1
|
Bequet-Ermoy E, Silvestre V, Cuenot S, Ishow E. Reversible Light-Triggered Stretching of Small-Molecule Photochromic Organic Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403912. [PMID: 38994656 DOI: 10.1002/smll.202403912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/30/2024] [Indexed: 07/13/2024]
Abstract
Functional organic nanomaterials are nowadays largely spread in the field of nanomedicine. In situ modulation of their morphology is thus expected to considerably impact their interactions with the surroundings. In this context, photoswitchable nanoparticles that are manufactured, amenable to extensive disassembling upon illumination in the visible, and reversible reshaping under UV exposure. Such reversibility turns to be strongly impaired for photochromic nanoparticles in close contact with a substrate. In situ atomic force microscopy investigations at the nanoscale actually reveal progressive disintegration of the organic nanoparticles under successive UV-vis cycles of irradiation, in the absence of intrinsic elastic forces. These results point out the dramatic interactions exerted by surfaces on the cohesion of non-covalently bonded organic nanoparticles. They invite to harness such systems, often used as biomarkers, to also serve as photoactivatable drug delivery nanocarriers.
Collapse
Affiliation(s)
| | | | - Stéphane Cuenot
- Institut des Matériaux de Nantes Jean Rouxel, CNRS, Nantes Université, IMN, Nantes, F-44000, France
| | - Eléna Ishow
- Nantes Université, CNRS, CEISAM, UMR 6230, Nantes, F-44000, France
| |
Collapse
|
2
|
Kasuya K, Oketani R, Matsuda S, Sato H, Ishiwari F, Saeki A, Hisaki I. Photo-Responsive Hydrogen-Bonded Molecular Networks Capable of Retaining Crystalline Periodicity after Isomerization. Angew Chem Int Ed Engl 2024; 63:e202404700. [PMID: 38577718 DOI: 10.1002/anie.202404700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/04/2024] [Accepted: 04/04/2024] [Indexed: 04/06/2024]
Abstract
The molecular conformation, crystalline morphology, and properties of photochromic organic crystals can be controlled through photoirradiation, making them promising candidates for functional organic materials. However, photochromic porous molecular crystals with a networked framework structure are rare due to the difficulty in maintaining space that allows for photo-induced molecular motion in the crystalline state. This study describes a photo-responsive single crystal based on hydrogen-bonded (H-bonded) network of dihydrodimethylbenzo[e]pyrene derivative 4BDHP. A crystal composed of H-bonded undulate layers, 4BDHP-2, underwent photo-isomerization in the crystalline state due to loose stacking of the layers. Particularly, enantio-pure crystal (S,S)-4BDHP-2 allowed to reveal the structure of the photoisomerized crystal, in which the closed form (4BDHP) and open form (4CPD) were arranged alternately with keeping crystalline periodicity, although side reactions were also implied. The present proof-of-concept system of a photochromic framework that retains crystalline periodicity after photo-isomerization may provide new light-driven porous functional materials.
Collapse
Affiliation(s)
- Koki Kasuya
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, 560-8531, Toyonaka, Osaka, Japan
| | - Ryusei Oketani
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, 560-8531, Toyonaka, Osaka, Japan
| | - Souta Matsuda
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, 565-0871, Suita, Osaka, Japan
| | - Hiroyasu Sato
- Rigaku Corporation, 3-9-12 Matsubara-cho, Akisima, 196-8666, Tokyo, Japan
| | - Fumitaka Ishiwari
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, 565-0871, Suita, Osaka, Japan
| | - Akinori Saeki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, 565-0871, Suita, Osaka, Japan
| | - Ichiro Hisaki
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, 560-8531, Toyonaka, Osaka, Japan
| |
Collapse
|
3
|
Hashimoto Y, Hase A, Shiromae R, Nishimura R, Morimoto M, Hattori Y, Mayama H, Yokojima S, Nakamura S, Uchida K. Straightforward Fabrication of Double Roughness Structures on a Microcrystalline Film of a Diarylethene Derivative. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:7661-7668. [PMID: 38535724 DOI: 10.1021/acs.langmuir.4c00365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Double roughness structure mimicking the surface of a lotus leaf was prepared using a newly synthesized diarylethene having a six-membered perfluorocyclohexene ring. The cubic-shaped crystals of the open-ring isomer, with sizes of approximately 7 μm, appeared immediately following solution casting. Upon UV irradiation, each cubic crystal was covered with needle-shaped crystals of the closed-ring isomer to form double roughness structures within 1 h. This structure could bear the continuous impact of water droplets.
Collapse
Affiliation(s)
- Yuki Hashimoto
- Department of Materials Chemistry, Ryukoku University, Seta, Otsu, Shiga 520-2194, Japan
| | - Amane Hase
- Department of Materials Chemistry, Ryukoku University, Seta, Otsu, Shiga 520-2194, Japan
| | - Ryotaro Shiromae
- Department of Materials Chemistry, Ryukoku University, Seta, Otsu, Shiga 520-2194, Japan
| | - Ryo Nishimura
- Department of Chemistry and Research Center for Smart Molecules, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Masakazu Morimoto
- Department of Chemistry and Research Center for Smart Molecules, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Yohei Hattori
- Department of Materials Chemistry, Ryukoku University, Seta, Otsu, Shiga 520-2194, Japan
| | - Hiroyuki Mayama
- Department of Chemistry, Asahikawa Medical University, 2-1-1-1 Midorigaoka-higashi, Asahikawa 078-8510, Japan
| | - Satoshi Yokojima
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Shinichiro Nakamura
- Priority Organization for Innovation and Excellence Laboratory for Data Science, Kumamoto University, 2-39-1, Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Kingo Uchida
- Department of Materials Chemistry, Ryukoku University, Seta, Otsu, Shiga 520-2194, Japan
| |
Collapse
|
4
|
Yang J, Wei H, Ou Q, Li Q, Peng Q, Zheng X. Theoretical Study of the Photocyclization Reaction-Induced Dual Aggregation-Induced Emission Phenomenon. J Phys Chem A 2024; 128:217-224. [PMID: 38150702 DOI: 10.1021/acs.jpca.3c07188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Photochromic molecules with aggregation-induced emission (AIE) effects are of great value and prospective in various practical applications. To explore its inherent mechanism, the open isomer ap-BBTE and the closed isomer c-BBTE were chosen to perform the theoretical calculation using the quantum mechanics/molecular mechanics model combined with thermal vibration correlation function formalism. The calculations show that the photocyclization (PC) reaction from ap-BBTE to c-BBTE facilitates an improvement in the AIE effect. It is found that the fluorescence quantum yield (ΦF) enhancement of ap-BBTE is attributed to the restriction of the low-frequency rotational motion of the benzothiophene moiety and the high-frequency stretching vibrations of the C-C bond between the benzothiophene and benzylbis(thiadiazole) vinyl groups after aggregation. For c-BBTE, the increase in ΦF upon aggregation is mainly due to the suppression of the high-frequency stretching vibration of the C-C bond between the benzothiophene and the benzobis(thiadiazole) vinyl groups. In addition, the AIE effect was also enhanced from ap-BBTE to c-BBTE, which is consistent with the experimental phenomenon. The corresponding emission spectrum red-shifted from ap-BBTE to c-BBTE in both dilute solution and the crystalline state due to the improved intramolecular conjugation of c-BBTE. Moreover, the PC reaction from ap-BBTE to c-BBTE easily occurs in an excited state with a low energy barrier transition state by forming a C-C bond between benzothiophene groups effectively in dilute solution. Our calculations provide theoretical guidance for the further rational design of efficient AIE luminogens.
Collapse
Affiliation(s)
- Junfang Yang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Haoran Wei
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Qi Ou
- Research Institute of Petroleum Processing, SINOPEC, Beijing 1000083, China
| | - Quansong Li
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Qian Peng
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiaoyan Zheng
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
5
|
Isobe M, Kitagawa D, Kobatake S. Fabrication of Hyperbranched Photomechanical Crystals Composed of a Photochromic Diarylethene. Chempluschem 2023; 88:e202300428. [PMID: 37610166 DOI: 10.1002/cplu.202300428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/19/2023] [Accepted: 08/23/2023] [Indexed: 08/24/2023]
Abstract
We report the fabrication of hyperbranched hollow crystals of 1,2-bis(2,5-dimethyl-3-thienyl)perfluorocyclopentene on a concave surface of the spherical glass substrate by sublimation and their practical photomechanical behaviors. The number of units of the branched structure of the hollow crystals composed of this compound is proportional to the substrate curvature of the substrate. Compared with the sublimation process of the same compound on the flat glass substrate, two kinds of the thin film domains are generated separately in the center and around the edge of the spherical glass substrate. Especially under the high relative humidity condition, the boundaries between these thin film domains move gradually around the edge through the center during as long as 6 h of sublimation time so that the hyperbranched hollow crystals are densely produced on the entire surface of the substrate. These hyperbranched hollow crystals can be prepared with the highly ordered molecular packing due to the very slow formation process of the crystalline walls of the hollow structures. Furthermore, the photo-induced bending behaviors in the few- and highly-branched hollow crystals have the practical roles in moving and bending the minute objects according to their characteristics of these branched shapes.
Collapse
Affiliation(s)
- Mami Isobe
- Department of Chemistry and Bioengineering, Graduate School of Engineering Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Daichi Kitagawa
- Department of Chemistry and Bioengineering, Graduate School of Engineering Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Seiya Kobatake
- Department of Chemistry and Bioengineering, Graduate School of Engineering Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan
| |
Collapse
|
6
|
Nakagawa Y, Hishida T, Sumaru K, Morishita K, Kirito K, Yokojima S, Sakamoto Y, Nakamura S, Uchida K. Phototunable Cell Killing by Photochromic Diarylethene of Thiazoyl and Thienyl Derivatives. J Med Chem 2023; 66:5937-5949. [PMID: 37128763 DOI: 10.1021/acs.jmedchem.3c00164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We report a unique phototunable cell killing technique using diarylethene molecules as photo-isomerizing-molecular switches. These molecules were delivered to DNA in the cell nucleus due to closed-form generated by UV light, and then blue light triggered cell killing. A UV light irradiation switches the open form, having no DNA intercalation activity, to the closed form to induce intercalation in DNA. This isomer, thus prepared ready for the action, exerts photocytotoxicity upon the subsequent blue light irradiation. Molecular biological analysis clarifies that photocytotoxicity is due to DNA double-strand breaks. Since cell death is observed only when irradiated with light where both the open- and closed-ring isomers have absorption, the possible mechanism of cell death is assumed to be due to the repeated photocyclization and photocycloreversion reactions of the diarylethene molecules, which induce irreparable damage to DNA. This unique photo-controllable action in a cell system can provide the basis of a novel scheme of phototherapy.
Collapse
Affiliation(s)
- Yuma Nakagawa
- Department of Materials Chemistry, Faculty of Science and Technology, Ryukoku University, Seta, Otsu, Shiga 520-2194, Japan
| | - Tatsuya Hishida
- Department of Materials Chemistry, Faculty of Science and Technology, Ryukoku University, Seta, Otsu, Shiga 520-2194, Japan
| | - Kimio Sumaru
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5th, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Kana Morishita
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5th, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Keita Kirito
- Department of Hematology and Oncology, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo-shi, Yamanashi 409-3898, Japan
| | - Satoshi Yokojima
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Yuki Sakamoto
- Cluster for Science, Technology and Innovation Hub Nakamura Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Shinichiro Nakamura
- Cluster for Science, Technology and Innovation Hub Nakamura Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Priority Organization for Innovation and Excellence Laboratory for Data Science, Kumamoto University, 2-39-1, Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Kingo Uchida
- Department of Materials Chemistry, Faculty of Science and Technology, Ryukoku University, Seta, Otsu, Shiga 520-2194, Japan
| |
Collapse
|
7
|
Tian W, Li C, Liu K, Ma F, Chu K, Tang X, Wang Z, Yue S, Qu S. Fabrication of Transferable and Micro/Nanostructured Superhydrophobic Surfaces Using Demolding and iCVD Processes. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2368-2375. [PMID: 36574499 DOI: 10.1021/acsami.2c17613] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Superhydrophobic surfaces possess enormous potential in various applications on account of their versatile functionalities. However, artificial superhydrophobic surfaces with ultralow solid/liquid adhesion often require complicated structure fabrication and surface fluorination processes. Here, we designed a superhydrophobic surface possessed of micro/nanoscale structures by employing facile and low-cost demolding and initiated chemical vapor deposition (iCVD) processes. The achieved micro/nanostructured superhydrophobic surface has a maximum static contact angle of ∼170°, a roll-off angle and contact angle hysteresis below 1°, ultralow solid/liquid adhesion for water droplets, and maintains excellent superhydrophobicity after exposure to strongly corrosive species, like strong acid/base and salt solutions, for 60 h. This reasonability-designed method of creating the superhydrophobic surface could provide valuable guidelines for the manufacture of transferable superhydrophobic surfaces and facilitate potential applications extending from optoelectronic devices to self-cleaning materials, such as solar cells, windows, and electronic displays.
Collapse
Affiliation(s)
- Wang Tian
- Key Laboratory of Semiconductor Materials Science, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Li
- Key Laboratory of Semiconductor Materials Science, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kong Liu
- Key Laboratory of Semiconductor Materials Science, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fangyuan Ma
- Key Laboratory of Semiconductor Materials Science, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Science, China University of Geosciences, Beijing 100083, China
| | - Kaiwen Chu
- Key Laboratory of Semiconductor Materials Science, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuan Tang
- Key Laboratory of Semiconductor Materials Science, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhijie Wang
- Key Laboratory of Semiconductor Materials Science, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shizhong Yue
- Key Laboratory of Semiconductor Materials Science, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shengchun Qu
- Key Laboratory of Semiconductor Materials Science, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Louati M, Barrau S, Tahon JF, Brosseau A, Takao M, Takeshita M, Métivier R, Buntinx G, Aloise S. Is it possible to maintain photomechanical properties of crystalline diarylethenes after thermal amorphization? J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Hou J, Long G, Zhao W, Zhou G, Liu D, Broer DJ, Feringa BL, Chen J. Phototriggered Complex Motion by Programmable Construction of Light-Driven Molecular Motors in Liquid Crystal Networks. J Am Chem Soc 2022; 144:6851-6860. [PMID: 35380815 PMCID: PMC9026258 DOI: 10.1021/jacs.2c01060] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Recent developments
in artificial molecular machines have enabled
precisely controlled molecular motion, which allows several distinct
mechanical operations at the nanoscale. However, harnessing and amplifying
molecular motion along multiple length scales to induce macroscopic
motion are still major challenges and comprise an important next step
toward future actuators and soft robotics. The key to addressing this
challenge relies on effective integration of synthetic molecular machines
in a hierarchically aligned structure so numerous individual molecular
motions can be collected in a cooperative way and amplified to higher
length scales and eventually lead to macroscopic motion. Here, we
report the complex motion of liquid crystal networks embedded with
molecular motors triggered by single-wavelength illumination. By design,
both racemic and enantiomerically pure molecular motors are programmably
integrated into liquid crystal networks with a defined orientation.
The motors have multiple functions acting as cross-linkers, actuators,
and chiral dopants inside the network. The collective rotary motion
of motors resulted in multiple types of motion of the polymeric film,
including bending, wavy motion, fast unidirectional movement on surfaces,
and synchronized helical motion with different handedness, paving
the way for the future design of responsive materials with enhanced
complex functions.
Collapse
Affiliation(s)
- Jiaxin Hou
- SCNU-UG International Joint Laboratory of Molecular Science and Displays, National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China.,Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| | - Guiying Long
- SCNU-UG International Joint Laboratory of Molecular Science and Displays, National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Wei Zhao
- SCNU-TUE Joint lab of Device Integrated Responsive Materials (DIRM), Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Guofu Zhou
- SCNU-UG International Joint Laboratory of Molecular Science and Displays, National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China.,SCNU-TUE Joint lab of Device Integrated Responsive Materials (DIRM), Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Danqing Liu
- SCNU-TUE Joint lab of Device Integrated Responsive Materials (DIRM), Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China.,Stimuli-responsive Functional Materials and Devices, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Den Dolech 2, Eindhoven 5600 MB, The Netherlands
| | - Dirk J Broer
- SCNU-TUE Joint lab of Device Integrated Responsive Materials (DIRM), Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China.,Stimuli-responsive Functional Materials and Devices, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Den Dolech 2, Eindhoven 5600 MB, The Netherlands
| | - Ben L Feringa
- SCNU-UG International Joint Laboratory of Molecular Science and Displays, National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China.,Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| | - Jiawen Chen
- SCNU-UG International Joint Laboratory of Molecular Science and Displays, National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
10
|
Matsuhashi C, Fujisawa H, Ryu M, Tsujii T, Morikawa J, Oyama H, Uekusa H, Maki S, Hirano T. Intracrystalline Kinetics Analyzed by Real-time Monitoring of a 1,2-Dioxetane Chemiluminescence Reaction in a Single Crystal. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20210445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Chihiro Matsuhashi
- Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications, Chofu, Tokyo 182-8585
| | - Hiroki Fujisawa
- Department of Organic and Polymeric Materials, School of Materials and Chemical Technology, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8550
| | - Meguya Ryu
- National Metrology Institute of Japan, AIST, Tsukuba, Ibaraki, 305-8563
| | - Tetsuya Tsujii
- Daikyo Nishikawa Corporation, Higashi Hiroshima, Hiroshima, 739-0049
| | - Junko Morikawa
- Department of Organic and Polymeric Materials, School of Materials and Chemical Technology, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8550
| | - Hironaga Oyama
- Department of Chemistry, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-ku, Tokyo, 152-8551
| | - Hidehiro Uekusa
- Department of Chemistry, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-ku, Tokyo, 152-8551
| | - Shojiro Maki
- Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications, Chofu, Tokyo 182-8585
| | - Takashi Hirano
- Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications, Chofu, Tokyo 182-8585
| |
Collapse
|
11
|
Khan S, Akhtaruzzaman, Medishetty R, Ekka A, Mir MH. Mechanical Motion in Crystals Triggered by Solid State Photochemical [2+2] Cycloaddition Reaction. Chem Asian J 2021; 16:2806-2816. [PMID: 34355513 DOI: 10.1002/asia.202100807] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/05/2021] [Indexed: 11/09/2022]
Abstract
Some special crystals respond to light by jumping, scattering or bursting just like popping of popcorn kernels on a hot surface. This rare phenomenon is called the photosalient (PS) effect. Molecular level control over the arrangement of light-responsive molecules in microscopic crystals for macroscale deformation or mechanical motion offers the possibility of using light to control smart material structures across the length scales. Photochemical [2+2] cycloaddition has recently emerged as a promising route to obtain photoswitchable structures and a wide variety of frameworks, but such reaction in crystals leading to macroscopic mechanical motion is relatively less explored. Study of chemistry of such novel soft crystals for the generation of smart materials is an imperative task. This minireview highlights recent advances in solid-state [2+2] cycloaddition in crystals to induce macroscale mechanical motion and thereby transduction of light into kinetic energy.
Collapse
Affiliation(s)
- Samim Khan
- Department of Chemistry, Aliah University, New Town, Kolkata, 700 156, India
| | - Akhtaruzzaman
- Department of Chemistry, Aliah University, New Town, Kolkata, 700 156, India
| | | | - Akansha Ekka
- Department of Chemistry, IIT Bhilai, Sejbahar, Raipur, Chhattisgarh, 492015, India
| | | |
Collapse
|
12
|
Luo P, Xiang S, Li C, Zhu M. Photomechanical polymer hydrogels based on molecular photoswitches. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210567] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Peng‐Fei Luo
- Wuhan National Laboratory for Optoelectronics (WNLO), School of Optics and Electronic Information Huazhong University of Science and Technology Wuhan China
| | - Shi‐Li Xiang
- Wuhan National Laboratory for Optoelectronics (WNLO), School of Optics and Electronic Information Huazhong University of Science and Technology Wuhan China
| | - Chong Li
- Wuhan National Laboratory for Optoelectronics (WNLO), School of Optics and Electronic Information Huazhong University of Science and Technology Wuhan China
| | - Ming‐Qiang Zhu
- Wuhan National Laboratory for Optoelectronics (WNLO), School of Optics and Electronic Information Huazhong University of Science and Technology Wuhan China
| |
Collapse
|
13
|
Amirjalayer S. Understanding the Molecular Origin of the Collective Movement in a Diarylethene-based Photo-Responsive Actuator. Chemphyschem 2021; 22:1658-1661. [PMID: 34213042 PMCID: PMC8456835 DOI: 10.1002/cphc.202100446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 06/29/2021] [Indexed: 11/30/2022]
Abstract
Remotely controlling macroscopic movement is one of the key elements to realize intelligent materials for applications ranging from sensing to robotics. Over the last few years, a number of photomechanical materials based on diarylethene derivatives have been developed. However, a detailed picture of the structural evolution within these soft actuators is often missing. In this work, an atomistic investigation uncovers how the photo-induced molecular dynamics propagates to large-scale motion and results in macroscopic deformation of the crystal. By correlating the intramolecular rearrangement within the photo-responsive switching unit with the intermolecular packing, the molecular mechanism for the photomechanical phenomena is deciphered, which is fundamental for a rational development of photo-responsive actuators.
Collapse
Affiliation(s)
- Saeed Amirjalayer
- Westfälische Wilhelms-Universität MünsterPhysikalisches InstituteCenter for Nanotechnology (CeNTech) and Center for Multiscale Theory and Computation (CMTC)Heisenbergstr. 1148149MünsterGermany
| |
Collapse
|
14
|
"On-The-Fly" Non-Adiabatic Dynamics Simulations on Photoinduced Ring-Closing Reaction of a Nucleoside-Based Diarylethene Photoswitch. Molecules 2021; 26:molecules26092724. [PMID: 34066431 PMCID: PMC8125013 DOI: 10.3390/molecules26092724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 11/17/2022] Open
Abstract
Nucleoside-based diarylethenes are emerging as an especial class of photochromic compounds that have potential applications in regulating biological systems using noninvasive light with high spatio-temporal resolution. However, relevant microscopic photochromic mechanisms at atomic level of these novel diarylethenes remain to be explored. Herein, we have employed static electronic structure calculations (MS-CASPT2//M06-2X, MS-CASPT2//SA-CASSCF) in combination with non-adiabatic dynamics simulations to explore the related photoinduced ring-closing reaction of a typical nucleoside-based diarylethene photoswitch, namely, PS-IV. Upon excitation with UV light, the open form PS-IV can be excited to a spectroscopically bright S1 state. After that, the molecule relaxes to the conical intersection region within 150 fs according to the barrierless relaxed scan of the C1–C6 bond, which is followed by an immediate deactivation to the ground state. The conical intersection structure is very similar to the ground state transition state structure which connects the open and closed forms of PS-IV, and therefore plays a crucial role in the photochromism of PS-IV. Besides, after analyzing the hopping structures, we conclude that the ring closing reaction cannot complete in the S1 state alone since all the C1–C6 distances of the hopping structures are larger than 2.00 Å. Once hopping to the ground state, the molecules either return to the original open form of PS-IV or produce the closed form of PS-IV within 100 fs, and the ring closing quantum yield is estimated to be 56%. Our present work not only elucidates the ultrafast photoinduced pericyclic reaction of the nucleoside-based diarylethene PS-IV, but can also be helpful for the future design of novel nucleoside-based diarylethenes with better performance.
Collapse
|
15
|
Yano K, Nishimura R, Hattori Y, Morimoto M, Sugiyama H, Kamitanaka T, Yokojima S, Nakamura S, Uchida K. Photoinduced topographical surface changes and photoresponse of the crystals of 7-methoxycoumarin. CrystEngComm 2021. [DOI: 10.1039/d1ce00444a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Photoinduced topographical changes, bending, and photosalient effect due to the dimerization reaction were observed on a single crystal of 7-methoxycoumarin, upon deep UV (254 nm) light irradiation.
Collapse
Affiliation(s)
- Kanae Yano
- Department of Advanced Materials Chemistry, Faculty of Science and Technology, Ryukoku University, Seta, Otsu 520-2194, Japan
| | - Ryo Nishimura
- Department of Advanced Materials Chemistry, Faculty of Science and Technology, Ryukoku University, Seta, Otsu 520-2194, Japan
| | - Yohei Hattori
- Department of Advanced Materials Chemistry, Faculty of Science and Technology, Ryukoku University, Seta, Otsu 520-2194, Japan
| | - Masakazu Morimoto
- Department of Chemistry and Research Center for Smart Molecules, Rikkyo University, Nishi-Ikebukuro 3-34-1, Toshima-ku, Tokyo 171-8501, Japan
| | - Haruki Sugiyama
- Research and Education Center for Natural Sciences, Keio University, Hiyoshi 4-1-1, Kohoku, Yokohama, Japan
| | - Takashi Kamitanaka
- Northeastern Industrial Research Center of Shiga Prefecture, Motomachi 27-39 Mitsuya-cho, Nagahama, Shiga 526-0024, Japan
| | - Satoshi Yokojima
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Shinichio Nakamura
- Nakamura Laboratory, RIKEN Research Cluster for Innovation, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kingo Uchida
- Department of Advanced Materials Chemistry, Faculty of Science and Technology, Ryukoku University, Seta, Otsu 520-2194, Japan
| |
Collapse
|
16
|
Guo S, Zhou S, Chen J, Guo P, Ding R, Sun H, Feng H, Qian Z. Photochromism and Fluorescence Switch of Furan-Containing Tetraarylethene Luminogens with Aggregation-Induced Emission for Photocontrolled Interface-Involved Applications. ACS APPLIED MATERIALS & INTERFACES 2020; 12:42410-42419. [PMID: 32812420 DOI: 10.1021/acsami.0c12603] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
It is extremely challenging to design photocontrolled molecular switches with absorption and fluorescence dual-mode outputs that are suited for a solid surface and interface. Herein, we report a group of furan-containing tetraarylethene derivatives with unique photophysical behavior of aggregation-induced emission (AIE) and distinct photochemical reaction-triggered photochromic behaviors by combining a photoactive furan or benzofuran group and an AIE-active triphenylethene molecule. The introduction of a furyl or benzofuryl group into the AIE luminogen endows the molecules with significant reversible photochromism and solid-state fluorescence. The coloration and decoloration of these molecules can be switched by respective irradiation of UV and visible light in a reversible way, and the photochromic changes are accompanied by a switch-on and switch-off of the solid-state fluorescence. It is revealed that the photocontrolled cyclization and cycloreversion reactions are responsible for the reversible photochromism and fluorescence switching based on experimental data and theoretical analysis. Both the position and conjugation of the introduced photoactive units have significant influence on the color and strength of the photochromism, and the simultaneous occurrence of photoinduced fluorescence change in the solid state is perfectly suited for surface-involved applications. The demonstrations of dual-mode signaling in photoswitchable patterning on a filter paper and anti-counterfeiting of an anti-falsification paper strongly highlight the unique advantage of these photochromic molecules with an aggregation-induced emission characteristic in various practical applications. This work proposes a general strategy to design photochromic molecules with AIE activity by introducing photoactive functionals into an AIEgen and demonstrates incomparable advantage in dual-mode signaling and multifunctional applications of these molecules.
Collapse
Affiliation(s)
- Sidan Guo
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Shasha Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Jiajing Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Ping Guo
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Riqing Ding
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Huili Sun
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Hui Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Zhaosheng Qian
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| |
Collapse
|
17
|
Chang JJ, Martin A, Du C, Pauls AM, Thuo M. Heat‐Free Biomimetic Metal Molding on Soft Substrates. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Julia J. Chang
- Iowa State UniversityDepartment of Materials Science and Engineering Ames IA 50014 USA
| | - Andrew Martin
- Iowa State UniversityDepartment of Materials Science and Engineering Ames IA 50014 USA
| | - Chuanshen Du
- Iowa State UniversityDepartment of Materials Science and Engineering Ames IA 50014 USA
| | - Alana M. Pauls
- Iowa State UniversityDepartment of Materials Science and Engineering Ames IA 50014 USA
| | - Martin Thuo
- Iowa State UniversityDepartment of Materials Science and Engineering Ames IA 50014 USA
- Micro-Electronics Research Centre Ames IA 50014 USA
- Iowa State UniversityDepartment of Electrical and Computer Engineering Ames IA 50014 USA
| |
Collapse
|
18
|
Chang JJ, Martin A, Du C, Pauls AM, Thuo M. Heat-Free Biomimetic Metal Molding on Soft Substrates. Angew Chem Int Ed Engl 2020; 59:16346-16351. [PMID: 32671888 DOI: 10.1002/anie.202008621] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Indexed: 12/27/2022]
Abstract
Fabrication of bio-templated metallic structures is limited by differences in properties, processing conditions, packing, and material state(s). Herein, by using undercooled metal particles, differences in modulus and processing temperatures can be overcome. Adoption of autonomous processes such as self-filtration, capillary pressure, and evaporative concentration leads to enhanced packing, stabilization (jamming) and point sintering with phase change to create solid metal replicas of complex bio-based features. Differentiation of subtle differences between cultivars of the rose flower with reproduction over large areas shows that this biomimetic metal patterning (BIOMAP) is a versatile method to replicate biological features either as positive or negative reliefs irrespective of the substrate. Using rose petal patterns, we illustrate the versatility of bio-templated mapping with undercooled metal particles at ambient conditions, and with unprecedented efficiency for metal structures.
Collapse
Affiliation(s)
- Julia J Chang
- Iowa State University, Department of Materials Science and Engineering, Ames, IA, 50014, USA
| | - Andrew Martin
- Iowa State University, Department of Materials Science and Engineering, Ames, IA, 50014, USA
| | - Chuanshen Du
- Iowa State University, Department of Materials Science and Engineering, Ames, IA, 50014, USA
| | - Alana M Pauls
- Iowa State University, Department of Materials Science and Engineering, Ames, IA, 50014, USA
| | - Martin Thuo
- Iowa State University, Department of Materials Science and Engineering, Ames, IA, 50014, USA.,Micro-Electronics Research Centre, Ames, IA, 50014, USA.,Iowa State University, Department of Electrical and Computer Engineering, Ames, IA, 50014, USA
| |
Collapse
|
19
|
Sekiguchi A, Nishino T, Tanigawa H, Minami H, Matsumoto Y, Mayama H. Study of Nanoimprinting Plant Structures with Super Water Repellency. J PHOTOPOLYM SCI TEC 2020. [DOI: 10.2494/photopolymer.33.205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Atsushi Sekiguchi
- Litho Tech Japan Corporation
- The Research Organization of Science and Technology, Ritsumeikan University
| | - Tomoki Nishino
- The Research Organization of Science and Technology, Ritsumeikan University
| | - Hiroshi Tanigawa
- The Research Organization of Science and Technology, Ritsumeikan University
| | | | | | | |
Collapse
|
20
|
Lotus Effect and Friction: Does Nonsticky Mean Slippery? Biomimetics (Basel) 2020; 5:biomimetics5020028. [PMID: 32545628 PMCID: PMC7344480 DOI: 10.3390/biomimetics5020028] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 11/16/2022] Open
Abstract
Lotus-effect-based superhydrophobicity is one of the most celebrated applications of biomimetics in materials science. Due to a combination of controlled surface roughness (surface patterns) and low-surface energy coatings, superhydrophobic surfaces repel water and, to some extent, other liquids. However, many applications require surfaces which are water-repellent but provide high friction. An example would be highway or runway pavements, which should support high wheel–pavement traction. Despite a common perception that making a surface non-wet also makes it slippery, the correlation between non-wetting and low friction is not always direct. This is because friction and wetting involve many mechanisms and because adhesion cannot be characterized by a single factor. We review relevant adhesion mechanisms and parameters (the interfacial energy, contact angle, contact angle hysteresis, and specific fracture energy) and discuss the complex interrelation between friction and wetting, which is crucial for the design of biomimetic functional surfaces.
Collapse
|
21
|
Iba S, Ishida T, Sanda F. Synthesis and photoisomerization behavior of polyamide-phenyleneethynylenes bearing azobenzene moieties in the main chain. Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-019-02798-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Nishimura R, Mayama H, Nonomura Y, Yokojima S, Nakamura S, Uchida K. Crystal Growth Technique for Formation of Double Roughness Structures Mimicking Lotus Leaf. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:14124-14132. [PMID: 31566379 DOI: 10.1021/acs.langmuir.9b02358] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Bio-inspired functional materials have received much attention for their potential to provide sustainable and advanced materials. The lotus effect has proven to be one of the most remarkable biomimetic effects since it was discovered by Barthlott. A superhydrophobic surface with the ability to bounce water droplets is the origin of the self-cleaning mechanism that keeps the surface clean by removing dust using water droplets moving with momentum. We have developed a crystal growth technique (CGT) of photochromic diarylethenes over the past decade, and from this, we fabricated a surface structure that closely resembles the natural lotus leaf's characteristic of controlling the Laplace pressure and clarified the importance of the double roughness structure of the surface. The bouncing ability is also discussed in terms of the characteristic size of the double roughness structure theoretically. Moreover, this work clarifies the exquisiteness of the double roughness structure of the leaf. We also show that the CGT is a versatile technique with the potential to fabricate desired structured surfaces.
Collapse
Affiliation(s)
- Ryo Nishimura
- Department of Materials Chemistry, Faculty of Science and Technology , Ryukoku University , Seta, Otsu 520-2194 , Japan
| | - Hiroyuki Mayama
- Department of Chemistry , Asahikawa Medical University , 2-1-1-1 Midorigaoka-higashi , Asahikawa , Hokkaido 078-8510 , Japan
| | - Yoshimune Nonomura
- School of Pharmacy , Tokyo University of Pharmacy and Life Sciences , 1432-1 Horinouchi , Hachioji, Tokyo 192-0392 , Japan
| | - Satoshi Yokojima
- Department of Biochemical Engineering, Graduate School of Science and Engineering , Yamagata University , 4-3-16 Jonan , Yonezawa , Yamagata 992-8510 , Japan
- RIKEN Science, Technology and Innovation Hub , Nakamura Laboratory , 2-1 Hirosawa , Wako, Saitama 351-0198 , Japan
| | - Shinichiro Nakamura
- RIKEN Science, Technology and Innovation Hub , Nakamura Laboratory , 2-1 Hirosawa , Wako, Saitama 351-0198 , Japan
| | - Kingo Uchida
- Department of Materials Chemistry, Faculty of Science and Technology , Ryukoku University , Seta, Otsu 520-2194 , Japan
- RIKEN Science, Technology and Innovation Hub , Nakamura Laboratory , 2-1 Hirosawa , Wako, Saitama 351-0198 , Japan
| |
Collapse
|
23
|
Kamo Y, Nagaya I, Sugino R, Hagiwara H. Jumping Crystals of Stacked Planar Cobalt Complexes: Thermosalient Effect Promoted by Hydrogen-bonded Lattice Solvent Release. CHEM LETT 2019. [DOI: 10.1246/cl.190427] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yusuke Kamo
- Department of Chemistry, Faculty of Education, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Iori Nagaya
- Department of Chemistry, Faculty of Education, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Ryoma Sugino
- Department of Chemistry, Faculty of Education, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Hiroaki Hagiwara
- Department of Chemistry, Faculty of Education, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| |
Collapse
|
24
|
|
25
|
Nishimura R, Hyodo K, Mayama H, Yokojima S, Nakamura S, Uchida K. Dual wettability on diarylethene microcrystalline surface mimicking a termite wing. Commun Chem 2019. [DOI: 10.1038/s42004-019-0192-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
26
|
Mayama H. Secret of Lotus Leaf: Importance of Double Roughness Structures for Super Water-Repellency. J PHOTOPOLYM SCI TEC 2018. [DOI: 10.2494/photopolymer.31.705] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|