1
|
De Franceschi I, Badi N, Du Prez FE. Telechelic sequence-defined oligoamides: their step-economical synthesis, depolymerization and use in polymer networks. Chem Sci 2024; 15:2805-2816. [PMID: 38404375 PMCID: PMC10882489 DOI: 10.1039/d3sc04820a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/13/2024] [Indexed: 02/27/2024] Open
Abstract
The application of sequence-defined macromolecules in material science remains largely unexplored due to their challenging, low yielding and time-consuming synthesis. This work first describes a step-economical method for synthesizing unnatural sequence-defined oligoamides through fluorenylmethyloxycarbonyl chemistry. The use of a monodisperse soluble support enables homogeneous reactions at elevated temperature (up to 65 °C), leading to rapid coupling times (<10 min) and improved synthesis protocols. Moreover, a one-pot procedure for the two involved iterative steps is demonstrated via an intermediate quenching step, eliminating the need for in-between purification. The protocol is optimized using γ-aminobutyric acid (GABA) as initial amino acid, and the unique ability of the resulting oligomers to depolymerize, with the formation of cyclic γ-butyrolactame, is evidenced. Furthermore, in order to demonstrate the versatility of the present protocol, a library of 17 unnatural amino acid monomers is synthesized, starting from the readily available GABA-derivative 4-amino-2-hydroxybutanoic acid, and then used to create multifunctional tetramers. Notably, the obtained tetramers show higher thermal stability than a similar thiolactone-based sequence-defined macromolecule, which enables its exploration within a material context. To that end, a bidirectional growth approach is proposed as a greener alternative that reduces the number of synthetic steps to obtain telechelic sequence-defined oligoamides. The latter are finally used as macromers for the preparation of polymer networks. We expect this strategy to pave the way for the further exploration of sequence-defined macromolecules in material science.
Collapse
Affiliation(s)
- Irene De Franceschi
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University 9000 Ghent Belgium
| | - Nezha Badi
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University 9000 Ghent Belgium
| | - Filip E Du Prez
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University 9000 Ghent Belgium
| |
Collapse
|
2
|
Ionita D, Cristea M, Gaina C, Silion M, Simionescu BC. Evidence through Thermal Analysis of Retro Diels-Alder Reaction in Model Networks Based on Anthracene Modified Polyester Resins. Polymers (Basel) 2023; 15:4028. [PMID: 37836077 PMCID: PMC10575195 DOI: 10.3390/polym15194028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
The present work is focused on polyester resins obtained from the diglycidyl ether of bisphenol A and anthracene modified 5-maleimidoisophthalic acid. Because the maleimide-anthracene Diels-Alder (DA) adduct is stable at high temperatures, it is considered a good option for high performance polymers. However, the information related to the retroDA reaction for this type of adduct is sometimes incoherent. A detailed thermal study (conventional TGA, HiRes TGA, MTGA, DSC, MDSC) was performed in order to establish whether the rDA reaction can be revealed for this type of anthracene modified polyester resins. The TGA method confirmed the cleavage of the anthracene-maleimide DA adduct, while the DSC demonstrated the presence of anthracene in the system. At high temperatures, unprotected maleimide homopolymerizes and/or reacts with allyl groups according to the -ene reaction. Therefore, the thermal DA reaction is not displayed anymore upon the subsequent cooling, and the glass transition region is registered at a higher temperature range during the second heating. The use of sample-controlled thermal analysis (HiRes TGA) and MTGA improved the TGA result; however, it was not possible to separate the very complex degradation processes that are interconnected.
Collapse
Affiliation(s)
| | - Mariana Cristea
- “Petru Poni” Institute of Macromolecular Chemistry, Aleea Grigore Ghica 41A, 700487 Iasi, Romania; (D.I.); (C.G.); (M.S.); (B.C.S.)
| | | | | | | |
Collapse
|
3
|
Kumar S, Arora A, Kumar S, Kumar R, Maity J, Singh BK. Passerini reaction: Synthesis and applications in polymer chemistry. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.112004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
4
|
Guo Z, He J. Synthesis of Linear and Cyclic Discrete Oligomers with Defined Sequences via Efficient Anionic Coupling Reaction. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhenhao Guo
- The State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Junpo He
- The State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
5
|
Wang C, Yu B, Li W, Zou W, Cong H, Shen Y. Effective strategy for polymer synthesis: multicomponent reactions and click polymerization. MATERIALS TODAY CHEMISTRY 2022; 25:100948. [DOI: 10.1016/j.mtchem.2022.100948] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
|
6
|
Bohn P, Weisel MP, Wolfs J, Meier MAR. Molecular data storage with zero synthetic effort and simple read-out. Sci Rep 2022; 12:13878. [PMID: 35974033 PMCID: PMC9381582 DOI: 10.1038/s41598-022-18108-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/05/2022] [Indexed: 11/21/2022] Open
Abstract
Compound mixtures represent an alternative, additional approach to DNA and synthetic sequence-defined macromolecules in the field of non-conventional molecular data storage, which may be useful depending on the target application. Here, we report a fast and efficient method for information storage in molecular mixtures by the direct use of commercially available chemicals and thus, zero synthetic steps need to be performed. As a proof of principle, a binary coding language is used for encoding words in ASCII or black and white pixels of a bitmap. This way, we stored a 25 × 25-pixel QR code (625 bits) and a picture of the same size. Decoding of the written information is achieved via spectroscopic (1H NMR) or chromatographic (gas chromatography) analysis. In addition, for a faster and automated read-out of the data, we developed a decoding software, which also orders the data sets according to an internal "ordering" standard. Molecular keys or anticounterfeiting are possible areas of application for information-containing compound mixtures.
Collapse
Affiliation(s)
- Philipp Bohn
- Laboratory of Applied Chemistry, Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Straße am Forum 7, 76131, Karlsruhe, Germany
| | - Maximilian P Weisel
- Laboratory of Applied Chemistry, Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Straße am Forum 7, 76131, Karlsruhe, Germany
| | - Jonas Wolfs
- Laboratory of Applied Chemistry, Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Straße am Forum 7, 76131, Karlsruhe, Germany
| | - Michael A R Meier
- Laboratory of Applied Chemistry, Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Straße am Forum 7, 76131, Karlsruhe, Germany.
- Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
7
|
Safapoor S, Dekamin MG, Akbari A, Naimi-Jamal MR. Synthesis of (E)-2-(1H-tetrazole-5-yl)-3-phenylacrylenenitrile derivatives catalyzed by new ZnO nanoparticles embedded in a thermally stable magnetic periodic mesoporous organosilica under green conditions. Sci Rep 2022; 12:10723. [PMID: 35750767 PMCID: PMC9232489 DOI: 10.1038/s41598-022-13011-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 05/19/2022] [Indexed: 11/20/2022] Open
Abstract
ZnO nanoparticles embedded in a magnetic isocyanurate-based periodic mesoporous organosilica (Fe3O4@PMO-ICS-ZnO) were prepared through a modified environmentally-benign procedure for the first time and properly characterized by appropriate spectroscopic and analytical methods or techniques used for mesoporous materials. The new thermally stable Fe3O4@PMO-ICS-ZnO nanomaterial with proper active sites and surface area as well as uniform particle size was investigated for the synthesis of medicinally important tetrazole derivatives through cascade condensation and concerted 1,3-cycloaddition reactions as a representative of the Click Chemistry concept. The desired 5-substituted-1H-tetrazole derivatives were smoothly prepared in high to quantitative yields and good purity in EtOH under reflux conditions. Low catalyst loading, short reaction time and the use of green solvents such as EtOH and water instead of carcinogenic DMF as well as easy separation and recyclability of the catalyst for at least five consecutive runs without significant loss of its activity are notable advantages of this new protocol compared to other recent introduced procedures.
Collapse
Affiliation(s)
- Sajedeh Safapoor
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Mohammad G Dekamin
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| | - Arezoo Akbari
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - M Reza Naimi-Jamal
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| |
Collapse
|
8
|
Pasch P, Killa M, Junghans HL, Schmidt M, Schmidt S, Voskuhl J, Hartmann L. Take your Positions and Shine: Effects of Positioning Aggregation-Induced Emission Luminophores within Sequence-Defined Macromolecules. Chemistry 2021; 27:10186-10192. [PMID: 33876476 PMCID: PMC8362002 DOI: 10.1002/chem.202101086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Indexed: 12/17/2022]
Abstract
A luminophore with aggregation‐induced emission (AIE) is employed for the conjugation onto supramolecular ligands to allow for detection of ligand binding. Supramolecular ligands are based on the combination of sequence‐defined oligo(amidoamine) scaffolds and guanidiniocarbonyl‐pyrrole (GCP) as binding motif. We hypothesize that AIE properties are strongly affected by positioning of the luminophore within the ligand scaffold. Therefore, we systematically investigate the effects placing the AIE luminophore at different positions within the overall construct, for example, in the main or side chain of the olig(amidoamine). Indeed, we can show that the position within the ligand structure strongly affects AIE, both for the ligand itself as well as when applying the ligand for the detection of different biological and synthetic polyanions.
Collapse
Affiliation(s)
- Peter Pasch
- Department for Organic Chemistry and Macromolecular Chemistry, Heinrich Heine University Duesseldorf, Universitätsstraße 1, Düsseldorf, 40225, Germany
| | - Matthias Killa
- Faculty of chemistry (Organic chemistry) and CENIDE, University of Duisburg Essen, Universitätsstrasse 7, 45141, Essen, Germany
| | - Hauke Lukas Junghans
- Department for Organic Chemistry and Macromolecular Chemistry, Heinrich Heine University Duesseldorf, Universitätsstraße 1, Düsseldorf, 40225, Germany
| | - Melanie Schmidt
- Department for Organic Chemistry and Macromolecular Chemistry, Heinrich Heine University Duesseldorf, Universitätsstraße 1, Düsseldorf, 40225, Germany
| | - Stephan Schmidt
- Department for Organic Chemistry and Macromolecular Chemistry, Heinrich Heine University Duesseldorf, Universitätsstraße 1, Düsseldorf, 40225, Germany
| | - Jens Voskuhl
- Faculty of chemistry (Organic chemistry) and CENIDE, University of Duisburg Essen, Universitätsstrasse 7, 45141, Essen, Germany
| | - Laura Hartmann
- Department for Organic Chemistry and Macromolecular Chemistry, Heinrich Heine University Duesseldorf, Universitätsstraße 1, Düsseldorf, 40225, Germany
| |
Collapse
|
9
|
Fairbanks BD, Macdougall LJ, Mavila S, Sinha J, Kirkpatrick BE, Anseth KS, Bowman CN. Photoclick Chemistry: A Bright Idea. Chem Rev 2021; 121:6915-6990. [PMID: 33835796 PMCID: PMC9883840 DOI: 10.1021/acs.chemrev.0c01212] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
At its basic conceptualization, photoclick chemistry embodies a collection of click reactions that are performed via the application of light. The emergence of this concept has had diverse impact over a broad range of chemical and biological research due to the spatiotemporal control, high selectivity, and excellent product yields afforded by the combination of light and click chemistry. While the reactions designated as "photoclick" have many important features in common, each has its own particular combination of advantages and shortcomings. A more extensive realization of the potential of this chemistry requires a broader understanding of the physical and chemical characteristics of the specific reactions. This review discusses the features of the most frequently employed photoclick reactions reported in the literature: photomediated azide-alkyne cycloadditions, other 1,3-dipolarcycloadditions, Diels-Alder and inverse electron demand Diels-Alder additions, radical alternating addition chain transfer additions, and nucleophilic additions. Applications of these reactions in a variety of chemical syntheses, materials chemistry, and biological contexts are surveyed, with particular attention paid to the respective strengths and limitations of each reaction and how that reaction benefits from its combination with light. Finally, challenges to broader employment of these reactions are discussed, along with strategies and opportunities to mitigate such obstacles.
Collapse
Affiliation(s)
- Benjamin D Fairbanks
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
| | - Laura J Macdougall
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
| | - Sudheendran Mavila
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
| | - Jasmine Sinha
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
| | - Bruce E Kirkpatrick
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
- The BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303, United States
- Medical Scientist Training Program, School of Medicine, University of Colorado, Aurora, Coorado 80045, United States
| | - Kristi S Anseth
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
- The BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303, United States
| | - Christopher N Bowman
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
- Materials Science and Engineering Program, University of Colorado, Boulder, Colorado 80303, United States
| |
Collapse
|
10
|
Barther D, Moatsou D. Ring-Opening Metathesis Polymerization of Norbornene-Based Monomers Obtained via the Passerini Three Component Reaction. Macromol Rapid Commun 2021; 42:e2100027. [PMID: 33644929 DOI: 10.1002/marc.202100027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/09/2021] [Indexed: 11/12/2022]
Abstract
Ring-opening metathesis polymerization is a robust method to synthesize a variety of polymers by using ring-strained molecules as monomers, e.g., norbornenes. However, the synthesis of monomers with multiple functional groups remains a challenge, albeit peptide functional norbornenes have previously been used. Here, the Passerini three component reaction is exploited to synthesize norbornenes with two variable functional groups varying in bulkiness and distance from the polymerizable alkene. The results indicate that the functional groups do not affect the kinetics of the polymerization, whereas the length of the linker has a minor effect. Furthermore, a diblock-type copolymer is synthesized in a one-pot fashion, also indicating good control of the polymerization process. The thermal properties of all polymers are evaluated, highlighting the effect of monomer composition. This synthetic approach can be transferred to a variety of compounds, thus promising highly diverse polymers with complex compositions and architectures.
Collapse
Affiliation(s)
- Dennis Barther
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, Karlsruhe, 76131, Germany
| | - Dafni Moatsou
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, Karlsruhe, 76131, Germany
| |
Collapse
|
11
|
Genabeek B, Lamers BAG, Hawker CJ, Meijer EW, Gutekunst WR, Schmidt BVKJ. Properties and applications of precision oligomer materials; where organic and polymer chemistry join forces. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20200862] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Bas Genabeek
- Laboratory of Macromolecular and Organic Chemistry Eindhoven University of Technology Eindhoven The Netherlands
- Institute for Complex Molecular Systems Eindhoven University of Technology Eindhoven The Netherlands
| | - Brigitte A. G. Lamers
- Laboratory of Macromolecular and Organic Chemistry Eindhoven University of Technology Eindhoven The Netherlands
- Institute for Complex Molecular Systems Eindhoven University of Technology Eindhoven The Netherlands
| | - Craig J. Hawker
- Materials Research Laboratory University of California Santa Barbara California USA
- Materials Department University of California Santa Barbara California USA
| | - E. W. Meijer
- Laboratory of Macromolecular and Organic Chemistry Eindhoven University of Technology Eindhoven The Netherlands
- Institute for Complex Molecular Systems Eindhoven University of Technology Eindhoven The Netherlands
| | - Will R. Gutekunst
- School of Chemistry and Biochemistry Georgia Institute of Technology Atlanta Georgia USA
| | - Bernhard V. K. J. Schmidt
- Department of Colloid Chemistry Max Planck Institute of Colloids and Interfaces Potsdam Germany
- School of Chemisty University of Glasgow Glasgow UK
| |
Collapse
|
12
|
Hill SA, Steinfort R, Hartmann L. Progress, challenges and future directions of heterocycles as building blocks in iterative methodologies towards sequence-defined oligomers and polymers. Polym Chem 2021. [DOI: 10.1039/d1py00425e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Heterocyclic building blocks for iterative methodologies leading to sequence-defined oligomers and polymers are reviewed. Solid- as well as solution-phase methods, challenges surrounding these systems and potential future directions are presented.
Collapse
Affiliation(s)
- Stephen A. Hill
- Institute of Organic and Macromolecular Chemistry
- Heinrich Heine University Düsseldorf
- 40225 Düsseldorf
- Germany
| | - Robert Steinfort
- Institute of Organic and Macromolecular Chemistry
- Heinrich Heine University Düsseldorf
- 40225 Düsseldorf
- Germany
| | - Laura Hartmann
- Institute of Organic and Macromolecular Chemistry
- Heinrich Heine University Düsseldorf
- 40225 Düsseldorf
- Germany
| |
Collapse
|
13
|
Frölich M, Hofheinz D, Meier MAR. Reading mixtures of uniform sequence-defined macromolecules to increase data storage capacity. Commun Chem 2020; 3:184. [PMID: 36703345 PMCID: PMC9814948 DOI: 10.1038/s42004-020-00431-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/09/2020] [Indexed: 01/29/2023] Open
Abstract
In recent years, the field of molecular data storage has emerged from a niche to a vibrant research topic. Herein, we describe a simultaneous and automated read-out of data stored in mixtures of sequence-defined oligomers. Therefore, twelve different sequence-defined tetramers and three hexamers with different mass markers and side chains are successfully synthesised via iterative Passerini three-component reactions and subsequent deprotection steps. By programming a straightforward python script for ESI-MS/MS analysis, it is possible to automatically sequence and thus read-out the information stored in these oligomers within one second. Most importantly, we demonstrate that the use of mass-markers as starting compounds eases MS/MS data interpretation and furthermore allows the unambiguous reading of sequences of mixtures of sequence-defined oligomers. Thus, high data storage capacity considering the field of synthetic macromolecules (up to 64.5 bit in our examples) can be obtained without the need of synthesizing long sequences, but by mixing and simultaneously analysing shorter sequence-defined oligomers.
Collapse
Affiliation(s)
- Maximiliane Frölich
- Laboratory of Applied Chemistry, Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Straße am Forum 7, 76131, Karlsruhe, Germany
| | - Dennis Hofheinz
- Department of Computer Science, ETH Zürich, Universitätsstrasse 6, 8092, Zürich, Switzerland
| | - Michael A R Meier
- Laboratory of Applied Chemistry, Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Straße am Forum 7, 76131, Karlsruhe, Germany.
- Laboratory of Applied Chemistry, Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
14
|
Akbari A, Dekamin MG, Yaghoubi A, Naimi-Jamal MR. Novel magnetic propylsulfonic acid-anchored isocyanurate-based periodic mesoporous organosilica (Iron oxide@PMO-ICS-PrSO 3H) as a highly efficient and reusable nanoreactor for the sustainable synthesis of imidazopyrimidine derivatives. Sci Rep 2020; 10:10646. [PMID: 32606381 PMCID: PMC7327082 DOI: 10.1038/s41598-020-67592-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/11/2020] [Indexed: 11/30/2022] Open
Abstract
In this study, preparation and characterization of a new magnetic propylsulfonic acid-anchored isocyanurate bridging periodic mesoporous organosilica (Iron oxide@PMO-ICS-PrSO3H) is described. The iron oxide@PMO-ICS-PrSO3H nanomaterials were characterized by Fourier transform infrared spectroscopy, energy-dispersive X-ray spectroscopy and field emission scanning electron microscopy as well as thermogravimetric analysis, N2 adsorption-desorption isotherms and vibrating sample magnetometer techniques. Indeed, the new obtained materials are the first example of the magnetic thermally stable isocyanurate-based mesoporous organosilica solid acid. Furthermore, the catalytic activity of the Iron oxide@PMO-ICS-PrSO3H nanomaterials, as a novel and highly efficient recoverable nanoreactor, was investigated for the sustainable heteroannulation synthesis of imidazopyrimidine derivatives through the Traube-Schwarz multicomponent reaction of 2-aminobenzoimidazole, C‒H acids and diverse aromatic aldehydes. The advantages of this green protocol are low catalyst loading, high to quantitative yields, short reaction times and the catalyst recyclability for at least four consecutive runs.
Collapse
Affiliation(s)
- Arezoo Akbari
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 1684613114, Iran
| | - Mohammad G Dekamin
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 1684613114, Iran.
| | - Amene Yaghoubi
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 1684613114, Iran
| | - Mohammad Reza Naimi-Jamal
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 1684613114, Iran
| |
Collapse
|
15
|
Wetzel KS, Frölich M, Solleder SC, Nickisch R, Treu P, Meier MAR. Dual sequence definition increases the data storage capacity of sequence-defined macromolecules. Commun Chem 2020; 3:63. [PMID: 36703457 PMCID: PMC9814518 DOI: 10.1038/s42004-020-0308-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 04/22/2020] [Indexed: 01/29/2023] Open
Abstract
Sequence-defined macromolecules offer applications in the field of data storage. Challenges include synthesising precise and pure sequences, reading stored information and increasing data storage capacity. Herein, the synthesis of dual sequence-defined oligomers and their application for data storage is demonstrated. While applying the well-established Passerini three-component reaction, the degree of definition of the prepared monodisperse macromolecules is improved compared to previous reports by utilising nine specifically designed isocyanide monomers to introduce backbone definition. The monomers are combined with various aldehyde components to synthesise dual-sequence defined oligomers. Thus, the side chains and the backbones of these macromolecules can be varied independently, exhibiting increased molecular diversity and hence data storage capacity per repeat unit. In case of a dual sequence-defined pentamer, 33 bits are achieved in a single molecule. The oligomers are obtained in multigram scale and excellent purity. Sequential read-out by tandem ESI-MS/MS verifies the high data storage capacity of the prepared oligomers per repeat unit in comparison to other sequence defined macromolecules.
Collapse
Affiliation(s)
- Katharina S. Wetzel
- grid.7892.40000 0001 0075 5874Laboratory of Applied Chemistry, Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Straße am Forum 7, 76131 Karlsruhe, Germany
| | - Maximiliane Frölich
- grid.7892.40000 0001 0075 5874Laboratory of Applied Chemistry, Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Straße am Forum 7, 76131 Karlsruhe, Germany
| | - Susanne C. Solleder
- grid.7892.40000 0001 0075 5874Laboratory of Applied Chemistry, Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Straße am Forum 7, 76131 Karlsruhe, Germany
| | - Roman Nickisch
- grid.7892.40000 0001 0075 5874Laboratory of Applied Chemistry, Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Straße am Forum 7, 76131 Karlsruhe, Germany
| | - Philipp Treu
- grid.7892.40000 0001 0075 5874Laboratory of Applied Chemistry, Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Straße am Forum 7, 76131 Karlsruhe, Germany
| | - Michael A. R. Meier
- grid.7892.40000 0001 0075 5874Laboratory of Applied Chemistry, Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Straße am Forum 7, 76131 Karlsruhe, Germany ,grid.7892.40000 0001 0075 5874Laboratory of Applied Chemistry, Institute of Biological and Chemical Systems—Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
16
|
Zeng FR, Xu J, Sun LH, Ma J, Jiang H, Li ZL. Copolymers of ε-caprolactone and ε-caprolactam via polyesterification: towards sequence-controlled poly(ester amide)s. Polym Chem 2020. [DOI: 10.1039/c9py01388a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Alternating copolymer of ε-caprolactone and ε-caprolactam is synthesized through polyesterification. This efficient and straightforward strategy holds promising future for the synthesis of sequence-controlled poly(ester amide)s.
Collapse
Affiliation(s)
- Fu-Rong Zeng
- Department of Chemistry
- College of Science
- Huazhong Agricultural University
- Wuhan 430070
- China
| | - Jing Xu
- College of Materials Science and Engineering
- Wuhan Textile University
- Wuhan 430200
- China
| | - Lin-Hao Sun
- Department of Chemistry
- College of Science
- Huazhong Agricultural University
- Wuhan 430070
- China
| | - Jimei Ma
- Department of Chemistry
- College of Science
- Huazhong Agricultural University
- Wuhan 430070
- China
| | - Hong Jiang
- Department of Chemistry
- College of Science
- Huazhong Agricultural University
- Wuhan 430070
- China
| | - Zi-Long Li
- Department of Chemistry
- College of Science
- Huazhong Agricultural University
- Wuhan 430070
- China
| |
Collapse
|
17
|
Shi Q, Cao X, Zhang Y, Duan S, Hu L, Xu Y, Lu J, Huang Z, Zhang Z, Zhu X. Easily readable palindromic sequence-defined polymers built by cascade thiol-maleimide Michael couplings. Polym Chem 2020. [DOI: 10.1039/d0py01088j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The rational combination of cascade thiol-maleimide Michael couplings (CTMMC) with iterative exponential chain growth was demonstrated as an efficient way to synthesize palindromic sequence-defined polymers.
Collapse
|
18
|
Yurino T, Tange Y, Tani R, Ohkuma T. Ag2O-catalysed nucleophilic isocyanation: selective formation of less-stable benzylic isonitriles. Org Chem Front 2020. [DOI: 10.1039/d0qo00336k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Both primary and secondary benzylic isonitriles were exclusively produced by the Ag2O-catalysed reaction of benzylic phosphates and trimethylsilyl cyanide without formation of the thermodynamically favoured regioisomers, benzylic nitriles.
Collapse
Affiliation(s)
- Taiga Yurino
- Division of Applied Chemistry and Frontier Chemistry Centre
- Faculty of Engineering
- Hokkaido University
- Sapporo
- Japan
| | - Yuji Tange
- Graduate School of Chemical Sciences and Engineering
- Hokkaido University
- Sapporo
- Japan
| | - Ryutaro Tani
- Graduate School of Chemical Sciences and Engineering
- Hokkaido University
- Sapporo
- Japan
| | - Takeshi Ohkuma
- Division of Applied Chemistry and Frontier Chemistry Centre
- Faculty of Engineering
- Hokkaido University
- Sapporo
- Japan
| |
Collapse
|
19
|
Xu J. Single Unit Monomer Insertion: A Versatile Platform for Molecular Engineering through Radical Addition Reactions and Polymerization. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01365] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jiangtao Xu
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW, Sydney, NSW 2052, Australia
| |
Collapse
|
20
|
Elling BR, Su JK, Feist JD, Xia Y. Precise Placement of Single Monomer Units in Living Ring-Opening Metathesis Polymerization. Chem 2019. [DOI: 10.1016/j.chempr.2019.07.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
21
|
Guo X, Wetzel KS, Solleder SC, Spann S, Meier MAR, Wilhelm M, Luy B, Guthausen G. 1
H PFG‐NMR Diffusion Study on a Sequence‐Defined Macromolecule: Confirming Monodispersity. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201900155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xiaoai Guo
- Institute for Chemical Technology and Polymer Chemistry Karlsruhe Institute of Technology (KIT) Engesserstrasse 18 76128 Karlsruhe Germany
| | - Katharina S. Wetzel
- Institute of Organic Chemistry (IOC) Materialwissenschaftliches Zentrum (MZE) Karlsruhe Institute of Technology (KIT) Strasse am Forum 7 76131 Karlsruhe Germany
| | - Susanne C. Solleder
- Institute of Organic Chemistry (IOC) Materialwissenschaftliches Zentrum (MZE) Karlsruhe Institute of Technology (KIT) Strasse am Forum 7 76131 Karlsruhe Germany
| | - Sebastian Spann
- Institute of Organic Chemistry and Institute for Biological Interfaces 4 Karlsruhe Institute of Technology (KIT) Fritz‐Haber‐Weg 6 76131 Karlsruhe Germany
| | - Michael A. R. Meier
- Institute of Organic Chemistry (IOC) Materialwissenschaftliches Zentrum (MZE) Karlsruhe Institute of Technology (KIT) Strasse am Forum 7 76131 Karlsruhe Germany
| | - Manfred Wilhelm
- Institute for Chemical Technology and Polymer Chemistry Karlsruhe Institute of Technology (KIT) Engesserstrasse 18 76128 Karlsruhe Germany
| | - Burkhard Luy
- Institute of Organic Chemistry and Institute for Biological Interfaces 4 Karlsruhe Institute of Technology (KIT) Fritz‐Haber‐Weg 6 76131 Karlsruhe Germany
| | - Gisela Guthausen
- Institute for Mechanical Process Engineering and Mechanics and Engler‐Bunte‐Institut Chair of Water Chemistry and Water Technology Karlsruhe Institute of Technology (KIT) Adenauerring 20b 76131 Karlsruhe Germany
| |
Collapse
|
22
|
Meier MAR, Barner-Kowollik C. A New Class of Materials: Sequence-Defined Macromolecules and Their Emerging Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806027. [PMID: 30600565 DOI: 10.1002/adma.201806027] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 10/17/2018] [Indexed: 06/09/2023]
Abstract
Emerging applications of a new class of materials, sequence-defined macromolecules, are explored. Such molecularly highly defined macromolecules require stringent synthesis and purification procedures, yet offer unprecedented application possibilities. The first examples of molecular data storage and related technologies are already starting to emerge today. From a more fundamental point of view, such macromolecules offer a unique opportunity to determine quantitative structure-property relationships (QSPR), which critically aids in designing materials with applications ranging from catalysis to artificial enzymes.
Collapse
Affiliation(s)
- Michael A R Meier
- Institute of Organic Chemistry (IOC), Materialwissenschaftliches Zentrum (MZE), Karlsruhe Institute of Technology (KIT), Straße am Forum 7, 76131, Karlsruhe, Germany
| | - Christopher Barner-Kowollik
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
- Macromolecular Architectures, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstr. 18, 76131, Karlsruhe, Germany
| |
Collapse
|
23
|
Konrad W, Fengler C, Putwa S, Barner‐Kowollik C. Schutzgruppenfreie Synthese von sequenzdefinierten Makromolekülen mittels präziser λ‐orthogonaler Photochemie. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Waldemar Konrad
- Macromolecular Architectures Institut für Technische Chemie und Polymerchemie Karlsruher Institut für Technology (KIT) Engesserstraße 18 76131 Karlsruhe Deutschland
- School of Chemistry, Physics and Mechanical Engineering Queensland University of Technology (QUT) 2 George Street QLD 4000 Brisbane Australien
| | - Christian Fengler
- Macromolecular Architectures Institut für Technische Chemie und Polymerchemie Karlsruher Institut für Technology (KIT) Engesserstraße 18 76131 Karlsruhe Deutschland
- School of Chemistry, Physics and Mechanical Engineering Queensland University of Technology (QUT) 2 George Street QLD 4000 Brisbane Australien
| | - Sarrah Putwa
- Macromolecular Architectures Institut für Technische Chemie und Polymerchemie Karlsruher Institut für Technology (KIT) Engesserstraße 18 76131 Karlsruhe Deutschland
| | - Christopher Barner‐Kowollik
- Macromolecular Architectures Institut für Technische Chemie und Polymerchemie Karlsruher Institut für Technology (KIT) Engesserstraße 18 76131 Karlsruhe Deutschland
- School of Chemistry, Physics and Mechanical Engineering Queensland University of Technology (QUT) 2 George Street QLD 4000 Brisbane Australien
| |
Collapse
|
24
|
Konrad W, Fengler C, Putwa S, Barner-Kowollik C. Protection-Group-Free Synthesis of Sequence-Defined Macromolecules via Precision λ-Orthogonal Photochemistry. Angew Chem Int Ed Engl 2019; 58:7133-7137. [PMID: 30888105 DOI: 10.1002/anie.201901933] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Indexed: 01/10/2023]
Abstract
An advanced light-induced avenue to monodisperse sequence-defined linear macromolecules via a unique photochemical protocol is presented that does not require any protection-group chemistry. Starting from a symmetrical core unit, precision macromolecules with molecular weights up to 6257.10 g mol-1 are obtained via a two-monomer system: a monomer unit carrying a pyrene functionalized visible light responsive tetrazole and a photo-caged UV responsive diene, enabling an iterative approach for chain growth; and a monomer unit equipped with a carboxylic acid and a fumarate. Both light-induced chain growth reactions are carried out in a λ-orthogonal fashion, exciting the respective photosensitive group selectively and thus avoiding protecting chemistry. Characterization of each sequence-defined chain (size-exclusion chromatography (SEC), high-resolution electrospray ionization mass spectrometry (ESI-MS), and NMR spectroscopy), confirms the precision nature of the macromolecules.
Collapse
Affiliation(s)
- Waldemar Konrad
- Macromolecular Architectures, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstr. 18, 76131, Karlsruhe, Germany.,School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT), 2 George Street, QLD, 4000, Brisbane, Australia
| | - Christian Fengler
- Macromolecular Architectures, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstr. 18, 76131, Karlsruhe, Germany.,School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT), 2 George Street, QLD, 4000, Brisbane, Australia
| | - Sarrah Putwa
- Macromolecular Architectures, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstr. 18, 76131, Karlsruhe, Germany
| | - Christopher Barner-Kowollik
- Macromolecular Architectures, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstr. 18, 76131, Karlsruhe, Germany.,School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT), 2 George Street, QLD, 4000, Brisbane, Australia
| |
Collapse
|
25
|
Huang Z, Corrigan N, Lin S, Boyer C, Xu J. Upscaling single unit monomer insertion to synthesize discrete oligomers. ACTA ACUST UNITED AC 2019. [DOI: 10.1002/pola.29330] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zixuan Huang
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine School of Chemical Engineering UNSW Sydney Kensington New South Wales 2052 Australia
| | - Nathaniel Corrigan
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine School of Chemical Engineering UNSW Sydney Kensington New South Wales 2052 Australia
| | - Shiyang Lin
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine School of Chemical Engineering UNSW Sydney Kensington New South Wales 2052 Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine School of Chemical Engineering UNSW Sydney Kensington New South Wales 2052 Australia
| | - Jiangtao Xu
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine School of Chemical Engineering UNSW Sydney Kensington New South Wales 2052 Australia
| |
Collapse
|
26
|
Wetzel KS, Meier MAR. Monodisperse, sequence-defined macromolecules as a tool to evaluate the limits of ring-closing metathesis. Polym Chem 2019. [DOI: 10.1039/c9py00438f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sequence-defined macromolecules of uniform size unlock the door to many new applications in polymer chemistry, such as structure/property or structure/activity relationship investigations, which cannot be conducted accurately, if the investigated macromolecules exhibit dispersity.
Collapse
Affiliation(s)
- Katharina S. Wetzel
- Karlsruhe Institute of Technology (KIT
- Institute of Organic Chemistry (IOC))
- Materialwissenschaftliches Zentrum für Energiesyteme (MZE)
- 76131 Karlsruhe
- Germany
| | - Michael A. R. Meier
- Karlsruhe Institute of Technology (KIT
- Institute of Organic Chemistry (IOC))
- Materialwissenschaftliches Zentrum für Energiesyteme (MZE)
- 76131 Karlsruhe
- Germany
| |
Collapse
|
27
|
Holloway JO, Wetzel KS, Martens S, Du Prez FE, Meier MAR. Direct comparison of solution and solid phase synthesis of sequence-defined macromolecules. Polym Chem 2019. [DOI: 10.1039/c9py00558g] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sequence-defined macromolecules of high molecular weight are synthesised by the combination of click chemistry with multicomponent reactions. The synthesis is performed on solid phase as well as in solution to directly compare the two approaches.
Collapse
Affiliation(s)
- Joshua O. Holloway
- Polymer Chemistry Research Group
- Centre of Macromolecular Chemistry (CMaC)
- Department of Organic and Macromolecular Chemistry
- Faculty of Sciences
- Ghent University
| | - Katharina S. Wetzel
- Polymer Chemistry Research Group
- Centre of Macromolecular Chemistry (CMaC)
- Department of Organic and Macromolecular Chemistry
- Faculty of Sciences
- Ghent University
| | - Steven Martens
- Polymer Chemistry Research Group
- Centre of Macromolecular Chemistry (CMaC)
- Department of Organic and Macromolecular Chemistry
- Faculty of Sciences
- Ghent University
| | - Filip E. Du Prez
- Polymer Chemistry Research Group
- Centre of Macromolecular Chemistry (CMaC)
- Department of Organic and Macromolecular Chemistry
- Faculty of Sciences
- Ghent University
| | - Michael A. R. Meier
- Karlsruhe Institute of Technology (KIT
- Institute of Organic Chemistry (IOC))
- Materialwissenschaftliches Zentrum für Energiesyteme (MZE)
- 76131 Karlsruhe
- Germany
| |
Collapse
|
28
|
Song S, Sahoo D, Kumar M, Barkley DA, Heiney PA, Rudick JG. Identifying Structural Determinants of Mesomorphism from Focused Libraries of Tripedal Mesogens Prepared via the Passerini Three‐Component Reaction. European J Org Chem 2018. [DOI: 10.1002/ejoc.201801360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shuang Song
- Department of Chemistry Stony Brook University 11794‐3400 Stony Brook New York USA
| | - Dipankar Sahoo
- Department of Chemistry Stony Brook University 11794‐3400 Stony Brook New York USA
| | - Manoj Kumar
- Department of Chemistry Stony Brook University 11794‐3400 Stony Brook New York USA
| | - Deborah A. Barkley
- Department of Chemistry Stony Brook University 11794‐3400 Stony Brook New York USA
| | - Paul A. Heiney
- Department of Physics and Astronomy University of Pennsylvania 19104‐6396 Philadelphia PA USA
| | - Jonathan G. Rudick
- Department of Chemistry Stony Brook University 11794‐3400 Stony Brook New York USA
| |
Collapse
|
29
|
Abstract
The concept of sequence-definition in the sense of polymer chemistry is introduced to conjugated, rod-like oligo(phenylene ethynylene)s via an iterative synthesis procedure. Specifically, monodisperse sequence-defined trimers and pentamers were prepared via iterative Sonogashira cross-coupling and deprotection. The reaction procedure was extended to tetra- and pentamers for the first time yielding a monodisperse pentamer with 18% and a sequence-defined pentamer with 3.2% overall yield. Furthermore, three novel trimers with a 9H-fluorene building block at predefined positions within the phenylene ethynylene chain were synthesised in 23–52% overall yields. Hence, it was confirmed that a functionality of interest can be incorporated selectively at a pre-defined position of these monodisperse oligomers. All respective intermediate structures were fully characterised by proton and carbon NMR, mass spectrometry, size-exclusion chromatography, and IR spectroscopy. Additionally, thermal and optical transitions are reported for the different oligomers.
Collapse
|
30
|
Hill SA, Gerke C, Hartmann L. Recent Developments in Solid-Phase Strategies towards Synthetic, Sequence-Defined Macromolecules. Chem Asian J 2018; 13:3611-3622. [PMID: 30216690 DOI: 10.1002/asia.201801171] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Indexed: 01/09/2023]
Abstract
Sequence-control in synthetic polymers is an important contemporary research area because it provides the opportunity to create completely novel materials for structure-function studies. This is especially relevant for biomimetic polymers, bioactive and information security materials. The level of control is strongly dependent and inherent upon the polymerization technique utilized. Today, the most established method yielding monodispersity and monomer sequence-definition is solid-phase synthesis. This Focus Review highlights recent advances in solid-phase strategies to access synthetic, sequence-defined macromolecules. Alternatives strategies towards sequence-defined macromolecules are also briefly summarized.
Collapse
Affiliation(s)
- Stephen A Hill
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Christoph Gerke
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Laura Hartmann
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| |
Collapse
|
31
|
Huang Z, Noble BB, Corrigan N, Chu Y, Satoh K, Thomas DS, Hawker CJ, Moad G, Kamigaito M, Coote ML, Boyer C, Xu J. Discrete and Stereospecific Oligomers Prepared by Sequential and Alternating Single Unit Monomer Insertion. J Am Chem Soc 2018; 140:13392-13406. [DOI: 10.1021/jacs.8b08386] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Zixuan Huang
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW, Sydney, NSW 2052, Australia
| | - Benjamin B. Noble
- ARC Centre of Excellence for Electromaterials Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Nathaniel Corrigan
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW, Sydney, NSW 2052, Australia
| | - Yingying Chu
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW, Sydney, NSW 2052, Australia
| | - Kotaro Satoh
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Donald S. Thomas
- Nuclear Magnetic Resonance Facility, Mark Wainwright Analytical Centre, UNSW, Sydney, NSW 2052, Australia
| | - Craig J. Hawker
- Materials Research Laboratory and Departments of Materials, Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Graeme Moad
- CSIRO, Manufacturing Bag 10, Clayton South, VIC 3169, Australia
| | - Masami Kamigaito
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Michelle L. Coote
- ARC Centre of Excellence for Electromaterials Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW, Sydney, NSW 2052, Australia
| | - Jiangtao Xu
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW, Sydney, NSW 2052, Australia
| |
Collapse
|
32
|
Buchmeiser MR. Functional Precision Polymers via Stereo- and Regioselective Polymerization Using Group 6 Metal Alkylidene and Group 6 and 8 Metal Alkylidene N-Heterocyclic Carbene Complexes. Macromol Rapid Commun 2018; 40:e1800492. [PMID: 30118168 DOI: 10.1002/marc.201800492] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/09/2018] [Indexed: 12/24/2022]
Abstract
The concepts of functional precision polymers and the latest accomplishments in their synthesis are summarized. Synthetic concepts based on chain growth polymerization are compared to iterative synthetic approaches. Here, the term "functional precision polymers" refers to polymers that are not solely hydrocarbon-based but contain functional groups and are characterized by a highly ordered primary structure. If insertion polymerization is used for their synthesis, olefin metathesis-based polymerization techniques, that is, ring-opening metathesis polymerization (ROMP), acyclic diene metathesis (ADMET) polymerization, and the regio- and stereoselective cyclopolymerization of α,ω-diynes are almost exclusively applied. Particularly with regio- and stereospecific ROMP and with cyclopolymerization, the synthesis of tactic polymers and copolymers with high regio-, stereo-, and sequence control can be accomplished; however, it requires carefully tailored transition metal catalysts. The fundamental synthetic concepts and strategies are outlined.
Collapse
Affiliation(s)
- Michael R Buchmeiser
- Institute of Polymer Chemistry, University of Stuttgart, Pfaffenwaldring 55,, D-70569, Stuttgart, Germany
| |
Collapse
|
33
|
Zhang Z, You Y, Hong C. Multicomponent Reactions and Multicomponent Cascade Reactions for the Synthesis of Sequence-Controlled Polymers. Macromol Rapid Commun 2018; 39:e1800362. [DOI: 10.1002/marc.201800362] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/24/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Ze Zhang
- CAS Key Laboratory of Soft Matter Chemistry; Department of Polymer Science and Engineering; University of Science and Technology of China; Hefei Anhui 230026 China
| | - Yezi You
- CAS Key Laboratory of Soft Matter Chemistry; Department of Polymer Science and Engineering; University of Science and Technology of China; Hefei Anhui 230026 China
| | - Chunyan Hong
- CAS Key Laboratory of Soft Matter Chemistry; Department of Polymer Science and Engineering; University of Science and Technology of China; Hefei Anhui 230026 China
| |
Collapse
|
34
|
|