetrahydroquinolines. Chem Rev 2019; 119:5057-5191. [PMID: 30963764 DOI: 10.1021/acs.chemrev.8b00567] [Citation(s) in RCA: 238] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tetrahydroquinoline is one of the most important simple nitrogen heterocycles, being widespread in nature and present in a broad variety of pharmacologically active compounds. This Review summarizes the progress achieved in the chemistry of tetrahydroquinolines, with emphasis on their synthesis, during the period from mid-2010 to early 2018.
Collapse
Affiliation(s)
- Isravel Muthukrishnan
- Department of Chemistry, School of Chemical and Biotechnology , SASTRA Deemed University , Thanjavur 613401 , Tamil Nadu , India
| | - Vellaisamy Sridharan
- Department of Chemistry, School of Chemical and Biotechnology , SASTRA Deemed University , Thanjavur 613401 , Tamil Nadu , India.,Department of Chemistry and Chemical Sciences , Central University of Jammu , Rahya-Suchani (Bagla) , District-Samba, Jammu 181143 , Jammu and Kashmir , India
| | - J Carlos Menéndez
- Unidad de Química Orgańica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia , Universidad Complutense , 28040 Madrid , Spain
| |
Collapse
|
42
|
Jia Z, Yang Q, Zhang L, Luo S. Photoredox Mediated Acceptorless Dehydrogenative Coupling of Saturated N-Heterocycles. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00123] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Zongbin Jia
- Key Laboratory for Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China, 100190
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, China, 100049
| | - Qi Yang
- Key Laboratory for Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China, 100190
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, China, 100049
| | - Long Zhang
- Key Laboratory for Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China, 100190
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing, China, 100084
| | - Sanzhong Luo
- Key Laboratory for Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China, 100190
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing, China, 100084
| |
Collapse
|
43
|
Weng JQ, Xu WX, Dai XQ, Zhang JH, Liu XH. Alkylation reactions of benzothiazoles with N,N-dimethylamides catalyzed by the two-component system under visible light. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2018.12.064] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
Zheng Y, Tu L, Li N, Huang R, Feng T, Sun H, Li Z, Liu J. Inverse‐Electron‐Demand [4+2]‐Cycloaddition of 1,3,5‐triazinanes: Facile Approaches to Tetrahydroquinazolines. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201801063] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yongsheng Zheng
- School of Pharmaceutical SciencesSouth-Central University of Nationalities, Wuhan 430074 People's Republic of China
| | - Liang Tu
- School of Pharmaceutical SciencesSouth-Central University of Nationalities, Wuhan 430074 People's Republic of China
| | - Na Li
- School of Pharmaceutical SciencesSouth-Central University of Nationalities, Wuhan 430074 People's Republic of China
| | - Rong Huang
- School of Pharmaceutical SciencesSouth-Central University of Nationalities, Wuhan 430074 People's Republic of China
| | - Tao Feng
- School of Pharmaceutical SciencesSouth-Central University of Nationalities, Wuhan 430074 People's Republic of China
| | - Huan Sun
- School of Pharmaceutical SciencesSouth-Central University of Nationalities, Wuhan 430074 People's Republic of China
| | - Zhenghui Li
- School of Pharmaceutical SciencesSouth-Central University of Nationalities, Wuhan 430074 People's Republic of China
| | - Jikai Liu
- School of Pharmaceutical SciencesSouth-Central University of Nationalities, Wuhan 430074 People's Republic of China
| |
Collapse
|
45
|
Zhang J, Li D, Lu G, Deng T, Cai C. Reversible Dehydrogenation and Hydrogenation of N‐Heterocycles Catalyzed by Bimetallic Nanoparticles Encapsulated in MIL‐100(Fe). ChemCatChem 2018. [DOI: 10.1002/cctc.201801311] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jia‐Wei Zhang
- Chemical Engineering CollegeNanjing University of Science & Technology Nanjing 210094 P. R. China
| | - Dan‐Dan Li
- Chemical Engineering CollegeNanjing University of Science & Technology Nanjing 210094 P. R. China
| | - Guo‐Ping Lu
- Chemical Engineering CollegeNanjing University of Science & Technology Nanjing 210094 P. R. China
| | - Tao Deng
- Institute of Tropical MedicineGuangzhou University of Chinese Medicine Guangzhou 510405 P. R. China
| | - Chun Cai
- Chemical Engineering CollegeNanjing University of Science & Technology Nanjing 210094 P. R. China
| |
Collapse
|
46
|
|
47
|
Weng WZ, Liang H, Zhang B. Visible-Light-Mediated Aerobic Oxidation of Organoboron Compounds Using in Situ Generated Hydrogen Peroxide. Org Lett 2018; 20:4979-4983. [DOI: 10.1021/acs.orglett.8b02095] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Wei-Zhi Weng
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| | - Hao Liang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| | - Bo Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| |
Collapse
|
48
|
Saadati S, Ghorashi N, Rostami A, Kobarfard F. Laccase-Based Oxidative Catalytic Systems for the Aerobic Aromatization of Tetrahydroquinazolines and Related N-Heterocyclic Compounds under Mild Conditions. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800466] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Shaghayegh Saadati
- Department of Medicinal Chemistry; Shahid Beheshti University of Medical Sciences; Tehran Iran
| | - Nadya Ghorashi
- Department of Chemistry; University of Kurdistan; Zip Code 66177-15175 Sanandaj Iran
| | - Amin Rostami
- Department of Chemistry; University of Kurdistan; Zip Code 66177-15175 Sanandaj Iran
| | - Farzad Kobarfard
- Department of Medicinal Chemistry; Shahid Beheshti University of Medical Sciences; Tehran Iran
| |
Collapse
|
49
|
Akula PS, Hong BC, Lee GH. Visible-light-induced C(sp 3)-H activation for a C-C bond forming reaction of 3,4-dihydroquinoxalin-2(1 H)-one with nucleophiles using oxygen with a photoredox catalyst or under catalyst-free conditions. RSC Adv 2018; 8:19580-19584. [PMID: 35540997 PMCID: PMC9080698 DOI: 10.1039/c8ra03259a] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 05/15/2018] [Indexed: 01/10/2023] Open
Abstract
A convenient photocatalyzed oxidative coupling reaction of 4-alkyl-3,4-dihydroquinoxalin-2(1H)-one and its derivatives with a variety of nucleophiles was developed with a ruthenium photoredox catalyst and oxygen under a household compact fluorescent light. With a slower reaction rate, the cross coupling transformation can be achieved in the absence of an external photocatalyst with a similar isolated yield. An application to the synthesis of natural product cephalandole A was also demonstrated.
Collapse
Affiliation(s)
- Pavan Sudheer Akula
- Department of Chemistry and Biochemistry, National Chung Cheng University Chia-Yi 621 Taiwan Republic of China +886 5 2721040 +886 5 2729174
| | - Bor-Cherng Hong
- Department of Chemistry and Biochemistry, National Chung Cheng University Chia-Yi 621 Taiwan Republic of China +886 5 2721040 +886 5 2729174
| | - Gene-Hsiang Lee
- Instrumentation Center, National Taiwan University Taipei 106 Taiwan
| |
Collapse
|
50
|
Dong W, Yuan Y, Gao X, Hu B, Xie X, Zhang Z. Merging Visible-Light Photoredox and Lewis Acid Catalysis for the Intramolecular Aza-Diels-Alder Reaction: Synthesis of Substituted Chromeno[4,3-b
]quinolines and [1,6]Naphthyridines. ChemCatChem 2018. [DOI: 10.1002/cctc.201800192] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Wuheng Dong
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs; School of Chemistry and Chemical Engineering; Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 P.R. China
| | - Yao Yuan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs; School of Chemistry and Chemical Engineering; Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 P.R. China
| | - Xiaoshuang Gao
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs; School of Chemistry and Chemical Engineering; Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 P.R. China
| | - Bei Hu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs; School of Chemistry and Chemical Engineering; Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 P.R. China
| | - Xiaomin Xie
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs; School of Chemistry and Chemical Engineering; Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 P.R. China
| | - Zhaoguo Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs; School of Chemistry and Chemical Engineering; Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 P.R. China
- Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 P.R. China
| |
Collapse
|