1
|
Reyes CA, Lee HJ, Karanovic C, Picazo E. Development and characterization of amino donor-acceptor Stenhouse adducts. Nat Commun 2024; 15:5533. [PMID: 38951197 PMCID: PMC11217284 DOI: 10.1038/s41467-024-49808-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/19/2024] [Indexed: 07/03/2024] Open
Abstract
Donor-acceptor Stenhouse adducts (DASAs) are molecular photoswitches spurring wide interest because of their dynamic photophysical properties, complex photoswitching mechanism, and diverse applications. Despite breakthroughs in modularity for the donor, acceptor, and triene compartments, the backbone heteroatom remains static due to synthetic challenges. We provide a predictive tool and sought-after strategy to vary the heteroatom, introduce amino DASA photoswitches, and analyze backbone heteroatom effects on photophysical properties. Amino DASA synthesis is enabled by aza-Piancatelli rearrangements on pyrrole substrates, imparting an aromaticity-breaking rearrangement that capitalizes on nitrogen's additional bonding orbital and the inductive properties of sulfonyl groups. Amino DASA structure is confirmed by single crystal X-ray diffraction, the photochromic properties are characterized, and the photoswitch isomerization is investigated. Overall, the discovered pyrrole rearrangement enables the study of the DASA backbone heteroatom compartment and furthers our insight into the structure-property relationship of this complex photoswitch.
Collapse
Affiliation(s)
- Cesar A Reyes
- Department of Chemistry, Loker Hydrocarbon Research Institute, University of Southern California, 837 Bloom Walk, Los Angeles, CA, USA
| | - Hye Joon Lee
- Department of Chemistry, Loker Hydrocarbon Research Institute, University of Southern California, 837 Bloom Walk, Los Angeles, CA, USA
| | - Connie Karanovic
- Department of Chemistry, Loker Hydrocarbon Research Institute, University of Southern California, 837 Bloom Walk, Los Angeles, CA, USA
| | - Elias Picazo
- Department of Chemistry, Loker Hydrocarbon Research Institute, University of Southern California, 837 Bloom Walk, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Chen H, Tang Z, Yang Y, Hao Y, Chen W. Recent Advances in Photoswitchable Fluorescent and Colorimetric Probes. Molecules 2024; 29:2521. [PMID: 38893396 PMCID: PMC11173890 DOI: 10.3390/molecules29112521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/24/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
In recent years, significant advancements have been made in the research of photoswitchable probes. These probes undergo reversible structural and electronic changes upon light exposure, thus exhibiting vast potential in molecular detection, biological imaging, material science, and information storage. Through precisely engineered molecular structures, the photoswitchable probes can toggle between "on" and "off" states at specific wavelengths, enabling highly sensitive and selective detection of targeted analytes. This review systematically presents photoswitchable fluorescent and colorimetric probes built on various molecular photoswitches, primarily focusing on the types involving photoswitching in their detection and/or signal response processes. It begins with an analysis of various molecular photoswitches, including their photophysical properties, photoisomerization and photochromic mechanisms, and fundamental design concepts for constructing photoswitchable probes. The article then elaborates on the applications of these probes in detecting diverse targets, including cations, anions, small molecules, and biomacromolecules. Finally, it offers perspectives on the current state and future development of photoswitchable probes. This review aims to provide a clear introduction for researchers in the field and guidance for the design and application of new, efficient fluorescent and colorimetric probes.
Collapse
Affiliation(s)
- Hongjuan Chen
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China; (H.C.); (Y.Y.)
| | - Zilong Tang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China; (H.C.); (Y.Y.)
| | - Yewen Yang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China; (H.C.); (Y.Y.)
| | - Yuanqiang Hao
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China; (H.C.); (Y.Y.)
| | - Wansong Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410017, China
| |
Collapse
|
3
|
Dellai A, Naim C, Cerezo J, Prampolini G, Castet F. Dynamic effects on the nonlinear optical properties of donor acceptor stenhouse adducts: insights from combined MD + QM simulations. Phys Chem Chem Phys 2024; 26:13639-13654. [PMID: 38511505 DOI: 10.1039/d4cp00310a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The second-order nonlinear optical (NLO) responses of a donor-acceptor stenhouse adduct (DASA) are investigated by using a computational approach combining molecular dynamics simulations and density functional theory (DFT) calculations. Specific force fields for the open and closed photoswitching forms are first parameterized and validated according to the Joyce protocol, in order to finely reproduce the geometrical features and potential energy surfaces of both isomers in chloroform solution. Then, DFT calculations are performed on structural snapshots extracted at regular time steps of the MD trajectories to address the influence of the thermalized conformational dynamics on the NLO responses related to hyper-Rayleigh scattering (HRS) experiments. We show that accounting for the structural dynamics largely enhances the HRS hyperpolarizability (βHRS) compared to DFT calculations considering solely equilibrium geometries, and greatly improves the agreement with experimental measurements. Furthermore, we show that the NLO responses of the NLO-active open form are correlated with the bond order alternation along the triene bridge connecting the donor and acceptor moieties, which is rationalized using simple essential state models.
Collapse
Affiliation(s)
- Angela Dellai
- Univ. Bordeaux, CNRS, Bordeaux INP, Institut des Sciences Moléculaires, UMR 5255, F-33400 Talence, France.
| | - Carmelo Naim
- Univ. Bordeaux, CNRS, Bordeaux INP, Institut des Sciences Moléculaires, UMR 5255, F-33400 Talence, France.
- Donostia International Physics Center (DIPC), Manuel Lardizabal Ibilbidea 4, 20018 Donostia, Euskadi, Spain
| | - Javier Cerezo
- Departamento de Química and Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | - Frédéric Castet
- Univ. Bordeaux, CNRS, Bordeaux INP, Institut des Sciences Moléculaires, UMR 5255, F-33400 Talence, France.
| |
Collapse
|
4
|
Sarkar R, Korell A, Schneider C. Organocatalytic enantioselective oxa-Piancatelli rearrangement. Chem Commun (Camb) 2024; 60:3063-3066. [PMID: 38385217 DOI: 10.1039/d4cc00708e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
The first highly enantioselective oxa-Piancatelli rearrangement has been developed. This process which is catalyzed by a chiral BINOL-derived phosphoric acid rearranges a wide range of furylcarbinols into densely substituted γ-hydroxy cyclopentenones in high yield with excellent diastereo- and enantioselectivities (up to 99 : 1 er). This reaction exhibits a high functional group tolerance and was applied to complex bioactive molecules as well. The products were further manipulated into value-added molecular scaffolds further highlighting their versatility and synthetic utility.
Collapse
Affiliation(s)
- Rahul Sarkar
- Institut für Organische Chemie, Universität Leipzig, Leipzig D-04103, Germany.
| | - Alexander Korell
- Institut für Organische Chemie, Universität Leipzig, Leipzig D-04103, Germany.
| | - Christoph Schneider
- Institut für Organische Chemie, Universität Leipzig, Leipzig D-04103, Germany.
| |
Collapse
|
5
|
Zheng PX, Ou SL, Qu LY, Zhang Y, Jiang SQ, Li X, Wan JX, Zhang M, Bao X. Enriched switching in a donor-acceptor Stenhouse adduct via reversible covalent bonding. Chem Commun (Camb) 2024; 60:1333-1336. [PMID: 38197312 DOI: 10.1039/d3cc03160h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
We have utilized reversible covalent bonding to expand the accessible states of a molecular switch. Introducing a hydroxyl group onto the donor moiety of a donor-acceptor Stenhouse adduct (DASA) imparts an acidity response by forming an oxazolidine ring through intramolecular nucleophilic addition. Furthermore, we observed distinct color changes under cryogenic conditions, extending the thermal responsiveness beyond the cyclization equilibrium observed at elevated temperatures. These unique responses present promising prospects for diverse applications compared to traditional photoinduced binary isomerization.
Collapse
Affiliation(s)
- Peng Xuan Zheng
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, China.
| | - Song Lin Ou
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, China.
| | - Lei Yu Qu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, China.
| | - Ying Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, China.
| | - Shi Qing Jiang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, China.
| | - Xiang Li
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, China.
| | - Jun Xiong Wan
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, China.
| | - Min Zhang
- Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Xin Bao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, China.
| |
Collapse
|
6
|
Hao Z, Hu L, Yan R, Pei L, Mo S. Sensitive fluorescent detection of o-aminophenol by hemicyanine boronic acid. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123341. [PMID: 37688883 DOI: 10.1016/j.saa.2023.123341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/18/2023] [Accepted: 09/01/2023] [Indexed: 09/11/2023]
Abstract
O-Aminophenol (OAP) is widely used in various industries, but it can have severe negative impacts on both the environment and human health. Herein, we reported the development of hemicyanine boronic acid (HBA) for the fluorescent detection of OAP. The reaction of HBA with OAP produced a strong fluorescence emission at 675 nm because of the generation of tricyclic borate ester hemicyanine (TBEH). The detection was very rapid, sensitive and specific. The detection had a linear range 0.1 - 10.0 µM in ethanol with a detection limit of 60 nM in water and ethanol. The accuracy and precision of our results were successfully verified via HPLC analysis. Our study offers a valuable tool for the facile and efficient detection of OAP, with practical applications in environmental and health management.
Collapse
Affiliation(s)
- Zhenming Hao
- Faculty of Environment and Life, Beijing Key Laboratory of Environmental and Viral Oncology, Beijing University of Technology, Beijing 100124, China
| | - Liming Hu
- Faculty of Environment and Life, Beijing Key Laboratory of Environmental and Viral Oncology, Beijing University of Technology, Beijing 100124, China
| | - Ruyu Yan
- Faculty of Environment and Life, Beijing Key Laboratory of Environmental and Viral Oncology, Beijing University of Technology, Beijing 100124, China
| | - Luyu Pei
- Faculty of Environment and Life, Beijing Key Laboratory of Environmental and Viral Oncology, Beijing University of Technology, Beijing 100124, China
| | - Shanyan Mo
- Faculty of Environment and Life, Beijing Key Laboratory of Environmental and Viral Oncology, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
7
|
Clerc M, Sandlass S, Rifaie-Graham O, Peterson JA, Bruns N, Read de Alaniz J, Boesel LF. Visible light-responsive materials: the (photo)chemistry and applications of donor-acceptor Stenhouse adducts in polymer science. Chem Soc Rev 2023; 52:8245-8294. [PMID: 37905554 PMCID: PMC10680135 DOI: 10.1039/d3cs00508a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Indexed: 11/02/2023]
Abstract
Donor-acceptor Stenhouse adduct (DASA) photoswitches have gained a lot of attention since their discovery in 2014. Their negative photochromism, visible light absorbance, synthetic tunability, and the large property changes between their photoisomers make them attractive candidates over other commonly used photoswitches for use in materials with responsive or adaptive properties. The development of such materials and their translation into advanced technologies continues to widely impact forefront materials research, and DASAs have thus attracted considerable interest in the field of visible-light responsive molecular switches and dynamic materials. Despite this interest, there have been challenges in understanding their complex behavior in the context of both small molecule studies and materials. Moreover, incorporation of DASAs into polymers can be challenging due to their incompatibility with the conditions for most common polymerization techniques. In this review, therefore, we examine and critically discuss the recent developments and challenges in the field of DASA-containing polymers, aiming at providing a better understanding of the interplay between the properties of both constituents (matrix and photoswitch). The first part summarizes current understanding of DASA design and switching properties. The second section discusses strategies of incorporation of DASAs into polymers, properties of DASA-containing materials, and methods for studying switching of DASAs in materials. We also discuss emerging applications for DASA photoswitches in polymeric materials, ranging from light-responsive drug delivery systems, to photothermal actuators, sensors and photoswitchable surfaces. Last, we summarize the current challenges in the field and venture on the steps required to explore novel systems and expand both the functional properties and the application opportunities of DASA-containing polymers.
Collapse
Affiliation(s)
- Michèle Clerc
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, 9014 St. Gallen, Switzerland.
- University of Fribourg, Department of Chemistry, 1700 Fribourg, Switzerland
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XL, UK
- Swiss National Center of Competence in Research Bio-Inspired Materials, Switzerland
| | - Sara Sandlass
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA
| | - Omar Rifaie-Graham
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Julie A Peterson
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA.
| | - Nico Bruns
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XL, UK
- Swiss National Center of Competence in Research Bio-Inspired Materials, Switzerland
- Department of Chemistry, Technical University of Darmstadt, 64287 Darmstadt, Germany.
| | - Javier Read de Alaniz
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA.
| | - Luciano F Boesel
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, 9014 St. Gallen, Switzerland.
- Swiss National Center of Competence in Research Bio-Inspired Materials, Switzerland
| |
Collapse
|
8
|
Zeußel L, Singh S. Meldrum's Acid Furfural Conjugate MAFC: A New Entry as Chromogenic Sensor for Specific Amine Identification. Molecules 2023; 28:6627. [PMID: 37764403 PMCID: PMC10535807 DOI: 10.3390/molecules28186627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Bioactive amines are highly relevant for clinical and industrial application to ensure the metabolic status of a biological process. Apart from this, generally, amine identification is a key step in various bioorganic processes ranging from protein chemistry to biomaterial fabrication. However, many amines have a negative impact on the environment and the excess intake of amines can have tremendous adverse health effects. Thus, easy, fast, sensitive, and reliable sensing methods for amine identification are strongly searched for. In the past few years, Meldrum's acid furfural conjugate (MAFC) has been extensively explored as a starting material for the synthesis of photoswitchable donor-acceptor Stenhouse adducts (DASA). DASA formation hereby results from the rapid reaction of MAFC with primary and secondary amines, which has so far been demonstrated through numerous publications for different applications. The linear form of the MAFC-based DASA exhibits intense pink coloration due to its linear conjugated triene-2-ol conformation, which has inspired researchers to use this easy synthesizable molecule as an optical sensor for primary, secondary, and biogenic amines. Due to its new entry into amine identification, a collection of the literature exclusively on MAFC is demanded. In this mini review, we intend to present the state-of-the-art of MAFC as an optical molecular sensor in hopes to motivate researchers to find even more applications of MAFC-based sensors and methods that pave the way to their usage in medicinal applications.
Collapse
Affiliation(s)
- Lisa Zeußel
- Department of Nanobiosystem Technology, Institute of Chemistry and Biotechnology, Technical University Ilmenau, Prof-Schmidt-Straße 26, 98693 Ilmenau, Germany;
- Research Group Bioorganic Chemistry of Bioactive Surfaces, Institute of Chemistry and Biotechnology, Prof-Schmidt-Straße 26, 98693 Ilmenau, Germany
| | - Sukhdeep Singh
- Research Group Bioorganic Chemistry of Bioactive Surfaces, Institute of Chemistry and Biotechnology, Prof-Schmidt-Straße 26, 98693 Ilmenau, Germany
| |
Collapse
|
9
|
Andrade KHS, Coelho JAS, Frade R, Madureira AM, Nunes JPM, Caddick S, Gomes RFA, Afonso CAM. Functionalized Cyclopentenones with Low Electrophilic Character as Anticancer Agents. ChemMedChem 2023; 18:e202300104. [PMID: 37062707 DOI: 10.1002/cmdc.202300104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 04/18/2023]
Abstract
In this study were synthesized non-Michael acceptor cyclopentenones (CP) from biomass derivative furfural as anticancer agents. Cyclic enones, both from natural sources and synthetic analogues, have been described as cytotoxic agents. Most of these agents were unsuccessful in becoming valuable therapeutic agents due to toxicity problems derived from unselective critical biomacromolecule alkylation. This may be caused by Michael addition to the enone system. Ab initio studies revealed that 2,4-substituted CPs are less prone to Michael additions, and as such were tested three families of those derivatives. We prepare the new CPs from furfural through a tandem furan ring opening/Nazarov electrocyclization and further functionalization. Experimentally the 2,4-substituted CPs exhibited no reactivity towards sulphur nucleophiles, while maintaining cytotoxicity against HT-29, MCF-7, NCI-H460, HCT-116 and MDA-MB 231 cells lines. Moreover, the selected CP are non-toxic against healthy HEK 293T cell lines and present proper calculated drug-like properties.
Collapse
Affiliation(s)
- Késsia H S Andrade
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisboa, Portugal
| | - Jaime A S Coelho
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculty of Sciences, University of Lisbon, 1749-016, Lisboa, Portugal
| | - Raquel Frade
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisboa, Portugal
| | - Ana M Madureira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisboa, Portugal
| | - João P M Nunes
- Abzena Ltd., Babraham Research Campus, Cambridge, CB22 3AT, UK
- Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Stephen Caddick
- Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Rafael F A Gomes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisboa, Portugal
- CBIOS-Universidade Lusófona's Research Center for Biosciences & Health Technologies, Universidade Lusófona, Lisboa, 1749-024, Lisboa, Portugal
| | - Carlos A M Afonso
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisboa, Portugal
| |
Collapse
|
10
|
Dubuis S, Dellai A, Courdurié C, Owona J, Kalafatis A, Vellutini L, Genin E, Rodriguez V, Castet F. Nonlinear Optical Responses of Photoswitchable Donor-Acceptor Stenhouse Adducts. J Am Chem Soc 2023; 145:10861-10871. [PMID: 37141624 DOI: 10.1021/jacs.3c02778] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
This work combines hyper-Rayleigh scattering (HRS) experiments performed in the NIR range (1.30 and 1.60 μm) and quantum chemical calculations to provide a comprehensive description of the second harmonic generation (SHG) responses of donor-acceptor Stenhouse adducts (DASAs). Representative derivatives of the three generations of DASAs, which differ by the nature of their electron-donating and withdrawing moieties and also include clickable species, have been synthesized and their photoswitching behavior fully characterized. The HRS measurements allow us to establish relationships between the magnitude of the SHG response of open forms and the nature of the donor and acceptor groups. The largest SHG responses are obtained for derivatives incorporating either a barbituric acid or an indanedione acceptor unit, while N-methylaniline appears as the most efficient donor group. The calculations support well the experimental data and show that high hyperpolarizabilities are associated to low excitation energies and large extent of the photoinduced intramolecular charge transfer, which enhances the dipole moment variation between the ground and first dipole-allowed electronic excited state. In addition, a complete investigation of the photoswitching kinetics of DASAs in chloroform solution shows important differences, highlighting in particular the role of the donor group on the photoswitching efficiency.
Collapse
Affiliation(s)
- Simon Dubuis
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33405 Cedex Talence, France
| | - Angela Dellai
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33405 Cedex Talence, France
| | - Chloé Courdurié
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33405 Cedex Talence, France
| | - Josianne Owona
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33405 Cedex Talence, France
| | - Apostolos Kalafatis
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33405 Cedex Talence, France
| | - Luc Vellutini
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33405 Cedex Talence, France
| | - Emilie Genin
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33405 Cedex Talence, France
| | - Vincent Rodriguez
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33405 Cedex Talence, France
| | - Frédéric Castet
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33405 Cedex Talence, France
| |
Collapse
|
11
|
Hao Z, Hu L, Wang X, Liu Y, Mo S. Synthesis of Heptamethine Cyanines from Furfural Derivatives. Org Lett 2023; 25:1078-1082. [PMID: 36786486 DOI: 10.1021/acs.orglett.2c04289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Despite the widespread theranostic utilization of cyanine dyes (Cy7), their synthetic method is still limited with pyridine or cyclohexanone derivatives as starting materials. Herein, we report the synthesis of Cy7 from furfural derivatives. First, a one-pot reaction strategy is developed to solve the unstable problem of the Stenhouse salts. Second, a stepwise condensation strategy is exploited to regioselectively synthesize asymmetrical Cy7. The methodology possesses advantages, such as easy handling, high yield, wide substrate scopes, and good functional group tolerance.
Collapse
Affiliation(s)
- Zhenming Hao
- Faculty of Environment and Life, Beijing Key Laboratory of Environmental and Viral Oncology, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Liming Hu
- Faculty of Environment and Life, Beijing Key Laboratory of Environmental and Viral Oncology, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Xiaonan Wang
- Faculty of Environment and Life, Beijing Key Laboratory of Environmental and Viral Oncology, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Youjun Liu
- Faculty of Environment and Life, Beijing Key Laboratory of Environmental and Viral Oncology, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Shanyan Mo
- Faculty of Environment and Life, Beijing Key Laboratory of Environmental and Viral Oncology, Beijing University of Technology, Beijing 100124, People's Republic of China
| |
Collapse
|
12
|
Yamaguchi T, Ogawa M. Photoinduced movement: how photoirradiation induced the movements of matter. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2022; 23:796-844. [PMID: 36465797 PMCID: PMC9718566 DOI: 10.1080/14686996.2022.2142955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 06/17/2023]
Abstract
Pioneered by the success on active transport of ions across membranes in 1980 using the regulation of the binding properties of crown ethers with covalently linked photoisomerizable units, extensive studies on the movements by using varied interactions between moving objects and environments have been reported. Photoinduced movements of various objects ranging from molecules, polymers to microscopic particles were discussed from the aspects of the driving for the movements, materials design to achieve the movements and systems design to see and to utilize the movements are summarized in this review.
Collapse
Affiliation(s)
- Tetsuo Yamaguchi
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, South Korea
| | - Makoto Ogawa
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| |
Collapse
|
13
|
Wei J, Tang Y, Yang Q, Li H, He D, Cai Y. Asymmetric Ketoalkylation/Rearrangement of Alkyenlfurans via Synergistic Photoredox/Brønsted Acid Catalysis. Org Lett 2022; 24:7928-7933. [PMID: 36269030 DOI: 10.1021/acs.orglett.2c03040] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An enantioselective three-component rearrangement of alkenylfurans with various cycloalkyl silyl peroxides and anilines has been developed by merging photoredox catalysis with chiral Brønsted acid catalysis. This protocol provides expedient access to a broad spectrum of ketoalkyl-functionalized 4-aminocyclopentenones in high yields with excellent enantio- and diastereoselectivities. Diverse functional groups can be introduced via facile product derivations.
Collapse
Affiliation(s)
- Jie Wei
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Yurong Tang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Qian Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Hongxiang Li
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Dongxian He
- Chongqing Medical and Pharmaceutical College, Chongqing 401331, China
| | - Yunfei Cai
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
14
|
Zou J, Xu L, Tang Y, Wang W, Cai Y. Organocatalytic Asymmetric Synthesis of Bridged Tetrahydrobenzo[ b]azepines/oxepines. Org Lett 2022; 24:7140-7144. [PMID: 36169238 DOI: 10.1021/acs.orglett.2c02833] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The asymmetric synthesis of bridged tetrahydrobenzo[b]azepine and oxepine derivatives through chiral Brønsted acid catalyzed asymmetric aza-Piancatelli rearrangement/Michael addition sequence has been developed. The reaction proceeds under mild reaction conditions to afford the final bridged cyclic products in good yields with excellent enantio- and diastereoselectivities.
Collapse
Affiliation(s)
- Jiaming Zou
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Lei Xu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Yurong Tang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Wentao Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Yunfei Cai
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
15
|
Théry V, Molton F, Sirach S, Tillet N, Pécaut J, Tomás-Mendivil E, Martin D. The curious case of a sterically crowded Stenhouse salt. Chem Sci 2022; 13:9755-9760. [PMID: 36091895 PMCID: PMC9400627 DOI: 10.1039/d2sc01895k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/27/2022] [Indexed: 11/23/2022] Open
Abstract
We report a peculiar Stenhouse salt. It does not evolve into cyclopentenones upon basification, due to the steric hindrance of its bulky stable carbene patterns. This allowed for the observation and characterization of the transient open-chain neutral derivative, which was isolated as its cyclized form. The latter features an unusually long reactive C-O bond (150 pm) and a rich electrochemistry, including oxidation into an air-persistent radical cation.
Collapse
Affiliation(s)
| | | | - Selim Sirach
- Univ. Grenoble Alpes, CNRS, DCM Grenoble 38000 France
| | - Neven Tillet
- Univ. Grenoble Alpes, CNRS, DCM Grenoble 38000 France
| | - Jacques Pécaut
- Univ. Grenoble Alpes, CEA, CNRS, INAC-SyMMES, UMR 5819 Grenoble 38000 France
| | | | - David Martin
- Univ. Grenoble Alpes, CNRS, DCM Grenoble 38000 France
| |
Collapse
|
16
|
Fiorentino A, Sachini B, Corra S, Credi A, Femoni C, Fraix A, Silvi S. Acidochromism of donor-acceptor Stenhouse adducts in organic solvent. Chem Commun (Camb) 2022; 58:11236-11239. [PMID: 35968687 DOI: 10.1039/d2cc03761k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
First generation DASA derivatives can be reversibly isomerized from the coloured, open form to the colourless, closed isomer upon protonation, thus behaving as acidochromic compounds in halogenated organic solvent.
Collapse
Affiliation(s)
- Antonio Fiorentino
- Dipartimento di Chimica "G. Ciamician", Università di Bologna, via Selmi 2, 40126, Bologna, Italy.
| | - Brian Sachini
- CLAN-Center for Light Activated Nanostructures, Istituto ISOF-CNR, via Gobetti 101, 40129, Bologna, Italy
| | - Stefano Corra
- CLAN-Center for Light Activated Nanostructures, Istituto ISOF-CNR, via Gobetti 101, 40129, Bologna, Italy.,Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, 40136, Bologna, Italy
| | - Alberto Credi
- CLAN-Center for Light Activated Nanostructures, Istituto ISOF-CNR, via Gobetti 101, 40129, Bologna, Italy.,Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, 40136, Bologna, Italy
| | - Cristina Femoni
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, 40136, Bologna, Italy
| | - Aurore Fraix
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, 95125, Catania, Italy
| | - Serena Silvi
- Dipartimento di Chimica "G. Ciamician", Università di Bologna, via Selmi 2, 40126, Bologna, Italy. .,CLAN-Center for Light Activated Nanostructures, Istituto ISOF-CNR, via Gobetti 101, 40129, Bologna, Italy
| |
Collapse
|
17
|
Cai Y, Zhong S, Xu L. Recent Advances on Piancatelli Reactions and Related Cascade Processes. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/s-0041-1737125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
AbstractThe Piancatelli reaction, which is the rearrangement of 2-furylcarbinol to cyclopentenone, involves a key furanoxonium ion intermediate and a furan ring opening-4π electrocyclization process. In recent years, the original oxa-Piancatelli reaction has been extended to a large family of aza- and carbo-Piancatelli reactions and related cascade processes, providing a powerful platform for the construction of diverse functionalized cyclopentenones and polycyclic cyclopentanones. Meanwhile, chiral Brønsted/Lewis acid based catalytic asymmetric approaches to Piancatelli reactions have also been achieved for the assembly of highly valued chiral cyclopentenone scaffolds. In this short review, we present an overview of the recent developments in these areas and focus primarily on reports published in the last five years.1 Introduction2 Diastereoselective Oxa-, Aza- and Carbo-Piancatelli Reactions3 Diastereoselective Cascade Piancatelli Reactions4 Asymmetric Piancatelli Reactions and Related Cascade Processes5 Miscellaneous Furanoxonium Ion-Based Rearrangements6 Conclusion
Collapse
|
18
|
Tzani MA, Fountoulaki S, Lykakis IN. Polyoxometalate-Driven Ease Conversion of Valuable Furfural to trans- N, N-4,5-Diaminocyclopenten-2-ones. J Org Chem 2022; 87:2601-2615. [PMID: 35073691 DOI: 10.1021/acs.joc.1c02550] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We investigated the catalytic efficacy of silicotungstic acid (H4SiW12O40) polyoxometalate (POM) toward the reaction between furfural and amines that selectively yields trans-N,N-4,5-substituted-diaminocyclopenten-2-ones (trans-DACPs). H4SiW12O40 facilitates the synthesis of a library of trans-DACPs with loadings as low as 0.05 mol %, in open air, without additives, in short times and good to high isolated yields. The protocol was applied to secondary amines as well as to aromatic primary amines with pKb higher than ca. 9. The present catalytic synthetic protocol has an extended substrate scope with high yields and represents, to the best of our knowledge, the first polyoxometalate-driven paradigm as an efficient method to produce cyclopentanone frameworks under mild reaction conditions.
Collapse
Affiliation(s)
- Marina A Tzani
- Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Stella Fountoulaki
- Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Ioannis N Lykakis
- Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| |
Collapse
|
19
|
Arcile G, Ouazzani J, Betzer JF. Efficient Piancatelli rearrangement on a large scale using the Zippertex technology under subcritical water conditions. REACT CHEM ENG 2022. [DOI: 10.1039/d2re00098a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A series of furyl carbinols, which were directly obtained from a bio-sourced raw material, were efficiently transformed into cyclopentenone derivatives in good yields and on a large scale using the Zippertex technology under subcritical water conditions.
Collapse
Affiliation(s)
- Guillaume Arcile
- Institut de Chimie des Substances Naturelles (ICSN), CNRS UPR 2301, Université Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | - Jamal Ouazzani
- Institut de Chimie des Substances Naturelles (ICSN), CNRS UPR 2301, Université Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | - Jean-François Betzer
- Institut de Chimie des Substances Naturelles (ICSN), CNRS UPR 2301, Université Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| |
Collapse
|
20
|
Mikhailov IE, Dushenko GA, Minkin VI. Pentacarboxycyclopentadienes in Organic Synthesis. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1070428021110014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Xu L, Li H, Xing L, Yang Q, Tang Y, Cai Y. Retro-Aza-Piancatelli Rearrangement Triggered Cascade Reaction of Methyl Furylacrylates with Anilines to Access Cyclopenta[ b]pyrrolidinones. J Org Chem 2021; 87:855-865. [PMID: 34905369 DOI: 10.1021/acs.joc.1c02546] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A novel aza-Piancatelli rearrangement triggered cascade reaction has been developed by utilizing methyl furylacrylates as a new type of functionalized furanoxonium ion precursor, permitting rapid and flexible construction of diverse cyclopenta[b]pyrrolidinone derivatives. The unprecedented and highly efficient bicyclic γ-lactam product formation is originated from an unusual retro-aza-Piancatelli rearrangement of the major cis-fused multifunctionalized cyclopentenone to the minor trans-fused one followed by a lactamization reaction.
Collapse
Affiliation(s)
- Lei Xu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Hongxiang Li
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Liuzhuang Xing
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Qian Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Yurong Tang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Yunfei Cai
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
22
|
Volarić J, Szymanski W, Simeth NA, Feringa BL. Molecular photoswitches in aqueous environments. Chem Soc Rev 2021; 50:12377-12449. [PMID: 34590636 PMCID: PMC8591629 DOI: 10.1039/d0cs00547a] [Citation(s) in RCA: 140] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Indexed: 12/17/2022]
Abstract
Molecular photoswitches enable dynamic control of processes with high spatiotemporal precision, using light as external stimulus, and hence are ideal tools for different research areas spanning from chemical biology to smart materials. Photoswitches are typically organic molecules that feature extended aromatic systems to make them responsive to (visible) light. However, this renders them inherently lipophilic, while water-solubility is of crucial importance to apply photoswitchable organic molecules in biological systems, like in the rapidly emerging field of photopharmacology. Several strategies for solubilizing organic molecules in water are known, but there are not yet clear rules for applying them to photoswitchable molecules. Importantly, rendering photoswitches water-soluble has a serious impact on both their photophysical and biological properties, which must be taken into consideration when designing new systems. Altogether, these aspects pose considerable challenges for successfully applying molecular photoswitches in aqueous systems, and in particular in biologically relevant media. In this review, we focus on fully water-soluble photoswitches, such as those used in biological environments, in both in vitro and in vivo studies. We discuss the design principles and prospects for water-soluble photoswitches to inspire and enable their future applications.
Collapse
Affiliation(s)
- Jana Volarić
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| | - Wiktor Szymanski
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
- Department of Radiology, Medical Imaging Center, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Nadja A Simeth
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
- Institute for Organic and Biomolecular Chemistry, University of Göttingen, Tammannstr. 2, 37077 Göttingen, Germany
| | - Ben L Feringa
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| |
Collapse
|
23
|
Gomes RFA, Isca VMS, Andrade K, Rijo P, Afonso CAM. Functionalized Cyclopentenones and an Oxime Ether as Antimicrobial Agents. ChemMedChem 2021; 16:2781-2785. [PMID: 34115919 PMCID: PMC8518054 DOI: 10.1002/cmdc.202100369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Indexed: 11/24/2022]
Abstract
Several naturally occurring cyclopentenones, such as palmenones and nigrosporiones, exhibit antimicrobial activity. Herein we describe the antimicrobial activity of cyclopentenones and derivatives that can be easily accessed from biomass derivatives furfural and 5-hydroxymethylfurfural. Upon screening a range of functionalized trans-diamino-cyclopentenones (DCPs) and δ-lactone-fused cyclopentenones (LCPs), an oxime ether derivative of DCP was identified that exhibited remarkable antimicrobial activity against Gram-positive bacteria, including resistant strains such as methicillin-resistant S. aureus (MRSA) and vancomycin-resistant E. faecalis (VRE) strains.
Collapse
Affiliation(s)
- Rafael F. A. Gomes
- Research Institute for Medicines (iMed.ULisboa)Faculty of PharmacyUniversidade de LisboaAv. Prof. Gama Pinto1649-003LisboaPortugal
| | - Vera M. S. Isca
- Research Institute for Medicines (iMed.ULisboa)Faculty of PharmacyUniversidade de LisboaAv. Prof. Gama Pinto1649-003LisboaPortugal
- Universidade LusófonaCBIOS – Universidade Lusófona's Research Center for Biosciences & Health TechnologiesCampo Grande 3761749-024LisboaPortugal
| | - Késsia Andrade
- Research Institute for Medicines (iMed.ULisboa)Faculty of PharmacyUniversidade de LisboaAv. Prof. Gama Pinto1649-003LisboaPortugal
| | - Patrícia Rijo
- Research Institute for Medicines (iMed.ULisboa)Faculty of PharmacyUniversidade de LisboaAv. Prof. Gama Pinto1649-003LisboaPortugal
- Universidade LusófonaCBIOS – Universidade Lusófona's Research Center for Biosciences & Health TechnologiesCampo Grande 3761749-024LisboaPortugal
| | - Carlos A. M. Afonso
- Research Institute for Medicines (iMed.ULisboa)Faculty of PharmacyUniversidade de LisboaAv. Prof. Gama Pinto1649-003LisboaPortugal
| |
Collapse
|
24
|
Sabahi-Agabager L, Eskandari H, Nasiri F, Shamkhali AN, Baghi Sefidan S. Properties of a furan ring-opening reaction in aqueous micellar solutions for selective sensing of mesalazine. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 258:119846. [PMID: 33933944 DOI: 10.1016/j.saa.2021.119846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/26/2021] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
A novel and efficient non-azo formation based method was developed for trace sensing of mesalazine (MES), a pharmaceutical aromatic amine. MES was simply coupled with a Meldrum's activated furan (MAF) reagent via a furan ring opening reaction to form a colored product. The intense purple colored solution was detected at 575 nm. The reaction of MES with MAF was monitored by employing 1H NMR spectroscopy and mass spectrometry. In addition, density functional theory (DFT) was applied to optimize the structure of the colored product and its λmax (the wavelength of maximum absorbance) in dimethyl sulfoxide and water. The colored product was considered in three possible structures, and the most possible structures in dimethyl sulfoxide and in water were identified by employing the DFT calculations. Both of the most possible structures indicated only a local excitation in their λmax and no charge transfer was observed. However, one of the structures in dimethyl sulfoxide presented charge transfer properties occurring through NCCC moiety. A univariate optimization method was also used to attain the optimum condition for analysis. In addition, the dependence of the analytical response on the three main affecting parameters (reaction time (X1), Triton X-100 concentration (X2) and MAF concentration (X3)) was identified by employing a central composite design (CCD) approach. The CCD study showed that the analytical response depends complexly on the parameters. Beer's law was obeyed within the range of 0.06-9.30 μg mL-1 of MES (155 fold linearity) at 575 nm, under the optimum condition introduced by the CCD approach. Also, the limit of detection was obtained 0.04 μg mL-1 of MES. The method showed precision (as relative standard deviation) and accuracy (as recovery) within the ranges of 0.6-3.2 % and 96.3-100.8%, respectively. Various organic and inorganic species, amino-pharmaceuticals, and amino acids were tested to evaluate the selectivity of the method. The selectivity of the analytical method was satisfactory. The method was successfully applied for detection of MES in various water matrices and pharmaceutical tablets.
Collapse
Affiliation(s)
- Leila Sabahi-Agabager
- Department of Chemistry, Faculty of Basic Sciences, University of Mohaghegh Ardabili, Ardabil 56199-11367, Iran
| | - Habibollah Eskandari
- Department of Chemistry, Faculty of Basic Sciences, University of Mohaghegh Ardabili, Ardabil 56199-11367, Iran.
| | - Farough Nasiri
- Department of Chemistry, Faculty of Basic Sciences, University of Mohaghegh Ardabili, Ardabil 56199-11367, Iran
| | - Amir Nasser Shamkhali
- Department of Chemistry, Faculty of Basic Sciences, University of Mohaghegh Ardabili, Ardabil 56199-11367, Iran
| | - Somayyeh Baghi Sefidan
- Department of Chemistry, Faculty of Basic Sciences, University of Mohaghegh Ardabili, Ardabil 56199-11367, Iran
| |
Collapse
|
25
|
Mazumdar W, Driver TG. Recent Advances in the Development of Catalytic Methods that Construct Medium-ring Lactams, Partially Saturated Benzazepines and their Derivatives. SYNTHESIS-STUTTGART 2021; 53:1734-1748. [PMID: 34421133 DOI: 10.1055/s-0040-1705995] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Recent catalytic methods to construct medium-sized lactams and partially saturated benzazepines and their derivatives are surveyed. The review is divided into the following sections: 1 Introduction 2 Non-Transition Metal Catalyzed Reactions 2.1 Beckmann Rearrangement 2.2 Non-Beckmann Rearrangement Reactions 2.3 Multi-component reactions 3 Transition Metal-Catalyzed Reactions 3.1 Au-catalyzed reactions to access medium-sized N-heterocycles 3.2 Reactions involving a metal η3-complex catalytic intermediate 3.3 Transition metal-catalyzed reactions of strained cycloalkanes 4 Conclusions.
Collapse
Affiliation(s)
- Wrickban Mazumdar
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, IL, USA, 60607
| | - Tom G Driver
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, IL, USA, 60607
| |
Collapse
|
26
|
Marin L, Jerhaoui S, Kolodziej E, Guillot R, Gandon V, Colobert F, Schulz E, Wencel‐Delord J, Lebœuf D. Sulfoxide‐Controlled Stereoselective Aza‐Piancatelli Reaction. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100848] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Lucile Marin
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) CNRS UMR 8182 Université Paris-Saclay 91405 Orsay France
| | - Soufyan Jerhaoui
- Laboratoire d'Innovation Moléculaire et Applications (LIMA) CNRS UMR 7042 Université de Strasbourg/Université de Haute-Alsace, ECPM 67087 Strasbourg France
| | - Emilie Kolodziej
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) CNRS UMR 8182 Université Paris-Saclay 91405 Orsay France
| | - Régis Guillot
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) CNRS UMR 8182 Université Paris-Saclay 91405 Orsay France
| | - Vincent Gandon
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) CNRS UMR 8182 Université Paris-Saclay 91405 Orsay France
- Laboratoire de Chimie Moléculaire (LCM) CNRS UMR 9168 Ecole Polytechnique Institut Polytechnique de Paris 91128 Palaiseau France
| | - Françoise Colobert
- Laboratoire d'Innovation Moléculaire et Applications (LIMA) CNRS UMR 7042 Université de Strasbourg/Université de Haute-Alsace, ECPM 67087 Strasbourg France
| | - Emmanuelle Schulz
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) CNRS UMR 8182 Université Paris-Saclay 91405 Orsay France
| | - Joanna Wencel‐Delord
- Laboratoire d'Innovation Moléculaire et Applications (LIMA) CNRS UMR 7042 Université de Strasbourg/Université de Haute-Alsace, ECPM 67087 Strasbourg France
| | - David Lebœuf
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS) CNRS UMR 7006 Université de Strasbourg 67000 Strasbourg France
| |
Collapse
|
27
|
Mukhopadhyay S, Sarkar A, Ghoshal S, Sarkar P, Dhara K, Chattopadhyay P. Encapsulation and Stabilization of a Donor-Acceptor Stenhouse Adduct Isomer in Water Inside the Blue Box: A Combined Experimental and Theoretical Approach. J Phys Chem B 2021; 125:7222-7230. [PMID: 34181423 DOI: 10.1021/acs.jpcb.1c03890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We synthesized two types of donor-acceptor Stenhouse adducts (DASAs), a new type of photochromic molecules showing dual color in two different isomeric forms in solution phase, using Meldrum acid (DASA-Mel) and barbituric acid (DASA-Bar), along with a naphthalimide derivative to obtain interesting fluorescence properties. DASA-Mel was found to have fast photochromic conversion in comparison to DASA-Bar, evident from ultraviolet-visible (UV-vis) and fluorescence spectroscopic studies. The colored form of DASA-Mel was encapsulated inside the water-soluble Stoddart's blue box and became soluble in water much faster than DASA-Bar. Interestingly, the competitive encapsulation experiment showed that DASA-Mel was selectively encapsulated inside the blue box in water whereas DASA-Bar was mostly separated out from the solution after centrifugation, and this phenomenon was confirmed by 1H and DOSY NMR and mass spectroscopies. Moreover, we found through density functional theory (DFT) optimization that the open form of DASA-Mel was more stable during the encapsulation reaction in a water medium in comparison to DASA-Bar. The calculated binding energies of encapsulated DASA-Mel and DASA-Bar are -10.2 and -9.9 kcal/mol, respectively, clearly showing that the former is more stable by 0.3 kcal. Consequently, the organic macrocycle selectively separating one kind of DASA from a mixture by encapsulation in water is reported for the first time with experimental and theoretical support in the literature.
Collapse
Affiliation(s)
- Sujay Mukhopadhyay
- Department of Chemistry, The University of Burdwan, Golapbag, Burdwan 713104, West Bengal, India
| | - Arnab Sarkar
- Department of Chemistry, The University of Burdwan, Golapbag, Burdwan 713104, West Bengal, India
| | - Sourav Ghoshal
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, West Bengal, India
| | - Pranab Sarkar
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, West Bengal, India
| | - Koushik Dhara
- Department of Chemistry, Sambhu Nath College, Labpur, Birbhum 731303, West Bengal, India
| | - Pabitra Chattopadhyay
- Department of Chemistry, The University of Burdwan, Golapbag, Burdwan 713104, West Bengal, India
| |
Collapse
|
28
|
Huang Y, Du Y, Yuan L, Chu Z, He L. Donor-acceptor Stenhouse adducts as new emerging photoswitches: synthesis, light-responsive properties, and applications in polymers science. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2021. [DOI: 10.1080/10601325.2021.1936550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Yingjie Huang
- School of Chemical Engineering; State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, China
| | - Yiying Du
- School of Chemical Engineering; State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Ling Yuan
- School of Chemical Engineering; State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, China
| | - Zonglin Chu
- Department of Applied Chemistry, Hunan University, Changsha, China
| | - Lirong He
- School of Chemical Engineering; State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, China
| |
Collapse
|
29
|
Chen T, Cai Y, Jiang S, Cai W, Tong M, Bao X. Light‐ and Chemical‐Stimuli‐Induced Isomerization of Donor−Acceptor Stenhouse Adducts. CHEMPHOTOCHEM 2021. [DOI: 10.1002/cptc.202100004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Tian‐Yang Chen
- School of Chemical Engineering Nanjing University of Science and Technology 210094 Nanjing P. R. China
| | - You‐De Cai
- School of Chemical Engineering Nanjing University of Science and Technology 210094 Nanjing P. R. China
| | - Shi‐Qing Jiang
- School of Chemical Engineering Nanjing University of Science and Technology 210094 Nanjing P. R. China
| | - Wei Cai
- School of Chemical Engineering Nanjing University of Science and Technology 210094 Nanjing P. R. China
| | - Ming‐Liang Tong
- School of Chemistry Sun Yat-Sen University 510275 Guangzhou P. R. China
| | - Xin Bao
- School of Chemical Engineering Nanjing University of Science and Technology 210094 Nanjing P. R. China
| |
Collapse
|
30
|
Clerc M, Stricker F, Ulrich S, Sroda M, Bruns N, Boesel LF, Read de Alaniz J. Promoting the Furan Ring-Opening Reaction to Access New Donor-Acceptor Stenhouse Adducts with Hexafluoroisopropanol. Angew Chem Int Ed Engl 2021; 60:10219-10227. [PMID: 33503292 PMCID: PMC8068666 DOI: 10.1002/anie.202100115] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Indexed: 01/27/2023]
Abstract
Donor-acceptor Stenhouse adducts (DASAs) are visible-light-responsive photoswitches with a variety of emerging applications in photoresponsive materials. Their two-step modular synthesis, centered on the nucleophilic ring opening of an activated furan, makes DASAs readily accessible. However, the use of less reactive donors or acceptors renders the process slow and low yielding, which has limited their development. We demonstrate here that 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) promotes the ring-opening reaction and stabilizes the open isomer, allowing greatly reduced reaction times and increased yields for known derivatives. In addition, it provides access to previously unattainable DASA-based photoswitches and DASA-polymer conjugates. The role of HFIP and the photochromic properties of a set of new DASAs is probed using a combination of 1 H NMR and UV/Vis spectroscopy. The use of sterically hindered, electron-poor amines enabled the dark equilibrium to be decoupled from closed-isomer half-lives for the first time.
Collapse
Affiliation(s)
- Michèle Clerc
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland
- Department of Chemistry, University of Fribourg, 1700, Fribourg, Switzerland
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, G1 1XL, UK
| | - Friedrich Stricker
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Sebastian Ulrich
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland
| | - Miranda Sroda
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Nico Bruns
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, G1 1XL, UK
| | - Luciano F Boesel
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland
| | - Javier Read de Alaniz
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| |
Collapse
|
31
|
Clerc M, Stricker F, Ulrich S, Sroda M, Bruns N, Boesel LF, Read de Alaniz J. Promoting the Furan Ring‐Opening Reaction to Access New Donor–Acceptor Stenhouse Adducts with Hexafluoroisopropanol. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Michèle Clerc
- Empa Swiss Federal Laboratories for Materials Science and Technology Laboratory for Biomimetic Membranes and Textiles Lerchenfeldstrasse 5 9014 St. Gallen Switzerland
- Department of Chemistry University of Fribourg 1700 Fribourg Switzerland
- Department of Pure and Applied Chemistry University of Strathclyde Glasgow G1 1XL UK
| | - Friedrich Stricker
- Department of Chemistry and Biochemistry University of California Santa Barbara CA 93106 USA
| | - Sebastian Ulrich
- Empa Swiss Federal Laboratories for Materials Science and Technology Laboratory for Biomimetic Membranes and Textiles Lerchenfeldstrasse 5 9014 St. Gallen Switzerland
| | - Miranda Sroda
- Department of Chemistry and Biochemistry University of California Santa Barbara CA 93106 USA
| | - Nico Bruns
- Department of Pure and Applied Chemistry University of Strathclyde Glasgow G1 1XL UK
| | - Luciano F. Boesel
- Empa Swiss Federal Laboratories for Materials Science and Technology Laboratory for Biomimetic Membranes and Textiles Lerchenfeldstrasse 5 9014 St. Gallen Switzerland
| | - Javier Read de Alaniz
- Department of Chemistry and Biochemistry University of California Santa Barbara CA 93106 USA
| |
Collapse
|
32
|
Duan Y, Zhao H, Xiong C, Mao L, Wang D, Zheng Y. Learning from Spiropyrans: How to Make Further Developments of
Donor‐Acceptor
Stenhouse Adducts. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000532] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yongli Duan
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China Jianshe North Road Section 2 No. 4, Chengdu, Sichuan 610054, China Institute of Electronic and Information Engineering of UESTC in Guangdong Zongbu Second Road No. 17 Dongguan Guangdong 523808 China
| | - Haiquan Zhao
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China Jianshe North Road Section 2 No. 4, Chengdu, Sichuan 610054, China Institute of Electronic and Information Engineering of UESTC in Guangdong Zongbu Second Road No. 17 Dongguan Guangdong 523808 China
| | - Chaoyue Xiong
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China Jianshe North Road Section 2 No. 4, Chengdu, Sichuan 610054, China Institute of Electronic and Information Engineering of UESTC in Guangdong Zongbu Second Road No. 17 Dongguan Guangdong 523808 China
| | - Lijun Mao
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China Jianshe North Road Section 2 No. 4, Chengdu, Sichuan 610054, China Institute of Electronic and Information Engineering of UESTC in Guangdong Zongbu Second Road No. 17 Dongguan Guangdong 523808 China
| | - Dongsheng Wang
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China Jianshe North Road Section 2 No. 4, Chengdu, Sichuan 610054, China Institute of Electronic and Information Engineering of UESTC in Guangdong Zongbu Second Road No. 17 Dongguan Guangdong 523808 China
| | - Yonghao Zheng
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China Jianshe North Road Section 2 No. 4, Chengdu, Sichuan 610054, China Institute of Electronic and Information Engineering of UESTC in Guangdong Zongbu Second Road No. 17 Dongguan Guangdong 523808 China
| |
Collapse
|
33
|
Li J, Xu Y, Hu X, Zhu S, Liu L. Easy Access to 2,4-Disubstituted Cyclopentenones by a Gold(III)-Catalyzed A3-Coupling/Cyclization Cascade. Org Lett 2020; 22:9478-9483. [PMID: 33237782 DOI: 10.1021/acs.orglett.0c03451] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
An efficient and convenient synthesis of 2,4-disubstituted cyclopentenones has been achieved through a Au(III)-catalyzed isomerization-A3-coupling/cyclization cascade. A possible mechanism involving an initial Au(III)-catalyzed isomerization, A3-type coupling, and cyclization via an enol intermediate is postulated.
Collapse
Affiliation(s)
- Jian Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Pharmacy, Changzhou University, Changzhou, 213164, China
| | - Yue Xu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Pharmacy, Changzhou University, Changzhou, 213164, China
| | - Xiwen Hu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Pharmacy, Changzhou University, Changzhou, 213164, China
| | - Shangrong Zhu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Pharmacy, Changzhou University, Changzhou, 213164, China
| | - Li Liu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Pharmacy, Changzhou University, Changzhou, 213164, China
| |
Collapse
|
34
|
Xu L, Yang Q, Zhong S, Li H, Tang Y, Cai Y. Ln(III)/Chiral Brønsted Acid Catalyzed Asymmetric Cascade Ring Opening/Aza-Piancatelli Rearrangement of D–A Cyclopropanes. Org Lett 2020; 22:9016-9021. [DOI: 10.1021/acs.orglett.0c03413] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Lei Xu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Qian Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Sishi Zhong
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Hongxiang Li
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Yurong Tang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Yunfei Cai
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
35
|
Ismiyev AI, Dotsenko VV, Aksenov NA, Aksenova IV, Magerramov AM. Synthesis and structure of new 2,4-dicyano-6-oxo-3-phenylbicyclo[3.2.1]octane-2,4-dicarboxylates. Russ Chem Bull 2020. [DOI: 10.1007/s11172-020-2982-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
36
|
Wu YH, Zhang LY, Wang NX, Xing Y. Recent advances in the rare-earth metal triflates-catalyzed organic reactions. CATALYSIS REVIEWS 2020. [DOI: 10.1080/01614940.2020.1831758] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Yue-Hua Wu
- Technical Institute of Physics and Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Lei-Yang Zhang
- Technical Institute of Physics and Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Nai-Xing Wang
- Technical Institute of Physics and Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Yalan Xing
- Department of Chemistry, William Paterson University of New Jersey, New Jersey, United States
| |
Collapse
|
37
|
Marin L, Force G, Gandon V, Schulz E, Lebœuf D. Aza‐Piancatelli Cyclization as a Platform for the Preparation of Scaffolds of Natural Compounds: Application to the Total Synthesis of Bruceolline D. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000849] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Lucile Marin
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) CNRS UMR 8182 Université Paris‐Saclay Bâtiment 420 91405 Orsay France
| | - Guillaume Force
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) CNRS UMR 8182 Université Paris‐Saclay Bâtiment 420 91405 Orsay France
| | - Vincent Gandon
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) CNRS UMR 8182 Université Paris‐Saclay Bâtiment 420 91405 Orsay France
| | - Emmanuelle Schulz
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) CNRS UMR 8182 Université Paris‐Saclay Bâtiment 420 91405 Orsay France
| | - David Lebœuf
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS) CNRS UMR 7006 Université de Strasbourg 8 allée Gaspard Monge 67000 Strasbourg France
| |
Collapse
|
38
|
Ismiyev AI, Shoaib M, Dotsenko VV, Ganbarov KG, Israilova AA, Magerramov AM. Synthesis and Biological Activity of 8-(Dialkylamino)-3-aryl-6-oxo-2,4-dicyanobicyclo[3.2.1]octane-2,4-dicarboxylic Acids Diethyl Esters. RUSS J GEN CHEM+ 2020. [DOI: 10.1134/s1070363220080071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
39
|
Shen B, He Q, Dong S, Liu X, Feng X. A chiral cobalt(ii) complex catalyzed enantioselective aza-Piancatelli rearrangement/Diels-Alder cascade reaction. Chem Sci 2020; 11:3862-3867. [PMID: 34122854 PMCID: PMC8152720 DOI: 10.1039/d0sc00542h] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
A chiral N,N′-dioxide/cobalt(ii) complex catalyzed highly diastereoselective and enantioselective tandem aza-Piancatelli rearrangement/intramolecular Diels–Alder reaction has been disclosed. Various valuable hexahydro-2a,5-epoxycyclopenta[cd]isoindoles bearing six contiguous stereocenters have been obtained in good yields with excellent diastereo- and enantio-selectivities from a wide range of both readily available 2-furylcarbinols and N-(furan-2-ylmethyl)anilines. An asymmetric aza-Piancatelli rearrangement/Diels–Alder cascade reaction between 2-furylcarbinols and N-(furan-2-ylmethyl)anilines was realized by using a chiral N,N′-dioxide/cobalt(ii) complex catalyst.![]()
Collapse
Affiliation(s)
- Bin Shen
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Qianwen He
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Shunxi Dong
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| |
Collapse
|
40
|
Mallo N, Tron A, Andréasson J, Harper JB, Jacob LSD, McClenaghan ND, Jonusauskas G, Beves JE. Hydrogen‐Bonding Donor‐Acceptor Stenhouse Adducts. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.201900295] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Neil Mallo
- School of Chemistry UNSW Sydney Sydney NSW 2052 Australia
| | - Arnaud Tron
- Univ. Bordeaux/CNRS 351 cours de la Libération 33405 Talence Cedex France
| | - Joakim Andréasson
- Department of Chemistry and Chemical Engineering Chalmers University of Technology 412 96 Göteborg Sweden
| | | | | | | | | | | |
Collapse
|
41
|
Pozhydaiev V, Power M, Gandon V, Moran J, Lebœuf D. Exploiting hexafluoroisopropanol (HFIP) in Lewis and Brønsted acid-catalyzed reactions. Chem Commun (Camb) 2020; 56:11548-11564. [PMID: 32930690 DOI: 10.1039/d0cc05194b] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Hexafluoroisopropanol (HFIP) is a solvent with unique properties that has recently gained attention for promoting a wide range of challenging chemical reactions. It was initially believed that HFIP was almost exclusively involved in the stabilization of cationic intermediates, owing to its high polarity and low nucleophilicity. However, in many cases, the mechanism of action of HFIP appears to be more complex. Recent findings reveal that many Lewis and Brønsted acid-catalyzed transformations conducted in HFIP additionally involve cooperation between the catalyst and HFIP hydrogen-bond clusters, akin to Lewis- or Brønsted acid-assisted-Brønsted acid catalysis. This feature article showcases the remarkable versatility of HFIP in Lewis and Brønsted acid-catalyzed reactions, with an emphasis on examples yielding mechanistic insight.
Collapse
Affiliation(s)
- Valentyn Pozhydaiev
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg, 67000 Strasbourg, France.
| | - Martin Power
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg, 67000 Strasbourg, France.
| | - Vincent Gandon
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), CNRS UMR 8182, Université Paris-Saclay, 91405 Orsay, France
| | - Joseph Moran
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg, 67000 Strasbourg, France.
| | - David Lebœuf
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg, 67000 Strasbourg, France.
| |
Collapse
|
42
|
Wang S, Guillot R, Carpentier J, Sarazin Y, Bour C, Gandon V, Lebœuf D. Synthesis of Bridged Tetrahydrobenzo[
b
]azepines and Derivatives through an Aza‐Piancatelli Cyclization/Michael Addition Sequence. Angew Chem Int Ed Engl 2019; 59:1134-1138. [DOI: 10.1002/anie.201911761] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/29/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Shengdong Wang
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) CNRS UMR 8182 Université Paris-Sud Université Paris-Saclay Bâtiment 420 91405 Orsay France
| | - Régis Guillot
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) CNRS UMR 8182 Université Paris-Sud Université Paris-Saclay Bâtiment 420 91405 Orsay France
| | | | - Yann Sarazin
- Univ Rennes CNRS UMR 6226 ISCR (Institut des Sciences Chimiques de Rennes) 35000 Rennes France
| | - Christophe Bour
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) CNRS UMR 8182 Université Paris-Sud Université Paris-Saclay Bâtiment 420 91405 Orsay France
| | - Vincent Gandon
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) CNRS UMR 8182 Université Paris-Sud Université Paris-Saclay Bâtiment 420 91405 Orsay France
| | - David Lebœuf
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) CNRS UMR 8182 Université Paris-Sud Université Paris-Saclay Bâtiment 420 91405 Orsay France
| |
Collapse
|
43
|
Wang S, Guillot R, Carpentier J, Sarazin Y, Bour C, Gandon V, Lebœuf D. Synthesis of Bridged Tetrahydrobenzo[
b
]azepines and Derivatives through an Aza‐Piancatelli Cyclization/Michael Addition Sequence. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201911761] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Shengdong Wang
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) CNRS UMR 8182 Université Paris-Sud Université Paris-Saclay Bâtiment 420 91405 Orsay France
| | - Régis Guillot
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) CNRS UMR 8182 Université Paris-Sud Université Paris-Saclay Bâtiment 420 91405 Orsay France
| | | | - Yann Sarazin
- Univ Rennes CNRS UMR 6226 ISCR (Institut des Sciences Chimiques de Rennes) 35000 Rennes France
| | - Christophe Bour
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) CNRS UMR 8182 Université Paris-Sud Université Paris-Saclay Bâtiment 420 91405 Orsay France
| | - Vincent Gandon
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) CNRS UMR 8182 Université Paris-Sud Université Paris-Saclay Bâtiment 420 91405 Orsay France
| | - David Lebœuf
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) CNRS UMR 8182 Université Paris-Sud Université Paris-Saclay Bâtiment 420 91405 Orsay France
| |
Collapse
|
44
|
Sampani SI, Al-Hilaly YK, Malik S, Serpell LC, Kostakis GE. Zinc-dysprosium functionalized amyloid fibrils. Dalton Trans 2019; 48:15371-15375. [PMID: 31107476 DOI: 10.1039/c9dt01134j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The heterometallic Zn2Dy2 entity bearing partially saturated metal centres covalently decorates a highly ordered amyloid fibril core and the functionalised assembly exhibits catalytic Lewis acid behaviour.
Collapse
|
45
|
Cai YD, Chen TY, Chen XQ, Bao X. Multiresponsive Donor-Acceptor Stenhouse Adduct: Opportunities Arise from a Diamine Donor. Org Lett 2019; 21:7445-7449. [PMID: 31502465 DOI: 10.1021/acs.orglett.9b02753] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A new donor-acceptor Stenhouse adduct based on a N,N,N'-trimethylethylenediamine donor has been reported. An unprecedented isomer has been isolated, and rich conversions between three isomers have been achieved upon visible-light irradiation or base/acid stimuli. The drastic color change associated with structural conversion has been utilized to selectively sense volatile primary amines as well as high-charged hard Lewis acids (Sc3+, Ti4+, Cr3+, and Al3+).
Collapse
Affiliation(s)
- You-De Cai
- School of Chemical Engineering , Nanjing University of Science and Technology , 210094 Nanjing , P. R. China
| | - Tian-Yang Chen
- School of Chemical Engineering , Nanjing University of Science and Technology , 210094 Nanjing , P. R. China
| | - Xiu Qin Chen
- School of Chemical Engineering , Nanjing University of Science and Technology , 210094 Nanjing , P. R. China
| | - Xin Bao
- School of Chemical Engineering , Nanjing University of Science and Technology , 210094 Nanjing , P. R. China
| |
Collapse
|
46
|
Hammersley GR, Nichol MF, Steffens HC, Delgado JM, Veits GK, Read de Alaniz J. Enantioselective PCCP Brønsted acid-catalyzed aza-Piancatelli rearrangement. Beilstein J Org Chem 2019; 15:1569-1574. [PMID: 31354876 PMCID: PMC6633596 DOI: 10.3762/bjoc.15.160] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/03/2019] [Indexed: 12/14/2022] Open
Abstract
An enantioselective aza-Piancatelli rearrangement has been developed using a chiral Brønsted acid based on pentacarboxycyclopentadiene (PCCP). This reaction provides rapid access to valuable chiral 4-amino-2-cyclopentenone building blocks from readily available starting material and is operationally simple.
Collapse
Affiliation(s)
- Gabrielle R Hammersley
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA 93106-9510, USA
| | - Meghan F Nichol
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA 93106-9510, USA
| | - Helena C Steffens
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA 93106-9510, USA
| | - Jose M Delgado
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA 93106-9510, USA
| | - Gesine K Veits
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA 93106-9510, USA
| | - Javier Read de Alaniz
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA 93106-9510, USA
| |
Collapse
|
47
|
Sampani SI, McGown A, Vargas A, Abdul-Sada A, Tizzard GJ, Coles SJ, Spencer J, Kostakis GE. Solvent-Free Synthesis and Key Intermediate Isolation in Ni2Dy2 Catalyst Development in the Domino Ring-Opening Electrocyclization Reaction of Furfural and Amines. J Org Chem 2019; 84:6858-6867. [DOI: 10.1021/acs.joc.9b00608] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Stavroula I. Sampani
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, U.K
| | - Andrew McGown
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, U.K
| | - Alfredo Vargas
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, U.K
| | - Alaa Abdul-Sada
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, U.K
| | - Graham J. Tizzard
- UK National Crystallography Service, Chemistry, University of Southampton, Southampton SO1 71BJ, U.K
| | - Simon J. Coles
- UK National Crystallography Service, Chemistry, University of Southampton, Southampton SO1 71BJ, U.K
| | - John Spencer
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, U.K
| | - George E. Kostakis
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, U.K
| |
Collapse
|
48
|
Gouse S, Reddy NR, Baskaran S. A Domino Aza-Piancatelli Rearrangement/Intramolecular Diels–Alder Reaction: Stereoselective Synthesis of Octahydro-1H-cyclopenta[cd]isoindole. Org Lett 2019; 21:3822-3827. [DOI: 10.1021/acs.orglett.9b01267] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Shaik Gouse
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Narra Rajashekar Reddy
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Sundarababu Baskaran
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| |
Collapse
|
49
|
González-Pérez AB, Villar P, de Lera AR. A Computational Study of Model Parent Systems and Reported Aza-(Iso)Nazarov/Aza-(Iso)Piancatelli Electrocyclic Reactions. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900103] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Adán B. González-Pérez
- University of Vigo; Department of Organic Chemistry and Center of Biomedical Research (CINBIO); Lagoas-Marcosende 36310 Vigo Spain
| | - Pedro Villar
- University of Vigo; Department of Organic Chemistry and Center of Biomedical Research (CINBIO); Lagoas-Marcosende 36310 Vigo Spain
| | - Angel R. de Lera
- University of Vigo; Department of Organic Chemistry and Center of Biomedical Research (CINBIO); Lagoas-Marcosende 36310 Vigo Spain
| |
Collapse
|
50
|
Abstract
Since the beginning of the 20th century, numerous research efforts made elegant use of barbituric acid derivatives as building blocks for the elaboration of more complex and useful molecules in the field of pharmaceutical chemistry and material sciences. However, the construction of chiral scaffolds by the catalytic enantioselective transformation of barbituric acid and derivatives has only emerged recently. The specific properties of these rather planar scaffolds, which also encompass either a high Brønsted acidity concerning the native barbituric acid or the marked electrophilic character of alkylidene barbituric acids, required specific developments to achieve efficient asymmetric processes. This review covers the enantioselective catalytic reactions developed for barbituric acid platforms using an organocatalytic and metal-based enantioselective sequences. These achievements currently allow several unique addition and annulation reactions towards the construction of high valued chiral heterocycles from barbituric acid derivatives along with innovative enantioselective developments.
Collapse
|