1
|
Kalita M, Yadav K, Archana A, Gopakumar TG, Vasudev PG, Ramapanicker R. Incorporation of phenylcarbonyl groups in the sidechain: A tool to induce ordered assembly of peptides on surfaces. J Pept Sci 2024; 30:e3629. [PMID: 38898708 DOI: 10.1002/psc.3629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/16/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024]
Abstract
The possibility of introducing various functionalities on peptides with relative ease allows them to be used for molecular applications. However, oligopeptides prepared entirely from proteinogenic amino acids seldom assemble as ordered structures on surfaces. Therefore, sidechain modifications of peptides that can increase the intermolecular interactions without altering the constitution of a given peptide become an attractive route to self-assembling them on surfaces. We find that replacing phenylalanine residues with unusual amino acids that have phenylcarbonyl sidechains in oligopeptides increases the formation of ordered self-assembly on a highly ordered pyrolytic graphite surface. Peptides containing the modified amino acids provided extended long-range ordered assemblies, while the analogous peptides containing phenylalanine residues failed to form long-range assemblies. X-ray crystallographic analysis of the bulk structures of these peptides and the analogous peptides containing phenylalanine residues reveal that such modifications do not alter the secondary structure in crystals. It also reveals that the secondary hydrogen bonding interaction through phenylcarbonyl sidechains facilitates extended growth of the peptides on graphite.
Collapse
Affiliation(s)
- Mrinal Kalita
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, India
| | - Khushboo Yadav
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, India
| | - Archana Archana
- Molecular and Structural Biology Department, CSIR - Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | | | - Prema G Vasudev
- Molecular and Structural Biology Department, CSIR - Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Ramesh Ramapanicker
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, India
| |
Collapse
|
2
|
Balasco N, Altamura D, Scognamiglio PL, Sibillano T, Giannini C, Morelli G, Vitagliano L, Accardo A, Diaferia C. Self-Assembled Materials Based on Fully Aromatic Peptides: The Impact of Tryptophan, Tyrosine, and Dopa Residues. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1470-1486. [PMID: 38174846 PMCID: PMC10795196 DOI: 10.1021/acs.langmuir.3c03214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024]
Abstract
Peptides are able to self-organize in structural elements including cross-β structures. Taking advantage of this tendency, in the last decades, peptides have been scrutinized as molecular elements for the development of multivalent supramolecular architectures. In this context, different classes of peptides, also with completely aromatic sequences, were proposed. Our previous studies highlighted that the (FY)3 peptide, which alternates hydrophobic phenylalanine and more hydrophilic tyrosine residues, is able to self-assemble, thanks to the formation of both polar and apolar interfaces. It was observed that the replacement of Phe and Tyr residues with other noncoded aromatic amino acids like 2-naphthylalanine (Nal) and Dopa affects the interactions among peptides with consequences on the supramolecular organization. Herein, we have investigated the self-assembling behavior of two novel (FY)3 analogues with Trp and Dopa residues in place of the Phe and Tyr ones, respectively. Additionally, PEGylation of the N-terminus was analyzed too. The supramolecular organization, morphology, and capability to gel were evaluated using complementary techniques, including fluorescence, Fourier transform infrared spectroscopy, and scanning electron microscopy. Structural periodicities along and perpendicular to the fiber axis were detected by grazing incidence wide-angle X-ray scattering. Finally, molecular dynamics studies provided interesting insights into the atomic structure of the cross-β that constitutes the basic motif of the assemblies formed by these novel peptide systems.
Collapse
Affiliation(s)
- Nicole Balasco
- Institute
of Molecular Biology and Pathology, CNR, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Davide Altamura
- Institute
of Crystallography (IC), CNR, Via Amendola 122, Bari 70126, Italy
| | | | - Teresa Sibillano
- Institute
of Crystallography (IC), CNR, Via Amendola 122, Bari 70126, Italy
| | - Cinzia Giannini
- Institute
of Crystallography (IC), CNR, Via Amendola 122, Bari 70126, Italy
| | - Giancarlo Morelli
- Department
of Pharmacy and CIRPeB, Research Centre on Bioactive Peptides “Carlo
Pedone”, University of Naples “Federico
II”, Via Montesano 49, Naples 80131, Italy
| | - Luigi Vitagliano
- Institute
of Biostructures and Bioimaging (IBB), CNR, Via Castellino 111, Naples 80131, Italy
| | - Antonella Accardo
- Department
of Pharmacy and CIRPeB, Research Centre on Bioactive Peptides “Carlo
Pedone”, University of Naples “Federico
II”, Via Montesano 49, Naples 80131, Italy
| | - Carlo Diaferia
- Department
of Pharmacy and CIRPeB, Research Centre on Bioactive Peptides “Carlo
Pedone”, University of Naples “Federico
II”, Via Montesano 49, Naples 80131, Italy
| |
Collapse
|
3
|
Altuntaş E, Özkan B, Güngör S, Özsoy Y. Biopolymer-Based Nanogel Approach in Drug Delivery: Basic Concept and Current Developments. Pharmaceutics 2023; 15:1644. [PMID: 37376092 DOI: 10.3390/pharmaceutics15061644] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Due to their increased surface area, extent of swelling and active substance-loading capacity and flexibility, nanogels made from natural and synthetic polymers have gained significant interest in scientific and industrial areas. In particular, the customized design and implementation of nontoxic, biocompatible, and biodegradable micro/nano carriers makes their usage very feasible for a range of biomedical applications, including drug delivery, tissue engineering, and bioimaging. The design and application methodologies of nanogels are outlined in this review. Additionally, the most recent advancements in nanogel biomedical applications are discussed, with particular emphasis on applications for the delivery of drugs and biomolecules.
Collapse
Affiliation(s)
- Ebru Altuntaş
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Istanbul University, 34116 Istanbul, Türkiye
| | - Burcu Özkan
- Graduate School of Natural and Applied Science, Yildiz Technical University, 34220 Istanbul, Türkiye
| | - Sevgi Güngör
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Istanbul University, 34116 Istanbul, Türkiye
| | - Yıldız Özsoy
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Istanbul University, 34116 Istanbul, Türkiye
| |
Collapse
|
4
|
Pramanik B, Ahmed S. Peptide-Based Low Molecular Weight Photosensitive Supramolecular Gelators. Gels 2022; 8:533. [PMID: 36135245 PMCID: PMC9498526 DOI: 10.3390/gels8090533] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/20/2022] Open
Abstract
Over the last couple of decades, stimuli-responsive supramolecular gels comprising synthetic short peptides as building blocks have been explored for various biological and material applications. Though a wide range of stimuli has been tested depending on the structure of the peptides, light as a stimulus has attracted extensive attention due to its non-invasive, non-contaminant, and remotely controllable nature, precise spatial and temporal resolution, and wavelength tunability. The integration of molecular photo-switch and low-molecular-weight synthetic peptides may thus provide access to supramolecular self-assembled systems, notably supramolecular gels, which may be used to create dynamic, light-responsive "smart" materials with a variety of structures and functions. This short review summarizes the recent advancement in the area of light-sensitive peptide gelation. At first, a glimpse of commonly used molecular photo-switches is given, followed by a detailed description of their incorporation into peptide sequences to design light-responsive peptide gels and the mechanism of their action. Finally, the challenges and future perspectives for developing next-generation photo-responsive gels and materials are outlined.
Collapse
Affiliation(s)
- Bapan Pramanik
- Department of Chemistry, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
| | - Sahnawaz Ahmed
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Kolkata, Kolkata 700054, India
| |
Collapse
|
5
|
Netti F, Aviv M, Dan Y, Rudnick-Glick S, Halperin-Sternfeld M, Adler-Abramovich L. Stabilizing gelatin-based bioinks under physiological conditions by incorporation of ethylene-glycol-conjugated Fmoc-FF peptides. NANOSCALE 2022; 14:8525-8533. [PMID: 35660804 DOI: 10.1039/d1nr08206j] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Over the last decade, three-dimensional (3D) printing technologies have attracted the interest of researchers due to the possibility of fabricating tissue- and organ-like structures with similarities to the organ of interest. One of the most widely used materials for the fabrication of bioinks is gelatin (Gel) due to its excellent biocompatibility properties. However, in order to fabricate stable scaffolds under physiological conditions, the most common approach is to use gelatin methacrylate (GelMA) that allows the crosslinking and therefore the stabilization of the hydrogel through UV crosslinking. The crosslinking process can be harmful to cells thus decreasing total cell viability. To overcome the need for post-printing crosslinking, a new approach of bioink formulation was studied, incorporating the Fluorenylmethoxycarbonyl diphenylalanine (Fmoc-FF) peptide into the Gel bioink. However, although Fmoc-FF possesses excellent mechanical properties, the lack of elasticity and viscosity makes it unsuitable for 3D-printing. Here, we demonstrate that covalent conjugation of two different ethylene glycol (EG) motifs to the Fmoc-FF peptide increases the hydrophilicity and elasticity properties, which are essential for 3D-printing. This new approach for bioink formulation avoids the need for any post-printing manufacturing processes, such as chemical or UV crosslinking.
Collapse
Affiliation(s)
- Francesca Netti
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Israel.
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Israel
- The Center for the Physics and Chemistry of Living Systems, Tel Aviv University, Israel
| | - Moran Aviv
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Israel.
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Israel
- The Center for the Physics and Chemistry of Living Systems, Tel Aviv University, Israel
- School of Mechanical Engineering, Afeka Tel Aviv Academic College of Engineering, Israel
| | - Yoav Dan
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Israel.
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Israel
- The Center for the Physics and Chemistry of Living Systems, Tel Aviv University, Israel
| | - Safra Rudnick-Glick
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Israel.
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Israel
- The Center for the Physics and Chemistry of Living Systems, Tel Aviv University, Israel
| | - Michal Halperin-Sternfeld
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Israel.
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Israel
- The Center for the Physics and Chemistry of Living Systems, Tel Aviv University, Israel
| | - Lihi Adler-Abramovich
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Israel.
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Israel
- The Center for the Physics and Chemistry of Living Systems, Tel Aviv University, Israel
| |
Collapse
|
6
|
Rosa E, Diaferia C, Gianolio E, Sibillano T, Gallo E, Smaldone G, Stornaiuolo M, Giannini C, Morelli G, Accardo A. Multicomponent Hydrogel Matrices of Fmoc-FF and Cationic Peptides for Application in Tissue Engineering. Macromol Biosci 2022; 22:e2200128. [PMID: 35524744 DOI: 10.1002/mabi.202200128] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Indexed: 11/10/2022]
Abstract
In the last years, peptide based hydrogels are being increasingly used as suitable matrices for biomedical and pharmaceutical applications, including drug delivery and tissue engineering. Recently, we decrived the synthesis and the gelation properties of a small library of cationic peptides, containing a Lys residue at the C-teminus and derivatized with a Fmoc group or with the Fmoc-diphenylalanine (FmocFF) at the N-terminus. Here, we demonstrate that the combination of these peptides with the well known hydrogelator FmocFF, in different weight/weight ratios, allows the achievement of seven novel self-sorted hydrogels, which share similar peptide organization of their supramolecular matrix. Rheological and relaxometric characterization highlighted a different mechanical rigidity and water mobility in the gels as demostrated by the storage modulus values (200 Pa<G'<35000 Pa) and by relaxometry, respectively. In vitro studied demonstrated that most of the tested mixed hydrogels do not disturb significantly the cell viability (>95%) over 72h of treatment. Moreover, in virtue to its capability to strongly favour adhesion, spreading and duplication of 3T3-L1 cells, one of the tested hydrogel may be eligible as sinthetic extracellular matrix. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Elisabetta Rosa
- Department of Pharmacy and Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", Via Mezzocannone 16, Naples, 80134, Italy
| | - Carlo Diaferia
- Department of Pharmacy and Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", Via Mezzocannone 16, Naples, 80134, Italy
| | - Eliana Gianolio
- Department of Molecular Biotechnologies and Health Science, University of Turin, Via Nizza 52, Turin, 10125, Italy
| | - Teresa Sibillano
- Institute of Crystallography (IC), CNR, Via Amendola 122, Bari, 70126, Italy
| | - Enrico Gallo
- IRCCS Synlab SDN, Via E. Gianturco 113, Naples, 80143, Italy
| | | | - Mariano Stornaiuolo
- Department of Pharmacy and Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", Via Mezzocannone 16, Naples, 80134, Italy
| | - Cinzia Giannini
- Institute of Crystallography (IC), CNR, Via Amendola 122, Bari, 70126, Italy
| | - Giancarlo Morelli
- Department of Pharmacy and Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", Via Mezzocannone 16, Naples, 80134, Italy
| | - Antonella Accardo
- Department of Pharmacy and Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", Via Mezzocannone 16, Naples, 80134, Italy
| |
Collapse
|
7
|
Diaferia C, Schiattarella C, Gallo E, Della Ventura B, Morelli G, Velotta R, Vitagliano L, Accardo A. Fluorescence Emission of Self-assembling Amyloid-like Peptides: Solution versus Solid State. Chemphyschem 2021; 22:2215-2221. [PMID: 34496136 PMCID: PMC8597038 DOI: 10.1002/cphc.202100570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/01/2021] [Indexed: 01/15/2023]
Abstract
Analysis of the intrinsic UV-visible fluorescence exhibited by self-assembling amyloid-like peptides in solution and in solid the state highlights that their physical state has a profound impact on the optical properties. In the solid state, a linear dependence of the fluorescence emission peaks as a function of excitation wavelength is detected. On the contrary, an excitation-independent emission is observed in solution. The present findings constitute a valuable benchmark for current and future explanations of the fluorescence emission by amyloids.
Collapse
Affiliation(s)
- Carlo Diaferia
- Department of Pharmacy andResearch Centre on Bioactive Peptides (CIRPeB)University of Naples “Federico II”Via Mezzocannone 16Naples80134Italy
| | - Chiara Schiattarella
- Institute of Applied Sciences and Intelligent Systems, CNRVia P. Castellino 111Naples80131Italy
| | | | - Bartolomeo Della Ventura
- Department of Physics “Ettore Pancini”University of Naples “Federico II”Via Cintia 26Naples80125Italy
| | - Giancarlo Morelli
- Department of Pharmacy andResearch Centre on Bioactive Peptides (CIRPeB)University of Naples “Federico II”Via Mezzocannone 16Naples80134Italy
| | - Raffaele Velotta
- Department of Physics “Ettore Pancini”University of Naples “Federico II”Via Cintia 26Naples80125Italy
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging (IBB), CNRVia Mezzocannone 1680134NaplesItaly
| | - Antonella Accardo
- Department of Pharmacy andResearch Centre on Bioactive Peptides (CIRPeB)University of Naples “Federico II”Via Mezzocannone 16Naples80134Italy
| |
Collapse
|
8
|
Diaferia C, Rosa E, Balasco N, Sibillano T, Morelli G, Giannini C, Vitagliano L, Accardo A. The Introduction of a Cysteine Residue Modulates The Mechanical Properties of Aromatic-Based Solid Aggregates and Self-Supporting Hydrogels. Chemistry 2021; 27:14886-14898. [PMID: 34498321 PMCID: PMC8596998 DOI: 10.1002/chem.202102007] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Indexed: 12/15/2022]
Abstract
Peptide-based hydrogels, originated by multiscale self-assembling phenomenon, have been proposed as multivalent tools in different technological areas. Structural studies and molecular dynamics simulations pointed out the capability of completely aromatic peptides to gelificate if hydrophilic and hydrophobic forces are opportunely balanced. Here, the effect produced by the introduction of a Cys residue in the heteroaromatic sequence of (FY)3 and in its PEGylated variant was evaluated. The physicochemical characterization indicates that both FYFCFYF and PEG8-FYFCFYF are able to self-assemble in supramolecular nanostructures whose basic cross-β motif resembles the one detected in the ancestor (FY)3 assemblies. However, gelification occurs only for FYFCFYF at a concentration of 1.5 wt%. After cross-linking of cysteine residues, the hydrogel undergoes to an improvement of the rigidity compared to the parent (FY)3 assemblies as suggested by the storage modulus (G') that increases from 970 to 3360 Pa. The mechanical properties of FYFCFYF are compatible with its potential application in bone tissue regeneration. Moreover, the avalaibility of a Cys residue in the middle of the peptide sequence could allow the hydrogel derivatization with targeting moieties or with biologically relevant molecules.
Collapse
Affiliation(s)
- Carlo Diaferia
- Department of Pharmacy and Research Centre on Bioactive Peptides (CIRPeB)University of Naples “Federico II”Via Mezzocannone 16Naples80134Italy
| | - Elisabetta Rosa
- Department of Pharmacy and Research Centre on Bioactive Peptides (CIRPeB)University of Naples “Federico II”Via Mezzocannone 16Naples80134Italy
| | - Nicole Balasco
- Institute of Biostructures and Bioimaging (IBB), CNRVia Mezzocannone 1680134NaplesItaly
| | - Teresa Sibillano
- Institute of Crystallography (IC), CNRVia Amendola 12270126BariItaly
| | - Giancarlo Morelli
- Department of Pharmacy and Research Centre on Bioactive Peptides (CIRPeB)University of Naples “Federico II”Via Mezzocannone 16Naples80134Italy
| | - Cinzia Giannini
- Institute of Crystallography (IC), CNRVia Amendola 12270126BariItaly
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging (IBB), CNRVia Mezzocannone 1680134NaplesItaly
| | - Antonella Accardo
- Department of Pharmacy and Research Centre on Bioactive Peptides (CIRPeB)University of Naples “Federico II”Via Mezzocannone 16Naples80134Italy
| |
Collapse
|
9
|
Diaferia C, Avitabile C, Leone M, Gallo E, Saviano M, Accardo A, Romanelli A. Diphenylalanine Motif Drives Self-Assembling in Hybrid PNA-Peptide Conjugates. Chemistry 2021; 27:14307-14316. [PMID: 34314536 PMCID: PMC8597081 DOI: 10.1002/chem.202102481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Indexed: 11/12/2022]
Abstract
Peptides and nucleic acids can self-assemble to give supramolecular structures that find application in different fields, ranging from the delivery of drugs to the obtainment of materials endowed with optical properties. Forces that stabilize the "suprastructures" typically are hydrogen bonds or aromatic interactions; in case of nucleic acids, Watson-Crick pairing drives self-assembly while, in case of peptides, backbone hydrogen bonds and interactions between aromatic side chains trigger the formation of structures, such as nanotubes or ribbons. Molecules containing both aromatic peptides and nucleic acids could in principle exploit different forces to self-assemble. In this work we meant to investigate the self-assembly of mixed systems, with the aim to understand which forces play a major role and determine formation/structure of aggregates. We therefore synthesized conjugates of the peptide FF to the peptide nucleic acid dimer "gc" and characterized their aggregates by different spectroscopic techniques, including NMR, CD and fluorescence.
Collapse
Affiliation(s)
- Carlo Diaferia
- Department of PharmacyResearch Centre on Bioactive Peptides (CIRPeB)University of Naples “Federico II”Via Mezzocannone 1680134NaplesItaly
| | | | - Marilisa Leone
- Institute of Biostructures and Bioimaging (CNR)Via Mezzocannone 1680134NaplesItaly
| | | | - Michele Saviano
- Institute of Crystallography (CNR)Via Amendola 12270126BariItaly
| | - Antonella Accardo
- Department of PharmacyResearch Centre on Bioactive Peptides (CIRPeB)University of Naples “Federico II”Via Mezzocannone 1680134NaplesItaly
| | - Alessandra Romanelli
- Department of Pharmaceutical SciencesUniversity of MilanVia Venezian 2120133MilanItaly
| |
Collapse
|
10
|
Scognamiglio PL, Platella C, Napolitano E, Musumeci D, Roviello GN. From Prebiotic Chemistry to Supramolecular Biomedical Materials: Exploring the Properties of Self-Assembling Nucleobase-Containing Peptides. Molecules 2021; 26:3558. [PMID: 34200901 PMCID: PMC8230524 DOI: 10.3390/molecules26123558] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/24/2022] Open
Abstract
Peptides and their synthetic analogs are a class of molecules with enormous relevance as therapeutics for their ability to interact with biomacromolecules like nucleic acids and proteins, potentially interfering with biological pathways often involved in the onset and progression of pathologies of high social impact. Nucleobase-bearing peptides (nucleopeptides) and pseudopeptides (PNAs) offer further interesting possibilities related to their nucleobase-decorated nature for diagnostic and therapeutic applications, thanks to their reported ability to target complementary DNA and RNA strands. In addition, these chimeric compounds are endowed with intriguing self-assembling properties, which are at the heart of their investigation as self-replicating materials in prebiotic chemistry, as well as their application as constituents of innovative drug delivery systems and, more generally, as novel nanomaterials to be employed in biomedicine. Herein we describe the properties of nucleopeptides, PNAs and related supramolecular systems, and summarize some of the most relevant applications of these systems.
Collapse
Affiliation(s)
| | - Chiara Platella
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy; (C.P.); (E.N.); (D.M.)
| | - Ettore Napolitano
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy; (C.P.); (E.N.); (D.M.)
| | - Domenica Musumeci
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy; (C.P.); (E.N.); (D.M.)
- Istituto di Biostrutture e Bioimmagini IBB-CNR, via Tommaso De Amicis 95, I-80145 Naples, Italy
| | | |
Collapse
|
11
|
Balasco N, Diaferia C, Morelli G, Vitagliano L, Accardo A. Amyloid-Like Aggregation in Diseases and Biomaterials: Osmosis of Structural Information. Front Bioeng Biotechnol 2021; 9:641372. [PMID: 33748087 PMCID: PMC7966729 DOI: 10.3389/fbioe.2021.641372] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/05/2021] [Indexed: 11/13/2022] Open
Abstract
The discovery that the polypeptide chain has a remarkable and intrinsic propensity to form amyloid-like aggregates endowed with an extraordinary stability is one of the most relevant breakthroughs of the last decades in both protein/peptide chemistry and structural biology. This observation has fundamental implications, as the formation of these assemblies is systematically associated with the insurgence of severe neurodegenerative diseases. Although the ability of proteins to form aggregates rich in cross-β structure has been highlighted by recent studies of structural biology, the determination of the underlying atomic models has required immense efforts and inventiveness. Interestingly, the progressive molecular and structural characterization of these assemblies has opened new perspectives in apparently unrelated fields. Indeed, the self-assembling through the cross-β structure has been exploited to generate innovative biomaterials endowed with promising mechanical and spectroscopic properties. Therefore, this structural motif has become the fil rouge connecting these diversified research areas. In the present review, we report a chronological recapitulation, also performing a survey of the structural content of the Protein Data Bank, of the milestones achieved over the years in the characterization of cross-β assemblies involved in the insurgence of neurodegenerative diseases. A particular emphasis is given to the very recent successful elucidation of amyloid-like aggregates characterized by remarkable molecular and structural complexities. We also review the state of the art of the structural characterization of cross-β based biomaterials by highlighting the benefits of the osmosis of information between these two research areas. Finally, we underline the new promising perspectives that recent successful characterizations of disease-related amyloid-like assemblies can open in the biomaterial field.
Collapse
Affiliation(s)
- Nicole Balasco
- Institute of Biostructures and Bioimaging (IBB), CNR, Naples, Italy
| | - Carlo Diaferia
- Department of Pharmacy, Research Centre on Bioactive Peptides (CIRPeB), University of Naples “Federico II”, Naples, Italy
| | - Giancarlo Morelli
- Department of Pharmacy, Research Centre on Bioactive Peptides (CIRPeB), University of Naples “Federico II”, Naples, Italy
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging (IBB), CNR, Naples, Italy
| | - Antonella Accardo
- Department of Pharmacy, Research Centre on Bioactive Peptides (CIRPeB), University of Naples “Federico II”, Naples, Italy
| |
Collapse
|
12
|
Gallo E, Diaferia C, Rosa E, Smaldone G, Morelli G, Accardo A. Peptide-Based Hydrogels and Nanogels for Delivery of Doxorubicin. Int J Nanomedicine 2021; 16:1617-1630. [PMID: 33688182 PMCID: PMC7935351 DOI: 10.2147/ijn.s296272] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/23/2021] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION The clinical use of the antitumoral drug doxorubicin (Dox) is reduced by its dose-limiting toxicity, related to cardiotoxic side effects and myelosuppression. In order to overcome these drawbacks, here we describe the synthesis, the structural characterization and the in vitro cytotoxicity assays of hydrogels (HGs) and nanogels (NGs) based on short peptide sequences loaded with Dox or with its liposomal formulation, Doxil. METHODS Fmoc-FF alone or in combination with (FY)3 or PEG8-(FY)3 peptides, at two different ratios (1/1 and 2/1 v/v), were used for HGs and NGs formulations. HGs were prepared according to the "solvent-switch" method, whereas NGs were obtained through HG submicronition by the top-down methodology in presence of TWEEN®60 and SPAN®60 as stabilizing agents. HGs gelation kinetics were assessed by Circular Dichroism (CD). Stability and size of NGs were studied using Dynamic Light Scattering (DLS) measurements. Cell viability of empty and filled Dox HGs and NGs was evaluated on MDA-MB-231 breast cancer cells. Moreover, cell internalization of the drug was evaluated using immunofluorescence assays. RESULTS Dox filled hydrogels exhibit a high drug loading content (DLC=0.440), without syneresis after 10 days. Gelation kinetics (20-40 min) and the drug release (16-28%) over time of HGs were found dependent on relative peptide composition. Dox filled NGs exhibit a DLC of 0.137 and a low drug release (20-40%) after 72 h. Empty HGs and NGs show a high cell viability (>95%), whereas Dox loaded ones significantly reduce cell viability after 24 h (49-57%) and 72 h (7-25%) of incubation, respectively. Immunofluorescence assays evidenced a different cell localization for Dox delivered through HGs and NGs with respect to the free drug. DISCUSSION A modulation of the Dox release can be obtained by changing the ratios of the peptide components. The different cellular localization of the drug loaded into HGs and NGs suggests an alternative internalization mechanism. The high DLC, the low drug release and preliminary in vitro results suggest a potential employment of peptide-based HGs and NGs as drug delivery tools.
Collapse
Affiliation(s)
| | - Carlo Diaferia
- Department of Pharmacy and Research Centre on Bioactive Peptides (CIRPeB), University of Naples “Federico II”, Naples, 80134, Italy
| | - Elisabetta Rosa
- Department of Pharmacy and Research Centre on Bioactive Peptides (CIRPeB), University of Naples “Federico II”, Naples, 80134, Italy
| | | | - Giancarlo Morelli
- Department of Pharmacy and Research Centre on Bioactive Peptides (CIRPeB), University of Naples “Federico II”, Naples, 80134, Italy
| | - Antonella Accardo
- Department of Pharmacy and Research Centre on Bioactive Peptides (CIRPeB), University of Naples “Federico II”, Naples, 80134, Italy
| |
Collapse
|
13
|
Fabrication of fluorescent nanospheres by heating PEGylated tetratyrosine nanofibers. Sci Rep 2021; 11:2470. [PMID: 33510221 PMCID: PMC7844296 DOI: 10.1038/s41598-020-79396-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023] Open
Abstract
Aromatic polypeptides have recently drawn the interest of the research community for their capability to self-assemble into a variety of functional nanostructures. Due to their interesting mechanical, electrical and optical properties, these nanostructures have been proposed as innovative materials in different biomedical, biotechnological and industrial fields. Recently, several efforts have been employed in the development of these innovative materials as nanoscale fluorescence (FL) imaging probes. In this context, we describe the synthesis and the functional properties of a novel fluorescent tyrosine (Tyr, Y)-based nanospheres, obtained by heating at 200 °C a solution of the PEGylated tetra-peptide PEG6-Y4. At room temperature, this peptide self-assembles into not fluorescent low ordered water-soluble fibrillary aggregates. After heating, the aggregation of different polyphenolic species generates Y4-based nanospheres able to emit FL into blue, green and red spectral regions, both in solution and at the solid state. The aggregation features of PEG6-Y4 before and after heating were studied using a set of complementary techniques (Fluorescence, CD, FT-IR, Small and Wide-Angle X-ray Scattering and SEM). After a deep investigation of their optoelectronic properties, these nanospheres could be exploited as promising tools for precise biomedicine in advanced nanomedical technologies (local bioimaging, light diagnostics, therapy, optogenetics and health monitoring).
Collapse
|
14
|
Diaferia C, Rosa E, Accardo A, Morelli G. Peptide-based hydrogels as delivery systems for doxorubicin. J Pept Sci 2021; 28:e3301. [PMID: 33491262 DOI: 10.1002/psc.3301] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 01/06/2023]
Abstract
Hydrogels (HGs) and nanogels (NGs) have been recently identified as innovative supramolecular materials for many applications in biomedical field such as in tissue engineering, optoelectronic, and local delivery of active pharmaceutical ingredients (APIs). Due to their in vivo biocompatibility, synthetic accessibility, low cost, and tunability, peptides have been used as suitable building blocks for preparation of HGs and NGs formulations. Peptide HGs have shown an outstanding potential to deliver small drugs, protein therapeutics, or diagnostic probes, maintaining the efficacy of their loaded molecules, preventing degradation phenomena, and responding to external physicochemical stimuli. In this review, we discuss the possible use of peptide-based HGs and NGs as vehicles for the delivery of the anticancer drug doxorubicin (Dox). This anthracycline is clinically used for leukemia, stomach, lung, ovarian, breast, and bladder cancer therapy. The loading of Dox into supramolecular systems (liposomes, micelles, hydrogels, and nanogels) allows reducing its cardiotoxicity. According to a primary sequence classification of the constituent peptide, doxorubicin-loaded systems are here classified in short and ultra-short peptide-based HGs, RGD, or RADA-peptide-based HGs and peptide-based NGs.
Collapse
Affiliation(s)
- Carlo Diaferia
- Department of Pharmacy, Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", Naples, 80134, Italy
| | - Elisabetta Rosa
- Department of Pharmacy, Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", Naples, 80134, Italy
| | - Antonella Accardo
- Department of Pharmacy, Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", Naples, 80134, Italy
| | - Giancarlo Morelli
- Department of Pharmacy, Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", Naples, 80134, Italy
| |
Collapse
|
15
|
Diaferia C, Netti F, Ghosh M, Sibillano T, Giannini C, Morelli G, Adler-Abramovich L, Accardo A. Bi-functional peptide-based 3D hydrogel-scaffolds. SOFT MATTER 2020; 16:7006-7017. [PMID: 32638818 DOI: 10.1039/d0sm00825g] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Over the last few years, hydrogels have been proposed for many biomedical applications, including drug delivery systems and scaffolds for tissue engineering. In particular, peptides have been envisioned as excellent candidates for the development of hydrogel materials, due to their intrinsic biocompatibility, ease of handling, and intrinsic biodegradability. Recently, we developed a novel hybrid polymer-peptide conjugate, PEG8-(FY)3, which is able to self-assemble into a self-supporting soft hydrogel over dry and wet surfaces as demonstrated by molecular dynamics simulation. Here, we describe the synthesis and supramolecular organization of six novel hexapeptides rationally designed by punctual chemical modification of the primary peptide sequence of the ancestor peptide (FY)3. Non-coded amino acids were incorporated by replacing the phenylalanine residue with naphthylalanine (Nal) and tyrosine with dopamine (Dopa). We also studied the effect of the modification of the side chain and the corresponding PEGylated peptide analogues, on the structural and mechanical properties of the hydrogel. Secondary structure, morphology and rheological properties of all the peptide-based materials were assessed by various biophysical tools. The in vitro biocompatibility of the supramolecular nanostructures was also evaluated on fibroblast cell lines. We conclude that the PEG8-(Nal-Dopa)3 hydrogel possesses the right properties to serve as a scaffold and support cell growth.
Collapse
Affiliation(s)
- Carlo Diaferia
- Department of Pharmacy, Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", Via Mezzocannone 16, 80134-Naples, Italy.
| | - Francesca Netti
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, and the Center for Nanoscience and Nanotechnology Tel-Aviv University, 69978, Israel.
| | - Moumita Ghosh
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, and the Center for Nanoscience and Nanotechnology Tel-Aviv University, 69978, Israel.
| | - Teresa Sibillano
- Institute of Crystallography (IC), CNR, Via Amendola 122, 70126 Bari, Italy
| | - Cinzia Giannini
- Institute of Crystallography (IC), CNR, Via Amendola 122, 70126 Bari, Italy
| | - Giancarlo Morelli
- Department of Pharmacy, Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", Via Mezzocannone 16, 80134-Naples, Italy.
| | - Lihi Adler-Abramovich
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, and the Center for Nanoscience and Nanotechnology Tel-Aviv University, 69978, Israel.
| | - Antonella Accardo
- Department of Pharmacy, Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", Via Mezzocannone 16, 80134-Naples, Italy.
| |
Collapse
|
16
|
Abstract
Nanoscale optical labeling is an advanced bioimaging tool. It is mostly based on fluorescence (FL) phenomena and enables the visualization of single biocells, bacteria, viruses, and biological tissues, providing monitoring of functional biosystems in vitro and in vivo, and the imaging-guided transportation of drug molecules. There is a variety of FL biolabels such as organic molecular dyes, genetically encoded fluorescent proteins (green fluorescent protein and homologs), semiconductor quantum dots, carbon dots, plasmonic metal gold-based nanostructures and more. In this review, a new generation of FL biolabels based on the recently found biophotonic effects of visible FL are described. This intrinsic FL phenomenon is observed in any peptide/protein materials folded into β-sheet secondary structures, irrespective of their composition, complexity, and origin. The FL effect has been observed both in natural amyloid fibrils, associated with neurodegenerative diseases (Alzheimer’s, Parkinson’s, and more), and diverse synthetic peptide/protein structures subjected to thermally induced biological refolding helix-like→β-sheet. This approach allowed us to develop a new generation of FL peptide/protein bionanodots radiating multicolor, tunable, visible FL, covering the entire visible spectrum in the range of 400–700 nm. Newly developed biocompatible nanoscale biomarkers are considered as a promising tool for emerging precise biomedicine and advanced medical nanotechnologies (high-resolution bioimaging, light diagnostics, therapy, optogenetics, and health monitoring).
Collapse
|
17
|
Rosa E, Diaferia C, Gallo E, Morelli G, Accardo A. Stable Formulations of Peptide-Based Nanogels. Molecules 2020; 25:E3455. [PMID: 32751321 PMCID: PMC7435922 DOI: 10.3390/molecules25153455] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 12/17/2022] Open
Abstract
Recently, nanogels have been identified as innovative formulations for enlarging the application of hydrogels (HGs) in the area of drug delivery or in diagnostic imaging. Nanogels are HGs-based aggregates with sizes in the range of nanometers and formulated in order to obtain injectable preparations. Regardless of the advantages offered by peptides in a hydrogel preparation, until now, only a few examples of peptide-based nanogels (PBNs) have been developed. Here, we describe the preparation of stable PBNs based on Fmoc-Phe-Phe-OH using three different methods, namely water/oil emulsion (W/O), top-down, and nanogelling in water. The effect of the hydrophilic-lipophilic balance (HLB) in the formulation was also evaluated in terms of size and stability. The resulting nanogels were found to encapsulate the anticancer drug doxorubicin, chosen as the model drug, with a drug loading comparable with those of the liposomes.
Collapse
Affiliation(s)
- Elisabetta Rosa
- Department of Pharmacy and Interuniversity Research Centre on Bioactive Peptides (CIRPeB), University of Naples “Federico II”, via Mezzocannone 16, 80134 Naples, Italy; (E.R.); (C.D.); (G.M.)
| | - Carlo Diaferia
- Department of Pharmacy and Interuniversity Research Centre on Bioactive Peptides (CIRPeB), University of Naples “Federico II”, via Mezzocannone 16, 80134 Naples, Italy; (E.R.); (C.D.); (G.M.)
| | - Enrico Gallo
- IRCCS SDN, Via E. Gianturco 113, 80143 Naples, Italy;
| | - Giancarlo Morelli
- Department of Pharmacy and Interuniversity Research Centre on Bioactive Peptides (CIRPeB), University of Naples “Federico II”, via Mezzocannone 16, 80134 Naples, Italy; (E.R.); (C.D.); (G.M.)
| | - Antonella Accardo
- Department of Pharmacy and Interuniversity Research Centre on Bioactive Peptides (CIRPeB), University of Naples “Federico II”, via Mezzocannone 16, 80134 Naples, Italy; (E.R.); (C.D.); (G.M.)
| |
Collapse
|
18
|
Gallo E, Rosa E, Diaferia C, Rossi F, Tesauro D, Accardo A. Systematic overview of soft materials as a novel frontier for MRI contrast agents. RSC Adv 2020; 10:27064-27080. [PMID: 35515779 PMCID: PMC9055484 DOI: 10.1039/d0ra03194a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/02/2020] [Indexed: 02/02/2023] Open
Abstract
Magnetic resonance imaging (MRI) is a well-known diagnostic technique used to obtain high quality images in a non-invasive manner. In order to increase the contrast between normal and pathological regions in the human body, positive (T1) or negative (T2) contrast agents (CAs) are commonly intravenously administered. The most efficient class of T1-CAs are based on kinetically stable and thermodynamically inert gadolinium complexes. In the last two decades many novel macro- and supramolecular CAs have been proposed. These approaches have been optimized to increase the performance of the CAs in terms of the relaxivity values and to reduce the administered dose, decreasing the toxicity and giving better safety and pharmacokinetic profiles. The improved performances may also allow further information to be gained on the pathological and physiological state of the human body. The goal of this review is to report a systematic overview of the nanostructurated CAs obtained and developed by manipulating soft materials at the nanometer scale. Specifically, our attention is centered on recent examples of fibers, hydrogels and nanogel formulations, that seem particularly promising for overcoming the problematic issues that have recently pushed the European Medicines Agency (EMA) to withdraw linear CAs from the market. Gd(iii)-nanostructurated Constrast Agents (CAs) for Magnetic Resonance Imaging (MRI) can be designed and developed by manipulating soft material, including fibers, hydrogels and nanogels, in the nanometer scale.![]()
Collapse
Affiliation(s)
- Enrico Gallo
- IRCCS SDN Via E. Gianturco 113 80143 Napoli Italy
| | - Elisabetta Rosa
- Department of Pharmacy, Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II" Via Mezzocannone 16 80134-Naples Italy
| | - Carlo Diaferia
- Department of Pharmacy, Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II" Via Mezzocannone 16 80134-Naples Italy
| | - Filomena Rossi
- Department of Pharmacy, Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II" Via Mezzocannone 16 80134-Naples Italy
| | - Diego Tesauro
- Department of Pharmacy, Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II" Via Mezzocannone 16 80134-Naples Italy
| | - Antonella Accardo
- Department of Pharmacy, Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II" Via Mezzocannone 16 80134-Naples Italy
| |
Collapse
|
19
|
Lee H. Molecular Simulations of PEGylated Biomolecules, Liposomes, and Nanoparticles for Drug Delivery Applications. Pharmaceutics 2020; 12:E533. [PMID: 32531886 PMCID: PMC7355693 DOI: 10.3390/pharmaceutics12060533] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 12/17/2022] Open
Abstract
Since the first polyethylene glycol (PEG)ylated protein was approved by the FDA in 1990, PEGylation has been successfully applied to develop drug delivery systems through experiments, but these experimental results are not always easy to interpret at the atomic level because of the limited resolution of experimental techniques. To determine the optimal size, structure, and density of PEG for drug delivery, the structure and dynamics of PEGylated drug carriers need to be understood close to the atomic scale, as can be done using molecular dynamics simulations, assuming that these simulations can be validated by successful comparisons to experiments. Starting with the development of all-atom and coarse-grained PEG models in 1990s, PEGylated drug carriers have been widely simulated. In particular, recent advances in computer performance and simulation methodologies have allowed for molecular simulations of large complexes of PEGylated drug carriers interacting with other molecules such as anticancer drugs, plasma proteins, membranes, and receptors, which makes it possible to interpret experimental observations at a nearly atomistic resolution, as well as help in the rational design of drug delivery systems for applications in nanomedicine. Here, simulation studies on the following PEGylated drug topics will be reviewed: proteins and peptides, liposomes, and nanoparticles such as dendrimers and carbon nanotubes.
Collapse
Affiliation(s)
- Hwankyu Lee
- Department of Chemical Engineering, Dankook University, Yongin 16890, Korea
| |
Collapse
|
20
|
Gallo E, Diaferia C, Di Gregorio E, Morelli G, Gianolio E, Accardo A. Peptide-Based Soft Hydrogels Modified with Gadolinium Complexes as MRI Contrast Agents. Pharmaceuticals (Basel) 2020; 13:ph13020019. [PMID: 31973215 PMCID: PMC7168922 DOI: 10.3390/ph13020019] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 11/26/2022] Open
Abstract
Poly-aromatic peptide sequences are able to self-assemble into a variety of supramolecular aggregates such as fibers, hydrogels, and tree-like multi-branched nanostructures. Due to their biocompatible nature, these peptide nanostructures have been proposed for several applications in biology and nanomedicine (tissue engineering, drug delivery, bioimaging, and fabrication of biosensors). Here we report the synthesis, the structural characterization and the relaxometric behavior of two novel supramolecular diagnostic agents for magnetic resonance imaging (MRI) technique. These diagnostic agents are obtained for self-assembly of DTPA(Gd)-PEG8-(FY)3 or DOTA(Gd)-PEG8-(FY)3 peptide conjugates, in which the Gd-complexes are linked at the N-terminus of the PEG8-(FY)3 polymer peptide. This latter was previously found able to form self-supporting and stable soft hydrogels at a concentration of 1.0% wt. Analogously, also DTPA(Gd)-PEG8-(FY)3 and DOTA(Gd)-PEG8-(FY)3 exhibit the trend to gelificate at the same range of concentration. Moreover, the structural characterization points out that peptide (FY)3 moiety keeps its capability to arrange into β-sheet structures with an antiparallel orientation of the β-strands. The high relaxivity value of these nanostructures (~12 mM−1·s−1 at 20 MHz) and the very low in vitro cytotoxicity suggest their potential application as supramolecular diagnostic agents for MRI.
Collapse
Affiliation(s)
- Enrico Gallo
- IRCCS SDN, Via E. Gianturco 113, 80143 Napoli, Italy;
| | - Carlo Diaferia
- Department of Pharmacy and Interuniversity Research Centre on Bioactive Peptides (CIRPeB), University of Naples “Federico II”, via Mezzocannone 16, 80134 Naples, Italy; (C.D.); (G.M.)
| | - Enza Di Gregorio
- Department of Molecular Biotechnology and Health Science, University of Turin, Via Nizza 52, 10125 Turin, Italy; (E.D.G.); (E.G.)
| | - Giancarlo Morelli
- Department of Pharmacy and Interuniversity Research Centre on Bioactive Peptides (CIRPeB), University of Naples “Federico II”, via Mezzocannone 16, 80134 Naples, Italy; (C.D.); (G.M.)
| | - Eliana Gianolio
- Department of Molecular Biotechnology and Health Science, University of Turin, Via Nizza 52, 10125 Turin, Italy; (E.D.G.); (E.G.)
| | - Antonella Accardo
- Department of Pharmacy and Interuniversity Research Centre on Bioactive Peptides (CIRPeB), University of Naples “Federico II”, via Mezzocannone 16, 80134 Naples, Italy; (C.D.); (G.M.)
- Correspondence:
| |
Collapse
|
21
|
Diaferia C, Morelli G, Accardo A. Fmoc-diphenylalanine as a suitable building block for the preparation of hybrid materials and their potential applications. J Mater Chem B 2019; 7:5142-5155. [PMID: 31380554 DOI: 10.1039/c9tb01043b] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Due to its capability to self-assemble in self-supporting hydrogels (HG) under physiological conditions, Fmoc-FF is one of the most studied ultra-short peptide. The structural properties of the resulting hydrogel (mechanical rigidity, entanglement of the fibrillary network, and the thickness of the fibers) strictly depend on the experimental conditions used during the preparation. In the past few years, a broad range of applications in different fields, such as biomedical and industrial fields, have been proposed. However, the research on novel materials with enhanced mechanical properties, stability, and biocompatibility has brought about the development of novel Fmoc-FF-based hybrid systems, in which the ultra-short hydrogelator is combined with others entities such as polysaccharides, polymers, peptides, or organic molecules. The structural features and the potential applications of these novel hybrid materials, with particular attention to tissue engineering, drug delivery, and catalysis, are described here. The aim is to give the readers a tool to design new hybrid nanomaterials based on the Fmoc-FF dipeptide hydrogelator, with appropriate properties for specific applications.
Collapse
Affiliation(s)
- Carlo Diaferia
- Department of Pharmacy, Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", Via Mezzocannone 16, 80134-Naples, Italy.
| | - Giancarlo Morelli
- Department of Pharmacy, Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", Via Mezzocannone 16, 80134-Naples, Italy.
| | - Antonella Accardo
- Department of Pharmacy, Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", Via Mezzocannone 16, 80134-Naples, Italy.
| |
Collapse
|
22
|
Diaferia C, Gianolio E, Accardo A. Peptide-based building blocks as structural elements for supramolecular Gd-containing MRI contrast agents. J Pept Sci 2019; 25:e3157. [PMID: 30767370 DOI: 10.1002/psc.3157] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 11/07/2022]
Abstract
Magnetic resonance imaging (MRI) is one of the most important clinic diagnostic tool used to obtain high-quality body images. The administration of low-molecular-weight Gd complex-based MRI contrast agents (CAs) permits to increase the 1 H relaxation rate of nearby water molecules, thus modulating signal intensity and contrast enhancement. Even if highly accurate, MRI modality suffers from its low sensitivity. Moreover, low-molecular-weight CAs rapidly equilibrate between the intravascular and extravascular spaces after their administration. In order to improve their sensitivity and limit the extravasation phenomenon, several macromolecular and supramolecular multimeric gadolinium complexes (dendrimers, polymers, carbon nanostructures, micelles, and liposomes) have been designed until now. Because of their biocompatibility, low immunogenicity, low cost, and easy synthetic modification, peptides are attractive building blocks for the fabbrication of novel materials for biomedical applications. We report on the state of the art of supramolecular CAs obtained by self-assembly of three different classes of building blocks containing a peptide sequence, a gadolinium complex, and, if necessary, a third functional portion achieving the organization process.
Collapse
Affiliation(s)
- Carlo Diaferia
- Department of Pharmacy, Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", Naples, Italy
| | - Eliana Gianolio
- Department of Molecular Biotechnologies and Health Science, University of Turin, Turin, Italy
| | - Antonella Accardo
- Department of Pharmacy, Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", Naples, Italy
| |
Collapse
|
23
|
Diaferia C, Ghosh M, Sibillano T, Gallo E, Stornaiuolo M, Giannini C, Morelli G, Adler-Abramovich L, Accardo A. Fmoc-FF and hexapeptide-based multicomponent hydrogels as scaffold materials. SOFT MATTER 2019; 15:487-496. [PMID: 30601569 DOI: 10.1039/c8sm02366b] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Short peptides or single amino acids are interesting building blocks for fabrication of hydrogels, frequently used as extracellular matrix-mimicking scaffolds for cell growth in tissue engineering. The combination of two or more peptide hydrogelators could allow obtaining different materials exhibiting new architectures, tunable mechanical properties, high stability and improved biofunctionality. Here we report on the synthesis, formulation and multi-scale characterization of peptide-based mixed hydrogels formed by the low molecular weight Fmoc-FF (Nα-fluorenylmethyloxycarbonyl diphenylalanine) hydrogelator and of the PEG8-(FY)3 hexapeptide, containing three repetitions of the Phe-Tyr motif and a PEG moiety at its N-terminus. Mixed hydrogels were also prepared by replacing PEG8-(FY)3 with its analogue (FY)3, without the PEG moiety. Rheology analysis confirmed the improved mechanical features of the multicomponent gels prepared at two different ratios (2/1 or 1/1, v/v). However, the presence of the hydrophilic PEG polymeric moiety causes a slowing down of the gel kinetic formation (from 42 to 18 minutes) and a decrease of the gel rigidity (G' from 9 to 6 kPa). Preliminary in vitro biocompatibility and cell adhesion assays performed on Chinese hamster ovarian (CHO) cells suggest a potential employment of these multicomponent hydrogels as exogenous scaffold materials for tissue engineering.
Collapse
Affiliation(s)
- Carlo Diaferia
- Department of Pharmacy, Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", Via Mezzocannone 16, 80134 Naples, Italy. and Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel.
| | - Moumita Ghosh
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel.
| | - Teresa Sibillano
- Institute of Crystallography (IC), CNR, Via Amendola 122, 70126 Bari, Italy
| | - Enrico Gallo
- Department of Pharmacy, Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", Via Mezzocannone 16, 80134 Naples, Italy.
| | - Mariano Stornaiuolo
- Department of Pharmacy, Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", Via Mezzocannone 16, 80134 Naples, Italy.
| | - Cinzia Giannini
- Institute of Crystallography (IC), CNR, Via Amendola 122, 70126 Bari, Italy
| | - Giancarlo Morelli
- Department of Pharmacy, Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", Via Mezzocannone 16, 80134 Naples, Italy.
| | - Lihi Adler-Abramovich
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel.
| | - Antonella Accardo
- Department of Pharmacy, Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", Via Mezzocannone 16, 80134 Naples, Italy.
| |
Collapse
|
24
|
Tesauro D, Accardo A, Diaferia C, Milano V, Guillon J, Ronga L, Rossi F. Peptide-Based Drug-Delivery Systems in Biotechnological Applications: Recent Advances and Perspectives. Molecules 2019; 24:E351. [PMID: 30669445 PMCID: PMC6359574 DOI: 10.3390/molecules24020351] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/09/2019] [Accepted: 01/18/2019] [Indexed: 12/30/2022] Open
Abstract
Peptides of natural and synthetic sources are compounds operating in a wide range of biological interactions. They play a key role in biotechnological applications as both therapeutic and diagnostic tools. They are easily synthesized thanks to solid-phase peptide devices where the amino acid sequence can be exactly selected at molecular levels, by tuning the basic units. Recently, peptides achieved resounding success in drug delivery and in nanomedicine smart applications. These applications are the most significant challenge of recent decades: they can selectively deliver drugs to only pathological tissues whilst saving the other districts of the body. This specific feature allows a reduction in the drug side effects and increases the drug efficacy. In this context, peptide-based aggregates present many advantages, including biocompatibility, high drug loading capacities, chemical diversity, specific targeting, and stimuli responsive drug delivery. A dual behavior is observed: on the one hand they can fulfill a structural and bioactive role. In this review, we focus on the design and the characterization of drug delivery systems using peptide-based carriers; moreover, we will also highlight the peptide ability to self-assemble and to actively address nanosystems toward specific targets.
Collapse
Affiliation(s)
- Diego Tesauro
- Department of Pharmacy and CIRPeB, Università Federico II, 80134 Naples, Italy.
| | - Antonella Accardo
- Department of Pharmacy and CIRPeB, Università Federico II, 80134 Naples, Italy.
| | - Carlo Diaferia
- Department of Pharmacy and CIRPeB, Università Federico II, 80134 Naples, Italy.
| | - Vittoria Milano
- Department of Pharmacy and CIRPeB, Università Federico II, 80134 Naples, Italy.
- ARNA, INSERM U1212/UMR CNRS 5320, UFR des Sciences Pharmaceutiques, Université de Bordeaux, F-33000 Bordeaux, France.
| | - Jean Guillon
- ARNA, INSERM U1212/UMR CNRS 5320, UFR des Sciences Pharmaceutiques, Université de Bordeaux, F-33000 Bordeaux, France.
| | - Luisa Ronga
- Institute of Analytical Sciences, IPREM, UMR 5254, CNRS-University of Pau, 64000 Pau, France.
| | - Filomena Rossi
- Department of Pharmacy and CIRPeB, Università Federico II, 80134 Naples, Italy.
| |
Collapse
|
25
|
Sarkar K, Dastidar P. Rational Approach Towards Designing Metallogels From a Urea-Functionalized Pyridyl Dicarboxylate: Anti-inflammatory, Anticancer, and Drug Delivery. Chem Asian J 2018; 14:194-204. [PMID: 30358173 DOI: 10.1002/asia.201801462] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 10/25/2018] [Indexed: 12/25/2022]
Abstract
A structural rationale was adopted to design a series of metallogels from a newly synthesized urea-functionalized dicarboxylate ligand, namely, 5-[3-(pyridin-3-yl)ureido]isophthalic acid (PUIA), that produces metallogels upon reaction with various metal salts (CuII , ZnII , CoII , CdII , and NiII salts) at room temperature. The gels were characterized by dynamic rheology and transmission electron microscopy (TEM). The existence of a coordination bond in the gel state was probed by FTIR and 1 H NMR spectroscopy in a ZnII metallogel (i.e., MG2). Single crystals isolated from the reaction mixture of PUIA and CoII or CdII salts characterized by X-ray diffraction revealed lattice inclusion of solvent molecules, which was in agreement with the hypothesis based on which the metallogels were designed. MG2 displayed anti-inflammatory response (prostaglandin E2 assay) in the macrophage cell line (RAW 264.7) and anticancer properties (cell migration assay) on a highly aggressive human breast cancer cell line (MDA-MB-231). The MG2 metallogel matrix could also be used to load and release (pH responsive) the anticancer drug doxorubicin. Fluorescence imaging of MDA-MB-231 cells treated with MG2 revealed that it was successfully internalized.
Collapse
Affiliation(s)
- Koushik Sarkar
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), 2A and 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, West Bengal, India
| | - Parthasarathi Dastidar
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), 2A and 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, West Bengal, India
| |
Collapse
|
26
|
Diaferia C, Balasco N, Altamura D, Sibillano T, Gallo E, Roviello V, Giannini C, Morelli G, Vitagliano L, Accardo A. Assembly modes of hexaphenylalanine variants as function of the charge states of their terminal ends. SOFT MATTER 2018; 14:8219-8230. [PMID: 30265271 DOI: 10.1039/c8sm01441h] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The ability of peptides to self-assemble represents a valuable tool for the development of biomaterials of biotechnological and/or biomedical interest. Diphenylalanine homodimer (FF) and its analogues are among the most promising systems in this field. The longest Phe-based building block hitherto characterized is pentaphenylalanine (F5). We studied the aggregation propensity and the structural/morphological features of assemblies of zwitterionic hexaphenylalanine H+-F6-O- and of three variants characterized by different charged states of the terminal ends (Ac-F6-Amide, H+-F6-Amide and Ac-F6-O-). As previously observed for PEGylated hexaphenylalanine (PEG8-F6), all F6 variants show a strong tendency to form β-rich assemblies in which the structural motif is constituted by antiparallel β-strands in the cross-β framework. Extensive replica exchange molecular dynamics simulations carried out on a pairs of F6 peptides indicate that the antiparallel β-structure of the final assemblies is likely dictated by the preferred association modes of the individual chains in the very early stages of the aggregation process. Our data suggest that even very small F6 peptides are properly pre-organized and prone to the build-up of the final assembly.
Collapse
Affiliation(s)
- Carlo Diaferia
- Department of Pharmacy, Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", Via Mezzocannone 16, 80134, Naples, Italy.
| | - Nicole Balasco
- Institute of Biostructures and Bioimaging (IBB), CNR, Via Mezzocannone 16, 80134, Naples, Italy
| | - Davide Altamura
- Institute of Crystallography (IC), CNR, Via Amendola 122, 70126, Bari, Italy
| | - Teresa Sibillano
- Institute of Crystallography (IC), CNR, Via Amendola 122, 70126, Bari, Italy
| | - Enrico Gallo
- Department of Pharmacy, Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", Via Mezzocannone 16, 80134, Naples, Italy.
| | - Valentina Roviello
- Analytical Chemistry for the Environment and CeSMA (Advanced Metrologic Service Center), University of Naples "Federico II", Corso Nicolangelo Protopisani, 80146, Naples, Italy
| | - Cinzia Giannini
- Institute of Crystallography (IC), CNR, Via Amendola 122, 70126, Bari, Italy
| | - Giancarlo Morelli
- Department of Pharmacy, Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", Via Mezzocannone 16, 80134, Naples, Italy.
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging (IBB), CNR, Via Mezzocannone 16, 80134, Naples, Italy
| | - Antonella Accardo
- Department of Pharmacy, Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", Via Mezzocannone 16, 80134, Naples, Italy.
| |
Collapse
|
27
|
Jonnalagadda SVR, Kokotidou C, Orr AA, Fotopoulou E, Henderson KJ, Choi CH, Lim WT, Choi SJ, Jeong HK, Mitraki A, Tamamis P. Computational Design of Functional Amyloid Materials with Cesium Binding, Deposition, and Capture Properties. J Phys Chem B 2018; 122:7555-7568. [DOI: 10.1021/acs.jpcb.8b04103] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
| | - Chrysoula Kokotidou
- Department of Materials Science and Technology, University of Crete, Heraklion 700 13, Crete, Greece
- Institute of Electronic Structure and Laser (IESL) FORTH, Heraklion 711 10, Crete, Greece
| | | | - Emmanouela Fotopoulou
- Department of Materials Science and Technology, University of Crete, Heraklion 700 13, Crete, Greece
| | | | | | - Woo Taik Lim
- Department of Applied Chemistry, Andong National University, Andong 36729, Republic of Korea
| | - Sang June Choi
- Department of Environmental Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | | | - Anna Mitraki
- Department of Materials Science and Technology, University of Crete, Heraklion 700 13, Crete, Greece
- Institute of Electronic Structure and Laser (IESL) FORTH, Heraklion 711 10, Crete, Greece
| | | |
Collapse
|