1
|
Trzęsowska N, Wysokiński R, Hajlaoui F, Zouari N, Michalczyk M, Scheiner S, Zierkiewicz W. Interactions Between [PdX 4] 2- (X=Cl, Br) Dianions in Presence of Counterions. Chemphyschem 2024:e202400712. [PMID: 39591550 DOI: 10.1002/cphc.202400712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/11/2024] [Accepted: 11/25/2024] [Indexed: 11/28/2024]
Abstract
The interaction between two square palladium (II) dianions PdX4 2- (X=Cl, Br) is evaluated by crystal study and analyzed by quantum chemical means. The arrangement within the crystal between each pair of PdX4 2- neighbors is suggestive of a Pd⋅⋅⋅X noncovalent bond, which is verified by a battery of computational protocols. While the potential between these two bare dianions is computed to be highly repulsive, the introduction of even just two counterions makes this interaction attractive, as does the presence of a constellation of point charges. It is concluded that there is indeed a stabilizing Pd⋅⋅⋅X bond, but it is incapable of overcoming the strong coulombic repulsive force between two dianions. While the QTAIM, NBO, and NCI tools can indicate the presence of a noncovalent bond, they are unable to distinguish an attractive from a repulsive interaction.
Collapse
Affiliation(s)
- Natasza Trzęsowska
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże, Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Rafał Wysokiński
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże, Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Fadhel Hajlaoui
- Solid State Physico-Chemistry Laboratory, Faculty of Sciences of Sfax University, B.P. 1171, 3000, Sfax, Tunisia
| | - Nabil Zouari
- Solid State Physico-Chemistry Laboratory, Faculty of Sciences of Sfax University, B.P. 1171, 3000, Sfax, Tunisia
| | - Mariusz Michalczyk
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże, Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, 84322-0300, United States
| | - Wiktor Zierkiewicz
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże, Wyspiańskiego 27, 50-370, Wrocław, Poland
| |
Collapse
|
2
|
Scheiner S. Participation of transition metal atoms in noncovalent bonds. Phys Chem Chem Phys 2024; 26:27382-27394. [PMID: 39441097 DOI: 10.1039/d4cp03716b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The existence of halogen, chalcogen, pnicogen, and tetrel bonds as variants of noncovalent σ and π-hole bonds is now widely accepted, and many of their properties have been elucidated. The ability of the d-block transition metals to potentially act as Lewis acids in a similar capacity is examined systematically by DFT calculations. Metals examined span the entire range of the d-block from Group 3 to 12, and are selected from several rows of the periodic table. These atoms are placed in a variety of neutral MXn molecules, with X = Cl and O, and paired with a NH3 nucleophile. The resulting M⋯N bonds tend to be stronger than their p-block analogues, many of them with a substantial degree of covalency. The way in which the properties of these bonds is affected by the row and column of the periodic table from which the M atom is drawn, and the number and nature of ligands, is elucidated.
Collapse
Affiliation(s)
- Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, USA.
| |
Collapse
|
3
|
Siddiqui R, Burguera S, de Las Nieves Piña M, Dhamija S, Titi HM, Frontera A, Bauzá A, Patra R. From Coordination to π-Hole Chemistry of Transition Metals: Metalloporphyrins as a Case of Study. Angew Chem Int Ed Engl 2024; 63:e202409963. [PMID: 38934220 DOI: 10.1002/anie.202409963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 06/28/2024]
Abstract
Herein we have evidenced the formation of favorable π-hole Br⋅⋅⋅metal noncovalent interactions (NCIs) involving elements from groups 9, 11 and 12. More in detail, M (M=Co2+, Ni2+, Cu2+ and Zn2+) containing porphyrins have been synthesized and their supramolecular assemblies structurally characterized by means of single crystal X-ray diffraction and Hirshfeld surface analyses, revealing the formation of directional Br⋅⋅⋅M contacts in addition to ancillary hydrogen bond and lone pair-π bonds. Computations at the PBE0-D3/def2-TZVP level of theory revealed the π-hole nature of the Br⋅⋅⋅M interaction. In addition, the physical nature of these NCIs was studied using Quantum Chemistry methodologies, providing evidence of π-hole Spodium and Regium bonds in Zn2+ and Cu2+ porphyrins, in addition to unveiling the presence of a π-hole for group 9 (Co2+). On the other hand, group 10 (Ni2+) acted as both electron donor and acceptor moiety without showing an electropositive π-hole. Owing to the underexplored potential of π-hole interactions in transition metal chemistry, we believe the results reported herein will be useful in supramolecular chemistry, organometallics, and solid-state chemistry by i) putting under the spotlight the π-hole chemistry involving first row transition metals and ii) unlocking a new tool to direct the self-assembly of metalloporphyrins.
Collapse
Affiliation(s)
- Rafia Siddiqui
- Amity Institute of Click Chemistry Research and Studies, Amity University, Noida, Uttar Pradesh, India
| | - Sergi Burguera
- Departament de Química, Universitat de les Illes Balears, Ctra. de Valldemossa km 7.5, 07122, Palma de Mallorca, Baleares, Spain
| | - María de Las Nieves Piña
- Departament de Química, Universitat de les Illes Balears, Ctra. de Valldemossa km 7.5, 07122, Palma de Mallorca, Baleares, Spain
| | - Swati Dhamija
- Amity Institute of Click Chemistry Research and Studies, Amity University, Noida, Uttar Pradesh, India
| | - Hatem M Titi
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QCH3A0B8, Canada
| | - Antonio Frontera
- Departament de Química, Universitat de les Illes Balears, Ctra. de Valldemossa km 7.5, 07122, Palma de Mallorca, Baleares, Spain
| | - Antonio Bauzá
- Departament de Química, Universitat de les Illes Balears, Ctra. de Valldemossa km 7.5, 07122, Palma de Mallorca, Baleares, Spain
| | - Ranjan Patra
- Amity Institute of Click Chemistry Research and Studies, Amity University, Noida, Uttar Pradesh, India
| |
Collapse
|
4
|
Burguera S, Piña MDLN, Bauzá A. On the influence of metal nanoparticle and π-system sizes in the stability of noncovalent adducts: a theoretical study. Phys Chem Chem Phys 2024. [PMID: 39034821 DOI: 10.1039/d4cp02149e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Herein we have computationally evaluated the relationship between Ag and Au nanoparticle (Ag/AuNP) size and π-surface extension in the formation of noncovalent complexes at the PBE0-D3/def2-TZVP level of theory. The NP-π interaction is known in supramolecular chemistry as a Regium-π bond (Rg-π), and differentiates from classical coordination bonds in strength and type of metal orbitals involved. In this study, the Rg-π complexes involved small Ag/AuNPs composed by 1 to 5 atoms and benzene, naphthalene and anthracene as π-systems, being characterized using several molecular modeling tools, including molecular electrostatic potential (MEP) calculations, energy decomposition analysis (EDA), quantum theory of atoms in molecules (QTAIM), non covalent interaction plot (NCIplot) and natural bonding orbital (NBO) methodologies. We believe the results reported herein will be useful for those scientists working in catalysis, molecular recognition and materials science fields, where structural-energetic relationships of weak interactions are crucial to achieve product selectivity, a particular molecular recognition mode or a specific molecular assembly.
Collapse
Affiliation(s)
- Sergi Burguera
- Department of Chemistry, Ctra. de Valldemossa, km. 7.5, Universitat de les Illes Balears, Palma de Mallorca (Baleares), 07122, Spain.
| | - María de Las Nieves Piña
- Department of Chemistry, Ctra. de Valldemossa, km. 7.5, Universitat de les Illes Balears, Palma de Mallorca (Baleares), 07122, Spain.
| | - Antonio Bauzá
- Department of Chemistry, Ctra. de Valldemossa, km. 7.5, Universitat de les Illes Balears, Palma de Mallorca (Baleares), 07122, Spain.
| |
Collapse
|
5
|
Gomila RM, Frontera A. On the Existence of Pnictogen Bonding Interactions in As(III) S-Adenosylmethionine Methyltransferase Enzymes. Chem Asian J 2024; 19:e202400081. [PMID: 38407495 DOI: 10.1002/asia.202400081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 02/27/2024]
Abstract
As(III) S-adenosylmethionine methyltransferases, pivotal enzymes in arsenic metabolism, facilitate the methylation of arsenic up to three times. This process predominantly yields trivalent mono- and dimethylarsenite, with trimethylarsine forming in smaller amounts. While this enzyme acts as a detoxifier in microbial systems by altering As(III), in humans, it paradoxically generates more toxic and potentially carcinogenic methylated arsenic species. The strong affinity of As(III) for cysteine residues, forming As(III)-thiolate bonds, is exploited in medical treatments, notably in arsenic trioxide (Trisenox®), an FDA-approved drug for leukemia. The effectiveness of this drug is partly due to its interaction with cysteine residues, leading to the breakdown of key oncogenic fusion proteins. In this study, we extend the understanding of As(III)'s binding mechanisms, showing that, in addition to As(III)-S covalent bonds, noncovalent O⋅⋅⋅As pnictogen bonding plays a vital role. This interaction significantly contributes to the structural stability of the As(III) complexes. Our crystallographic analysis using the PDB database of As(III) S-adenosylmethionine methyltransferases, augmented by comprehensive theoretical studies including molecular electrostatic potential (MEP), quantum theory of atoms in molecules (QTAIM), and natural bond orbital (NBO) analysis, emphasizes the critical role of pnictogen bonding in these systems. We also undertake a detailed evaluation of the energy characteristics of these pnictogen bonds using various theoretical models. To our knowledge, this is the first time pnictogen bonds in As(III) derivatives have been reported in biological systems, marking a significant advancement in our understanding of arsenic's molecular interactions.
Collapse
Affiliation(s)
- Rosa M Gomila
- Department of Chemistry, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, 07122, Palma de Mallorca (Baleares), Spain
| | - Antonio Frontera
- Department of Chemistry, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, 07122, Palma de Mallorca (Baleares), Spain
| |
Collapse
|
6
|
Grödler D, Burguera S, Frontera A, Strub E. Investigating Recurrent Matere Bonds in Pertechnetate Compounds. Chemistry 2024; 30:e202400100. [PMID: 38385852 DOI: 10.1002/chem.202400100] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/23/2024]
Abstract
In this manuscript we evaluate the X-ray structure of five new pertechnetate derivatives of general formula [M(H2O)4(TcO4)2], M=Mg, Co, Ni, Cu, Zn (compounds 1-5) and one perrhenate compound Zn(H2O)4(ReO4)2 (6). In these complexes the metal center exhibits an octahedral coordination with the pertechnetate units as axial ligands. All compounds exhibit the formation of directional Tc⋅⋅⋅O Matere bonds (MaBs) that propagate the [M(H2O)4(TcO4)2], into 1D supramolecular polymers in the solid state. Such 1D polymers are linked, generating 2D layers, by combining additional MaBs and hydrogen bonds (HBs). Such concurrent motifs have been analyzed theoretically, suggesting the noncovalent σ-hole nature of the MaBs. The interaction energies range from weak (~ -2 kcal/mol) for the MaBs to strong (~ -30 kcal/mol) for the MaB+HB assemblies, where HB dominates. In case of M=Zn, the corresponding perrhenate Zn(H2O)4(ReO4)2 complex, has been also synthesized for comparison purposes, resulting in the formation of an isostructural X-ray structure, corroborating the structure-directing role of Matere bonds.
Collapse
Affiliation(s)
- Dennis Grödler
- Department of Chemistry, Division of Nuclear Chemistry, University of Cologne, Zülpicher Str. 45, 50674, Cologne, Germany
| | - Sergi Burguera
- Departament de Química, Universitat de les Illes Balears, Crta. De Valldemossa km 7.5, 07122, Palma de Mallorca (Baleares), SPAIN
| | - Antonio Frontera
- Departament de Química, Universitat de les Illes Balears, Crta. De Valldemossa km 7.5, 07122, Palma de Mallorca (Baleares), SPAIN
| | - Erik Strub
- Department of Chemistry, Division of Nuclear Chemistry, University of Cologne, Zülpicher Str. 45, 50674, Cologne, Germany
| |
Collapse
|
7
|
Yashmin F, Mazumder LJ, Sharma PK, Guha AK. Spodium bonding with noble gas atoms. Phys Chem Chem Phys 2024; 26:8115-8124. [PMID: 38410934 DOI: 10.1039/d3cp06184a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The nature of the bonding between a neutral group 12 member (Zn3, Cd3 and Hg3) ring and a noble gas atom was explored using quantum chemical simulations. Natural bond orbital, quantum theory of atoms in molecules, symmetry-adapted perturbation theory, and molecular electrostatic potential surface analysis were also used to investigate the type of interaction between the noble gas atom and the metal rings (Zn3, Cd3 and Hg3). The Zn3, Cd3 and Hg3 rings are bonded to the noble gas through non-covalent interactions, which was revealed by the non-covalent interaction index. Additionally, energy decomposition analysis reveals that dispersion energy is the key factor in stabilizing these systems.
Collapse
Affiliation(s)
- Farnaz Yashmin
- Department of Chemistry, Cotton University, Panbazar, Guwahati, Assam, 781001, India.
| | - Lakhya J Mazumder
- Department of Chemistry, Cotton University, Panbazar, Guwahati, Assam, 781001, India.
| | - Pankaz K Sharma
- Department of Chemistry, Cotton University, Panbazar, Guwahati, Assam, 781001, India.
| | - Ankur K Guha
- Department of Chemistry, Cotton University, Panbazar, Guwahati, Assam, 781001, India.
| |
Collapse
|
8
|
Burguera S, Sahu AK, Frontera A, Biswal HS, Bauza A. Spodium Bonds Involving Methylmercury and Ethylmercury in Proteins: Insights from X-ray Analysis and Computations. Inorg Chem 2023; 62:18524-18532. [PMID: 37902775 PMCID: PMC10647129 DOI: 10.1021/acs.inorgchem.3c02716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 10/31/2023]
Abstract
In this study, the stability, directionality, and physical nature of Spodium bonds (SpBs, an attractive noncovalent force involving elements from group 12 and Lewis bases) between methylmercury (MeHg) and ethylmercury (EtHg) and amino acids (AAs) have been analyzed from both a structural (X-ray analysis) and theoretical (RI-MP2/def2-TZVP level of theory) point of view. More in detail, an inspection of the Protein Data Bank (PDB) reported evidence of noncovalent contacts between MeHg and EtHg molecules and electron-rich atoms (e.g., O atoms belonging to the protein backbone and S atoms from MET residues or the π-systems of aromatic AAs such as TYR or TRP). These results were rationalized through a computational study using MeHg coordinated to a thiolate group as a theoretical model and several neutral and charged electron-rich molecules (e.g., benzene, formamide, or chloride). The physical nature of the interaction was analyzed from electrostatics and orbital perspectives by performing molecular electrostatic potential (MEP) and natural bonding orbital (NBO) analyses. Lastly, the noncovalent interactions plot (NCIplot) technique was used to provide a qualitative view of the strength of the Hg SpBs and compare them to other ancillary interactions present in these systems as well as to shed light on the extension of the interaction in real space. We believe that the results derived from our study will be useful to those scientists devoted to protein engineering and bioinorganic chemistry as well as to expanding the current knowledge of SpBs among the chemical biology community.
Collapse
Affiliation(s)
- Sergi Burguera
- Department
of Chemistry, Universitat de les Illes Balears, Ctra. de Valldemossa km 7.5, 07122 Palma, Baleares, Spain
| | - Akshay Kumar Sahu
- School
of Chemical Sciences, National Institute
of Science Education and Research (NISER), Bhubaneswar 752050, India
- Training
School Complex, Homi Bhabha National Institute, Mumbai 400094, India
| | - Antonio Frontera
- Department
of Chemistry, Universitat de les Illes Balears, Ctra. de Valldemossa km 7.5, 07122 Palma, Baleares, Spain
| | - Himansu S. Biswal
- School
of Chemical Sciences, National Institute
of Science Education and Research (NISER), Bhubaneswar 752050, India
- Training
School Complex, Homi Bhabha National Institute, Mumbai 400094, India
| | - Antonio Bauza
- Department
of Chemistry, Universitat de les Illes Balears, Ctra. de Valldemossa km 7.5, 07122 Palma, Baleares, Spain
| |
Collapse
|
9
|
Yan J, Zeng Y, Meng L, Li X, Zhang X. Gold(III) derivatives as the noncovalent interaction donors: theoretical study of the π-hole regium bonds. Phys Chem Chem Phys 2023; 25:29155-29164. [PMID: 37870082 DOI: 10.1039/d3cp04354a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Except for the well-known σ-hole regium bonds formed by metal nanoparticles and M(I) (M = Cu, Ag, and Au) derivatives, the existence of π-hole regions located above and below the Au atom in gold(III) derivatives suggests that gold(III) also functions as an efficient electrophilic site. In this study, a comprehensive analysis was conducted on the electrophilicity of trichloro-(p-toluonitrilo-N)-gold(III) derivatives AuL3(NCC6H4X) (L = Cl, Br, CN; X = NH2, CH3, CF3, NC, and CN) and the nature of π-hole regium bonds in the AuL3(NCC6H4X)⋯LB (LB = NH3, N(NH3)3, CH2O, C2H2, C2H4, C6H6) and (AuCl3(NCC6H4Y))n (Y = Cl, CN, NC, NO2; n = 2, 3)) complexes. The characteristics of the π-hole regium bonds were studied with respect to the influence of ligands and substituents, the strength of intermolecular interactions between Au(III) derivatives and Lewis bases, and those in the polymers. In the case of the AuL3(NCC6H4X)⋯NH3 complexes, the strength of the regium bonds increases gradually in the order of L = Cl < Br < CN and X = NH2 < CH3 < CF3 ≈ NC < CN. The ligands (L) attached to the Au atom exert a significant effect on the strength of the π-hole regium bonds in comparison to the substituents (X) on the benzene ring. The regium bonds are primarily dominated by electrostatic interaction, accompanied by moderate contribution from polarization. Linear relationships were identified between the electrostatic energies and the local most positive potentials over the Au atom, as well as between the polarization energies and the amount of charge transfer. Most of the π-hole regium bonds in the AuL3(NCC6H4X)⋯LB complexes exhibit the characters of closed shell noncovalent interactions. In the polymers (AuCl3(NCC6H4Y))n, weak face-to-face π-π stacking interactions are also present, in addition to regium bonds. The trimers displayed a slightly negative cooperativity in comparison to the dimers.
Collapse
Affiliation(s)
- Jiajing Yan
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, 050024, P. R. China.
| | - Yanli Zeng
- Hebei Key Laboratory of Inorganic Nano-materials, Hebei Normal University, Shijiazhuang, 050024, P. R. China
| | - Lingpeng Meng
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, 050024, P. R. China.
| | - Xiaoyan Li
- Hebei Key Laboratory of Inorganic Nano-materials, Hebei Normal University, Shijiazhuang, 050024, P. R. China
| | - Xueying Zhang
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, 050024, P. R. China.
| |
Collapse
|
10
|
Calabrese M, Gomila RM, Pizzi A, Frontera A, Resnati G. Erythronium Bonds: Noncovalent Interactions Involving Group 5 Elements as Electron-Density Acceptors. Chemistry 2023; 29:e202302176. [PMID: 37518768 DOI: 10.1002/chem.202302176] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/01/2023]
Abstract
Analyses of the Cambridge Structural Database and theoretical calculations (PBE0-D3/def2-TZVP level, atoms-in-molecules, natural bond orbital studies) prove the formation of net attractive noncovalent interactions between group 5 elements and electron-rich atoms (neutral or anionic). These kinds of bonding are markedly different from coordination bonds formed by the same elements and possess the distinctive features of σ-hole interactions. The term erythronium bond is proposed to denote these bonds. X-ray structures of vanadate-dependent bromoperoxidases show that these interactions are present also in biological systems.
Collapse
Affiliation(s)
- Miriam Calabrese
- NFMLab, Dept. Chemistry, Materials, Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Mancinelli 7, 20131, Milano, Italy
| | - Rosa M Gomila
- Dept. Chemistry, Universitat de les Illes Balears, Crta de Valldemossa km 7.5, 07122, Palma de Mallorca (Baleares), Spain
| | - Andrea Pizzi
- NFMLab, Dept. Chemistry, Materials, Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Mancinelli 7, 20131, Milano, Italy
| | - Antonio Frontera
- Dept. Chemistry, Universitat de les Illes Balears, Crta de Valldemossa km 7.5, 07122, Palma de Mallorca (Baleares), Spain
| | - Giuseppe Resnati
- NFMLab, Dept. Chemistry, Materials, Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Mancinelli 7, 20131, Milano, Italy
| |
Collapse
|
11
|
Das A, Arunan E. Unified classification of non-covalent bonds formed by main group elements: a bridge to chemical bonding. Phys Chem Chem Phys 2023; 25:22583-22594. [PMID: 37435670 DOI: 10.1039/d3cp00370a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Using correlation plots of binding energy and electron density at the bond critical point, we investigated the nature of intermolecular non-covalent bonds (D-X⋯A, where D = O/S/F/Cl/Br/H, mostly, X = main group elements (except noble gases), A = H2O, NH3, H2S, PH3, HCHO, C2H4, HCN, CO, CH3OH, and CH3OCH3). The binding energies were calculated at the MP2 level of theory, followed by Atoms in Molecules (AIM) analysis of the ab initio wave functions to obtain the electron density at the bond critical point (BCP). For each non-covalent bond, the slopes of the binding energy versus electron density plot have been determined. Based on their slopes, non-covalent bonds are classified as non-covalent bond closed-shell (NCB-C) or non-covalent bond shared-shell (NCB-S). Intriguingly, extrapolating the slopes of the NCB-C and NCB-S cases leads to intramolecular "ionic" and "covalent" bonding regimes, establishing a link between such intermolecular non-covalent and intramolecular chemical bonds. With this new classification, hydrogen bonds and other non-covalent bonds formed by a main-group atom in a covalent molecule are classified as NCB-S. Atoms found in ionic molecules generally form NCB-C type bonds, with the exception of carbon which also forms NCB-C type bonds. Molecules with a tetravalent carbon do behave like ions in ionic molecules such as NaCl and interact with other molecules through NCB-C type bonds. As with the chemical bonds, there are some non-covalent bonds that are intermediate cases.
Collapse
Affiliation(s)
- Arijit Das
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India.
| | - Elangannan Arunan
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
12
|
Khera M, Anchal, Goel N. Ligand and Substituent Effect on Regium-π Bonding in Cu and Ag π-Conjugated Complexes: A Density Functional Study. J Phys Chem A 2023; 127:6953-6961. [PMID: 37558247 DOI: 10.1021/acs.jpca.3c04110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Density functional theory investigation of regium (Rg)-π bonding using the RgL-X model system, where Rg = Cu and Ag; L = CN, NO2, and OH; X = π-conjugated system (benzene, cyanobenzene, benzoic acid, pyridine, 2-methoxy aniline, 1,4-dimethoxy benzene, and cyclophane), has been performed. Conclusive evidence of the Rg-π bond has been provided by analysis of molecular electrostatic potential surfaces, Rg-π bond length, interaction energy (ΔE), second-order perturbation energy (E2), charge transfer (Δq), quantum theory of atom in molecules, and noncovalent interaction plots for 42 structural arrangements with varying ligands and the substituted aromatic ring. The Rg-π bond length in the optimized model systems varies from 2.03 to 2.12 Å in Cu complexes (1-21) and from 2.26 to 2.38 Å in Ag complexes (22-42) at the PBE0-D3 functional. While the ligand (L) attached to the Rg metal has a bargaining effect on the strength of the Rg-π bond (in the order of -OH > -CN = -NO2), the π-conjugated systems have a diminutive effect. Two X-ray crystal structures (CUCSOI and AHIDQU) having the Rg-π bond, accessed from Cambridge Crystallographic Data Centre (CCDC), are discussed here to signify the influence of Rg-π bonding on the crystal structure.
Collapse
Affiliation(s)
- Mayank Khera
- Computational and Theoretical Chemistry Group, Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Anchal
- Computational and Theoretical Chemistry Group, Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Neetu Goel
- Computational and Theoretical Chemistry Group, Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| |
Collapse
|
13
|
Burguera S, Frontera A, Bauza A. Regium-π Bonds Involving Nucleobases: Theoretical Study and Biological Implications. Inorg Chem 2023; 62:6740-6750. [PMID: 37083254 PMCID: PMC10155183 DOI: 10.1021/acs.inorgchem.3c00369] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
In this study, we provide crystallographic (Protein Data Bank (PDB) inspection) and theoretical (RI-MP2/def2-TZVP//PBE0-D3/def2-SVP level of theory) evidence of the involvement of nucleobases in Regium-π bonds (RgBs). This noncovalent interaction involves an electrophilic site located on an element of group 11 (Cu, Ag, and Au) and an electron-rich species (lone pair, LP donor, or π-system). Concretely, an initial PDB search revealed several examples where RgBs were undertaken involving DNA bases and Cu(II), Ag(I), and Au(I/III) ions. While coordination positions (mainly at the N atoms of the base) are well known, the noncovalent binding force between these counterparts has been scarcely studied in the literature. In this regard, computational models shed light on the strength and directionality properties of the interaction, which was also further characterized from a charge-density perspective using Bader's "atoms in molecules" (AIM) theory, noncovalent interaction plot (NCIplot) visual index, and natural bonding orbital (NBO) analyses. As far as our knowledge extends, this is the first time that RgBs in metal-DNA complexes are systematically analyzed, and we believe the results might be useful for scientists working in the field of nucleic acid engineering and chemical biology as well as to increase the visibility of the interaction among the biological community.
Collapse
Affiliation(s)
- Sergi Burguera
- Department of Chemistry, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, 07122 Palma, Baleares, Spain
| | - Antonio Frontera
- Department of Chemistry, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, 07122 Palma, Baleares, Spain
| | - Antonio Bauza
- Department of Chemistry, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, 07122 Palma, Baleares, Spain
| |
Collapse
|
14
|
Wang D, Li W, Dong X, Li H, Hu L. TFRegNCI: Interpretable Noncovalent Interaction Correction Multimodal Based on Transformer Encoder Fusion. J Chem Inf Model 2023; 63:782-793. [PMID: 36652718 DOI: 10.1021/acs.jcim.2c01283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The interpretability is an important issue for end-to-end learning models. Motivated by computer vision algorithms, an interpretable noncovalent interaction (NCI) correction multimodal (TFRegNCI) is proposed for NCI prediction. TFRegNCI is based on RegNet feature extraction and a transformer encoder fusion strategy. RegNet is a network design paradigm that mainly focuses on local features. Meanwhile, the Vision Transformer is also leveraged for feature extraction, because it can capture global features better than RegNet while lowering the computational cost. Using a transformer encoder as the fusion strategy rather than multilayer perceptron can enhance model performance, due to its emphasis on important features with less parameters. Therefore, the proposed TFRegNCI achieved high accurate prediction (mean absolute error of ∼0.1 kcal/mol) comparing with the coupled cluster single double (triple) (CCSD(T)) benchmark. To further improve the model efficiency, TFRegNCI applies two-dimensional (2D) inputs transformed from three-dimensional (3D) electron density cubes, which saves time (30%), while the model accuracy remains. To improve model interpretability, a visualization module, Gradient-weighted Regression Activation Mapping (Grad-RAM) has been embedded. Grad-RAM is promoted from the classification algorithm, Gradient-weighted Class Activation Mapping, to perform feature visualization for the regression task. With Grad-RAM, the visual location map for features in deep learning models can be displayed. The feature map visualizations suggest that the 2D model has the similar performance as the 3D model, because of equally effective feature extractions from electron density. Moreover, the valid feature region on the location map by the 3D model is consistent with the NCIPLOT NCI isosurface. It is confirmed that the model does extract significant features related to the NCI interaction. The interpretable analyses are carried out through molecular orbital contribution on effective features. Thereby, the proposed model is likely to be a promising tool to reveal some essential information on NCIs, with regard to the level of electronic theory.
Collapse
Affiliation(s)
- Donghan Wang
- School of Information Science and Technology, Northeast Normal University, Changchun130117, China
| | - Wenze Li
- College of Computer and Information Engineering, Henan Normal University, Henan, Xinxiang453007, China
| | - Xu Dong
- School of Information Science and Technology, Northeast Normal University, Changchun130117, China
| | - Hongzhi Li
- School of Information Science and Technology, Northeast Normal University, Changchun130117, China
| | - LiHong Hu
- School of Information Science and Technology, Northeast Normal University, Changchun130117, China
| |
Collapse
|
15
|
Mazumder LJ, Sharma R, Yashmin F, Sharma PK. Beryllium bonding with noble gas atoms. J Comput Chem 2023; 44:644-655. [PMID: 36394306 DOI: 10.1002/jcc.27028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/25/2022] [Accepted: 09/28/2022] [Indexed: 11/19/2022]
Abstract
Quantum chemical calculations were carried out to investigate the nature of the bonding between a neutral Be3 ring and noble gas atom. Electronic structure calculation for these complexes was carried out at different computational levels in association with natural bond orbital, quantum theory of atoms in molecules, electron localization function, symmetry adapted perturbation theory, and molecular electrostatic potential surface analysis of Be3 complexes. The Be atoms in the Be3 moiety are chemically bonded to one another, with the BeBe bond dissociation energy being ~125 kJ mol-1 . The Be3 ring interacts with the noble gases through non-covalent interactions. The binding energies of the noble gas atoms with the Be3 ring increases with increase in their atomic number. The non-covalent interaction index, density overlap region indicator and independent gradient model analyses reveal the presence of non-covalent inter-fragment interactions in the complexes. Energy decomposition analysis reveals that dispersion plays the major role towards stabilizing these systems.
Collapse
Affiliation(s)
| | - Rohan Sharma
- Department of Chemistry, Cotton University, Guwahati, Assam, India
| | - Farnaz Yashmin
- Department of Chemistry, Cotton University, Guwahati, Assam, India
| | | |
Collapse
|
16
|
Baishya T, Gomila RM, Frontera A, Barcelo-Oliver M, Verma AK, Bhattacharyya MK. Enclathration of Mn(II)(H2O)6 guests and unusual Cu⋯O bonding contacts in supramolecular assemblies of Mn(II) Co-crystal hydrate and Cu(II) Pyridinedicarboxylate: Antiproliferative evaluation and theoretical studies. Polyhedron 2023. [DOI: 10.1016/j.poly.2022.116243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Jang Y, Lee YH, Eom H, Lee SM, Kim SS. Effect of preparation method of noble metal supported catalyts on formaldehyde oxidation at room temperature: Gas or liquid phase reduction. J Environ Sci (China) 2022; 122:201-216. [PMID: 35717085 DOI: 10.1016/j.jes.2022.01.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 06/15/2023]
Abstract
Formaldehyde (HCHO) is toxic to the human body and is one of the main threats to the indoor air quality (IAQ). As such, the removal of HCHO is imperative to improving the IAQ, whereby the most useful method to effectively remove HCHO at room temperature is catalytic oxidation. This review discusses catalysts for HCHO room-temperature oxidation, which are categorized according to their preparation methods, i.e., gas-phase reduction and liquid-phase reduction methods. The HCHO oxidation performances, structural features, and reaction mechanisms of the different catalysts are discussed, and directions for future research on catalytic oxidation are reviewed.
Collapse
Affiliation(s)
- Younghee Jang
- Department of Environmental Energy Envineering, Graduate School of kyonggi University, Gyeonggi-do 16227, Korea
| | - Ye Hwan Lee
- Department of Environmental Energy Envineering, Graduate School of kyonggi University, Gyeonggi-do 16227, Korea
| | - Hanki Eom
- Department of Environmental Energy Engineeing, Kyonggi University, Gyonggi-do 16227, Korea
| | - Sang Moon Lee
- Department of Environmental Energy Engineeing, Kyonggi University, Gyonggi-do 16227, Korea
| | - Sung Su Kim
- Department of Environmental Energy Engineeing, Kyonggi University, Gyonggi-do 16227, Korea.
| |
Collapse
|
18
|
de Las Nieves Piña M, Mooibroek TJ, Frontera A, Bauzá A. Importance of Cu and Ag regium-π bonds in supramolecular chemistry and biology: a combined crystallographic and ab initio study. Phys Chem Chem Phys 2022; 24:24983-24991. [PMID: 36214369 DOI: 10.1039/d2cp03874a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Identifying and characterizing new binding events between electron donor and acceptor counterparts represents a crucial step to complete the molecular recognition and aggregation picture, which is key to chemistry and biology. In this study we interrogated both the PDB (Protein Data Bank) and CSD (Cambridge Structural Database) for the presence of Cu and Ag regium-π (Rg-π) bonds (an attractive noncovalent force between elements from group 11 and π-systems). Concretely, we found evidence of the plausible biological role of the interaction in protein-DNA systems, bacterial Ag extrusion processes and Heme group redox functionality. Furthermore, we also highlighted the implications of Rg-π bonds in the crystal packing of two host-guest systems, where this interaction is key for the binding and recognition of small organic molecules as well as for the encapsulation of organometallic complexes. Theoretical models were used to analyse the strength of the interaction (RI-MP2/def2-TZVP level of theory) together with QTAIM (Quantum Theory of Atoms in Molecules), NBO (Natural Bonding Orbital) and NCIplot (Non Covalent Interactions plot) analyses, which further assisted in the characterization of the regium-π interactions described herein. We expect the results from this study will be useful to attract the attention of chemical biologists as well as to expand the potential of the interaction to the supramolecular chemistry and crystal engineering communities.
Collapse
Affiliation(s)
- María de Las Nieves Piña
- Department of Chemistry, Universitat de les Illes Balears, Ctra de Valldemossa km 7.5, 07122 Palma de Mallorca (Baleares), Spain.
| | - Tiddo J Mooibroek
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park A, 904, E1.26, 1098 XH Amsterdam, The Netherlands.
| | - Antonio Frontera
- Department of Chemistry, Universitat de les Illes Balears, Ctra de Valldemossa km 7.5, 07122 Palma de Mallorca (Baleares), Spain.
| | - Antonio Bauzá
- Department of Chemistry, Universitat de les Illes Balears, Ctra de Valldemossa km 7.5, 07122 Palma de Mallorca (Baleares), Spain.
| |
Collapse
|
19
|
Mullen J, Li H, Atkin R, Silvester DS. Mixing Ionic Liquids Affects the Kinetics and Thermodynamics of the Oxygen/Superoxide Redox Couple in the Context of Oxygen Sensing. ACS PHYSICAL CHEMISTRY AU 2022; 2:515-526. [PMID: 36855608 PMCID: PMC9955187 DOI: 10.1021/acsphyschemau.2c00035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/28/2022]
Abstract
The electrochemical oxygen reduction reaction is vital for applications such as fuel cells, metal air batteries and for oxygen gas sensing. Oxygen undergoes a 1-electron reduction process in dry ionic liquids (ILs) to form the electrogenerated superoxide ion that is solvated and stabilized by IL cations. In this work, the oxygen/superoxide (O2/O2 •-) redox couple has been used to understand the effect of mixing ILs with different cations in the context of developing designer electrolytes for oxygen sensing, by employing cyclic voltammetry at both gold and platinum electrodes. Different cations with a range of sizes, geometries and aromatic/aliphatic character were studied with a common bis(trifluoromethylsulfonyl)imide ([NTf2]-) anion. Diethylmethylsulfonium ([S2,2,1]+), N-butyl-N-methylpyrrolidinum ([C4mpyrr]+) and tetradecyltrihexylphosphonium ([P14,6,6,6]+) cations were mixed with a common 1-butyl-3-methylimidazolium ([C4mim]+) cation at mole fractions (x) of [C4mim]+ of 0, 0.2, 0.4, 0.6, 0.8, and 1. Both the redox kinetics and thermodynamics were found to be highly dependent on the cation structure and the electrode material used. Large deviations from "ideal" mixtures were observed for mixtures of [C4mim][NTf2] with [C4mpyrr][NTf2] on gold electrodes, suggesting a much higher amount of [C4mim]+ ions near the electrode surface despite the large excess of [C4mpyrr]+ in the bulk. The electrical double layer structure was probed for a mixture of [C4mim]0.2[C4mpyrr]0.8[NTf2] using atomic force microscopy measurements on Au, revealing that the first layer was more like [C4mim][NTf2] than [C4mpyrr][NTf2]. Unusually fast kinetics for O2/O2 •- in mixtures of [C4mim]+ with [P14,6,6,6]+ were also observed in the electrochemistry results, which warrants further follow-up studies to elucidate this promising behavior. Overall, it is important to understand the effect on the kinetic and thermodynamic properties of electrochemical reactions when mixing solvents, to aid in the creation of designer electrolytes with favorable properties for their intended application.
Collapse
Affiliation(s)
- Jesse
W. Mullen
- School
of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, Western
Australia 6845, Australia
| | - Hua Li
- School
of Molecular Sciences, The University of
Western Australia, Perth, Western Australia 6009, Australia,Centre
for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Rob Atkin
- School
of Molecular Sciences, The University of
Western Australia, Perth, Western Australia 6009, Australia
| | - Debbie S. Silvester
- School
of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, Western
Australia 6845, Australia,. Tel.: +61-08-9266-7148. Fax: +61-08-9266-2300
| |
Collapse
|
20
|
|
21
|
Zhang Y, Wang W. Origin of the unexpected attractive interactions between positive σ-holes and positive π-lumps. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Liu N, Li Q, Scheiner S, Xie X. Resonance-assisted intramolecular triel bonds. Phys Chem Chem Phys 2022; 24:15015-15024. [PMID: 35695162 DOI: 10.1039/d2cp01244h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The possibility that the intramolecular Tr⋯S triel bond is strengthened by resonance is examined by quantum chemical calculations within the planar five-membered ring of TrH2-CRCR-CRS (Tr = Al, Ga, In; R = NO2, CH3). This internal bond is found to be rather short (2.4-2.7 Å) with a large bond energy between 12 and 21 kcal mol-1. The pattern of bond length alternation and atomic charges within the ring is consistent with resonance involving the conjugated double bonds. This resonance enhances the triel bond strength by some 25%. The electron-withdrawing NO2 group weakens the bond, but it is strengthened by the electron-donating CH3 substituent. NICS analysis suggests the presence of a certain degree of aromaticity within the ring.
Collapse
Affiliation(s)
- Na Liu
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P. R. China.
| | - Qingzhong Li
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P. R. China.
| | - Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322-0300, USA.
| | - Xiaoying Xie
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P. R. China.
| |
Collapse
|
23
|
Gao M, Zhao Q, Yu H, Fu M, Li Q. Insight into Spodium–π Bonding Characteristics of the MX2···π (M = Zn, Cd and Hg; X = Cl, Br and I) Complexes—A Theoretical Study. Molecules 2022; 27:molecules27092885. [PMID: 35566234 PMCID: PMC9101229 DOI: 10.3390/molecules27092885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 01/25/2023] Open
Abstract
The spodium–π bonding between MX2 (M = Zn, Cd, and Hg; X = Cl, Br, and I) acting as a Lewis acid, and C2H2/C2H4 acting as a Lewis base was studied by ab initio calculations. Two types of structures of cross (T) and parallel (P) forms are obtained. For the T form, the X–M–X axis adopts a cross configuration with the molecular axis of C≡C or C=C, but both of them are parallel in the P form. NCI, AIM, and electron density shifts analyses further, indicating that the spodium–π bonding exists in the binary complexes. Spodium–π bonding exhibits a partially covalent nature characterized with a negative energy density and large interaction energy. With the increase of electronegativity of the substituents on the Lewis acid or its decrease in the Lewis base, the interaction energies increase and vice versa. The spodium–π interaction is dominated by electrostatic interaction in most complexes, whereas dispersion and electrostatic energies are responsible for the stability of the MX2⋯C2F2 complexes. The spodium–π bonding further complements the concept of the spodium bond and provides a wider range of research on the adjustment of the strength of spodium bond.
Collapse
Affiliation(s)
- Meng Gao
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (Q.Z.); (H.Y.); (M.F.)
- Correspondence: (M.G.); (Q.L.)
| | - Qibo Zhao
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (Q.Z.); (H.Y.); (M.F.)
| | - Hao Yu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (Q.Z.); (H.Y.); (M.F.)
| | - Min Fu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (Q.Z.); (H.Y.); (M.F.)
| | - Qingzhong Li
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
- Correspondence: (M.G.); (Q.L.)
| |
Collapse
|
24
|
Metal Coordination Enhances Chalcogen Bonds: CSD Survey and Theoretical Calculations. Int J Mol Sci 2022; 23:ijms23084188. [PMID: 35457005 PMCID: PMC9030556 DOI: 10.3390/ijms23084188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/02/2022] [Accepted: 04/07/2022] [Indexed: 12/03/2022] Open
Abstract
In this study the ability of metal coordinated Chalcogen (Ch) atoms to undergo Chalcogen bonding (ChB) interactions has been evaluated at the PBE0-D3/def2-TZVP level of theory. An initial CSD (Cambridge Structural Database) inspection revealed the presence of square planar Pd/Pt coordination complexes where divalent Ch atoms (Se/Te) were used as ligands. Interestingly, the coordination to the metal center enhanced the σ-hole donor ability of the Ch atom, which participates in ChBs with neighboring units present in the X-ray crystal structure, therefore dictating the solid state architecture. The X-ray analyses were complemented with a computational study (PBE0-D3/def2-TZVP level of theory), which shed light into the strength and directionality of the ChBs studied herein. Owing to the new possibilities that metal coordination offers to enhance or modulate the σ-hole donor ability of Chs, we believe that the findings presented herein are of remarkable importance for supramolecular chemists as well as for those scientists working in the field of solid state chemistry.
Collapse
|
25
|
Duston TB, Pike RD, Welch DA, Nicholas AD. Pyridine interaction with γ-CuI: synergy between molecular dynamics and molecular orbital approaches to molecule/surface interactions. Phys Chem Chem Phys 2022; 24:7950-7960. [PMID: 35312738 DOI: 10.1039/d1cp05888f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We have used a synergistic computational approach merging Molecular Dynamics (MD) simulations with density functional theory (DFT) to investigate the mechanistic aspects of chemisorption of pyridine (Py) molecules on copper iodide. The presence of both positive and negative ions at the metal halide surface presents a chemical environment in which pyridine molecules may act as charge donors and/or acceptors. Computational results reveal that Py molecules interact with the γ-CuI(111) surface owing to a combination of noncovalent Cu⋯N, Cu/I⋯π/π*, and hydrogen bonding interactions as determined via Natural Bonding Orbitals (NBO). Introduction of surface defect sites alters the interaction dynamics, resulting in a "localizing effect" in which the Py molecules clump together within the defect site. Significant enhancement of hydrogen bonding between C-H σ* and I 6p orbitals results in more tightly surface-bound Py molecules. Our findings provide a platform for understanding the interaction between Py and Py-derivative vapors and metal-based surfaces that contain both electron acceptor and donor atoms.
Collapse
Affiliation(s)
- Titouan B Duston
- Department of Chemistry, William & Mary, Williamsburg, VA 23187, USA.
| | - Robert D Pike
- Department of Chemistry, William & Mary, Williamsburg, VA 23187, USA.
| | - David A Welch
- Chemistry Department, Farmingdale State College, Farmingdale, NY, 11784, USA.
| | - Aaron D Nicholas
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99354, USA.
| |
Collapse
|
26
|
Piña MDLN, Burguera S, Buils J, Crespí MÀ, Morales JE, Pons J, Bauzá A, Frontera A. Substituent effects in π-hole regium bonding interactions between Au(p-X-Py)2 complexes and Lewis bases: an ab initio study. Chemphyschem 2022; 23:e202200010. [PMID: 35191571 DOI: 10.1002/cphc.202200010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/09/2022] [Indexed: 11/10/2022]
Abstract
For the first time, long range substituent effects in regium bonding interactions involving Au(I) linear complexes are investigated. The Au(I) atom is coordinated to two para -substituted pyridine ligands. The interaction energy (RI-MP2/def2-TZVP level of theory) of the π-hole regium bonding assemblies is affected by the pyridine substitution. The Hammett's plot representations for several sets of Lewis bases have been carried out and, in all cases, good regression plots have been obtained (interaction energies vs. Hammett's σ parameter). The Bader's theory of "atoms-in-molecules" has been used to evidence that the electron density computed at the bond critical point that connects the Au-atom to the electron donor can be used as a measure of bond order in regium bonding. Several X-ray structures retrieved from the Cambridge Structural Database (CSD) provide some experimental support to the existence of regium π-hole bonding in [Au(Py) 2 ] + derivatives.
Collapse
Affiliation(s)
| | | | - Jordi Buils
- Universitat de les Illes Balears, Chemistry, SPAIN
| | | | | | - Jordi Pons
- Universitat de les Illes Balears, Chemistry, SPAIN
| | | | - Antonio Frontera
- Universitat Illes Balears, Chemistry, Crta de Valldemossa km 7.5, 07122, Palma de Mallorca, SPAIN
| |
Collapse
|
27
|
Shan A, Li X, Zeng Y, Meng L, Zhang X. Theoretical investigation on the nature of substituted benzene⋯AuX interactions: covalent or noncovalent? NEW J CHEM 2022. [DOI: 10.1039/d1nj05328k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The nature of interactions between AuX (X = F, Cl, Br, CN, NO2, CH3) and aromatic moieties with different electronic properties has been investigated for possible tuning of coinage–metal bonds by varying the substituents.
Collapse
Affiliation(s)
- Aiting Shan
- Hebei Key Laboratory of Inorganic Nano-materials, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, 050024, P. R. China
| | - Xiaoyan Li
- Hebei Key Laboratory of Inorganic Nano-materials, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, 050024, P. R. China
| | - Yanli Zeng
- Hebei Key Laboratory of Inorganic Nano-materials, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, 050024, P. R. China
| | - Lingpeng Meng
- Hebei Key Laboratory of Inorganic Nano-materials, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, 050024, P. R. China
| | - Xueying Zhang
- Hebei Key Laboratory of Inorganic Nano-materials, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, 050024, P. R. China
| |
Collapse
|
28
|
Unconventional enclathration of guest adipic acid and energetically significant antiparallel π-stacked ternary assemblies involving unusual regium-π(chelate) contacts in phenanthroline-based Ni(II) and Cu(II) compounds—Antiproliferative evaluation and theoretical studies. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
29
|
Priola E, Giordana A, Mazzeo PP, Mahmoudi G, Gomila RM, Zubkov FI, Pokazeev KM, Valchuk KS, Bacchi A, Zangrando E, Frontera A. On the nature of recurrent Au⋯π motifs in tris(2,2'-bipyridine)M(II) (M = Fe, Co and Ni) dicyanoaurate(I) salts: X-ray analysis and theoretical rationalization. Dalton Trans 2021; 50:16954-16960. [PMID: 34617941 DOI: 10.1039/d1dt02632a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This manuscript reports the synthesis, X-ray characterization and DFT study of three new [M(bipy)3]2[Au(CN)2]3(X) (M = Fe, Co, and Ni; bipy = 2,2'-bipyridine; X = anion) ionic compounds. These salts are composed of [M(bipy)3]2+ dications and [Au(CN)2]- anions in a 2 : 3 ratio. The positive charge is compensated by X = Cl- anions in compounds 1 (M = Fe) and 2 (M = Co) and X = OH- in 3 (M = Ni). The three tridentate bipyridine ligands define the coordination of the M2+ cation, resulting in a nearly octahedral coordination sphere. The linear dicyanoaurate(I) anions are completely surrounded by a cradle of aromatic rings with Au-ring centroid distances below the sum of van der Waals radii, evidencing the existence of a specific Au⋯π attraction. This interaction has been analyzed in terms of the role of the Au-atom (Lewis acid or Lewis base) using DFT calculations combined with the quantum theory of atoms in molecules (QTAIM), noncovalent interaction plot index (NCIplot) and natural bond orbital (NBO) computational tools. The NBO suggests that the Au⋯π interaction is an example of a coinage bond in spite of the anionic nature of the acceptor and the cationic nature of the donor.
Collapse
Affiliation(s)
- Emanuele Priola
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, 10125 Turin, Italy
| | - Alessia Giordana
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, 10125 Turin, Italy
| | - Paolo P Mazzeo
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17A, 43124 Parma, Italy.,Biopharmanet-TEC, Università degli studi di Parma, via Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Ghodrat Mahmoudi
- Department of Chemistry, Faculty of Science, University of Maragheh, P.O. Box 55181-83111, Maragheh, Iran.
| | - Rosa M Gomila
- Department of Chemistry, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, 07122 Palma de Mallorca, Baleares, Spain.
| | - Fedor I Zubkov
- Faculty of Science, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., Moscow 117198, Russian Federation
| | - Kuzma M Pokazeev
- Faculty of Science, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., Moscow 117198, Russian Federation
| | - Karina S Valchuk
- Faculty of Science, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., Moscow 117198, Russian Federation
| | - Alessia Bacchi
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17A, 43124 Parma, Italy.,Biopharmanet-TEC, Università degli studi di Parma, via Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Ennio Zangrando
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Antonio Frontera
- Department of Chemistry, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, 07122 Palma de Mallorca, Baleares, Spain.
| |
Collapse
|
30
|
Frontera A, Bauza A. On the Importance of Pnictogen and Chalcogen Bonding Interactions in Supramolecular Catalysis. Int J Mol Sci 2021; 22:12550. [PMID: 34830432 PMCID: PMC8623369 DOI: 10.3390/ijms222212550] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 12/12/2022] Open
Abstract
In this review, several examples of the application of pnictogen (Pn) (group 15) and chalcogen (Ch) bonding (group 16) interactions in organocatalytic processes are gathered, backed up with Molecular Electrostatic Potential surfaces of model systems. Despite the fact that the use of catalysts based on pnictogen and chalcogen bonding interactions is taking its first steps, it should be considered and used by the scientific community as a novel, promising tool in the field of organocatalysis.
Collapse
Affiliation(s)
| | - Antonio Bauza
- Departament de Química, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, 07122 Palma de Mallorca, Baleares, Spain;
| |
Collapse
|
31
|
Substituent effects on the regium-π stacking interactions between Au 6 cluster and substituted benzene. J Mol Model 2021; 27:328. [PMID: 34687368 DOI: 10.1007/s00894-021-04944-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/07/2021] [Indexed: 11/27/2022]
Abstract
The regium-π stacking interactions in the Au6···PhX (X = H, CH3, OH, OCH3, NH2, F, Cl, Br, CN, NO2) complexes are studied using quantum chemical methods. The present study focuses on the different effects of electron-donating and electron-withdrawing substituent. The structure and binding strength of the complexes are examined. The interactions between Au6 cluster and various substituted benzene become strengthened relative to the Au6···benzene complex. The interaction region indicator analysis was performed, and the interaction region and interaction between the substituent and Au6 cluster are discussed. It is found that the substituent effects on the regium-π stacking interactions between Au6 cluster and substituted benzene are different from π···π interactions of benzene dimer. Energy decomposition analysis was carried out to study the nature of regium-π stacking interactions, and the substituent effects are mainly reflected on the electrostatic interaction and dispersion.
Collapse
|
32
|
Núñez-Franco R, Jiménez-Osés G, Jiménez-Barbero J, Cabrera-Escribano F, Franconetti A. Unveiling the role of pyrylium frameworks on π-stacking interactions: a combined ab initio and experimental study. Phys Chem Chem Phys 2021; 24:1965-1973. [PMID: 34633001 DOI: 10.1039/d1cp02622d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A multidisciplinary study is presented to shed light on how pyrylium frameworks, as π-hole donors, establish π-π interactions. The combination of CSD analysis, computational modelling (ab intitio, DFT and MD simulations) and experimental NMR spectroscopy data provides essential information on the key parameters that characterize these intereactions, opening new avenues for further applications of this versatile heterocycle.
Collapse
Affiliation(s)
- Reyes Núñez-Franco
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160, Derio, Spain.
| | - Gonzalo Jiménez-Osés
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160, Derio, Spain. .,lkerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Jesús Jiménez-Barbero
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160, Derio, Spain. .,lkerbasque, Basque Foundation for Science, 48009 Bilbao, Spain.,Department of Organic Chemistry II, Faculty of Science & Technology, University of the Basque Country, 48940 Leioa, Bizkaia, Spain
| | - Francisca Cabrera-Escribano
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, C/Profesor García González 1, 41012 Sevilla, Spain
| | - Antonio Franconetti
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160, Derio, Spain.
| |
Collapse
|
33
|
Abstract
Elements from groups 14–18 and periods 3–6 commonly behave as Lewis acids, which are involved in directional noncovalent interactions (NCI) with electron-rich species (lone pair donors), π systems (aromatic rings, triple and double bonds) as well as nonnucleophilic anions (BF4−, PF6−, ClO4−, etc.). Moreover, elements of groups 15 to 17 are also able to act as Lewis bases (from one to three available lone pairs, respectively), thus presenting a dual character. These emerging NCIs where the main group element behaves as Lewis base, belong to the σ–hole family of interactions. Particularly (i) tetrel bonding for elements belonging to group 14, (ii) pnictogen bonding for group 15, (iii) chalcogen bonding for group 16, (iv) halogen bonding for group 17, and (v) noble gas bondings for group 18. In general, σ–hole interactions exhibit different features when moving along the same group (offering larger and more positive σ–holes) or the same row (presenting a different number of available σ–holes and directionality) of the periodic table. This is illustrated in this review by using several examples retrieved from the Cambridge Structural Database (CSD), especially focused on σ–hole interactions, complemented with molecular electrostatic potential surfaces of model systems.
Collapse
|
34
|
Liu N, Li Q. Group 12 Carbonates and their Binary Complexes with Nitrogen Bases and FH 2 Z Molecules (Z=P, As, Sb): Synergism in Forming Ternary Complexes. Chemphyschem 2021; 22:1698-1705. [PMID: 34106509 DOI: 10.1002/cphc.202100348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/03/2021] [Indexed: 11/10/2022]
Abstract
MCO3 (M=Zn, Cd, Hg) forms a spodium bond with nitrogen-containing bases (HCN, NHCH2 , NH3 ) and a pnicogen bond with FH2 Z (Z=P, As, Sb). The spodium bond is very strong with the interaction energy ranging from -31 kcal/mol to -56 kcal/mol. Both NHCH2 and NH3 have an equal electrostatic potential on the N atom, but the corresponding interaction energy is differentiated by 1.5-4 kcal/mol due to the existence of spodium and hydrogen bonds in the complex with NHCH2 as the electron donor. The spodium bond is weakest in the HCN complex, which is not consistent with the change of the binding distance. The spodium bond becomes stronger in the CdCO3 <ZnCO3 <HgCO3 sequence although the positive electrostatic potential on the Hg atom is smallest. This is because the electrostatic interaction is dominant in the spodium-bonded complexes of CdCO3 and ZnCO3 but the polarization interaction in that of HgCO3 . The pnicogen bond is much weaker than the spodium bond and the former has a larger enhancement than the latter in the FH2 Z⋅⋅⋅OCO2 M⋅⋅⋅N-base ternary complexes.
Collapse
Affiliation(s)
- Na Liu
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China
| | - Qingzhong Li
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China
| |
Collapse
|
35
|
Priola E, Mahmoudi G, Andreo J, Frontera A. Unprecedented [d 9]Cu[d 10]Au coinage bonding interactions in {Cu(NH 3) 4[Au(CN) 2]} +[Au(CN) 2] - salt. Chem Commun (Camb) 2021; 57:7268-7271. [PMID: 34195712 DOI: 10.1039/d1cc02709c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The X-ray structure of the {Cu(NH3)4[Au(CN)2]}+[Au(CN)2]- salt is reported showing an unprecedented [d9]Cu[d10]Au coinage bond. The physical nature of the interaction has been studied using DFT calculations, including the quantum theory of atoms-in-molecules, the noncovalent interaction plot and the natural bond orbital analysis, revealing the nucleophilic role of the [d10]Au metal and the electrophilic role of [d9]Cu metal.
Collapse
Affiliation(s)
- Emanuele Priola
- Department of Chemistry, Universitá di Torino, Via Pietro Giuria 7, Torino 10125, Italy
| | | | | | | |
Collapse
|
36
|
Daolio A, Pizzi A, Terraneo G, Ursini M, Frontera A, Resnati G. Anion⋅⋅⋅Anion Coinage Bonds: The Case of Tetrachloridoaurate. Angew Chem Int Ed Engl 2021; 60:14385-14389. [PMID: 33872450 PMCID: PMC8251892 DOI: 10.1002/anie.202104592] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Indexed: 01/13/2023]
Abstract
Interactions in crystalline tetrachloridoaurates of acetylcholine and dimethylpropiothetine are characterized by Au⋅⋅⋅Cl and Au⋅⋅⋅O short contacts. The former interactions assemble the AuCl4 - units into supramolecular anionic polymers, while the latter interactions append the acetylcholine and propiothetine units to the polymer. The distorted octahedral geometry of the bonding pattern around the gold center is rationalized on the basis of the anisotropic distribution of the electron density, which enables gold to behave as an electrophile (π-hole coinage-bond donor). Computational studies prove that gold atoms in negatively charged species can function as acceptors of electron density. The attractive nature of the Au⋅⋅⋅Cl/O interactions described here complement the known aurophilic bonds involved in gold-centered interactions.
Collapse
Affiliation(s)
- Andrea Daolio
- NFMLab, Dept- Chemistry, Materials, and Chemical Engineering “Giulio Natta”Politecnico di Milanovia L. Mancinelli 720131MilanoItaly
| | - Andrea Pizzi
- NFMLab, Dept- Chemistry, Materials, and Chemical Engineering “Giulio Natta”Politecnico di Milanovia L. Mancinelli 720131MilanoItaly
| | - Giancarlo Terraneo
- NFMLab, Dept- Chemistry, Materials, and Chemical Engineering “Giulio Natta”Politecnico di Milanovia L. Mancinelli 720131MilanoItaly
| | - Maurizio Ursini
- NFMLab, Dept- Chemistry, Materials, and Chemical Engineering “Giulio Natta”Politecnico di Milanovia L. Mancinelli 720131MilanoItaly
| | - Antonio Frontera
- Dept. ChemistryUniversitat de les Illes BalearsCrta. de Valldemossa km 7.507122Palma de Mallorca (Baleares)Spain
| | - Giuseppe Resnati
- NFMLab, Dept- Chemistry, Materials, and Chemical Engineering “Giulio Natta”Politecnico di Milanovia L. Mancinelli 720131MilanoItaly
| |
Collapse
|
37
|
Iribarren I, Sánchez-Sanz G, Alkorta I, Elguero J, Trujillo C. Evaluation of Electron Density Shifts in Noncovalent Interactions. J Phys Chem A 2021; 125:4741-4749. [PMID: 34061527 PMCID: PMC8279648 DOI: 10.1021/acs.jpca.1c00830] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/26/2021] [Indexed: 12/12/2022]
Abstract
In the present paper, we report the quantitative evaluation of the electron density shift (EDS) maps within different complexes. Values associated with the total EDS maps exhibited good correlation with different quantities such as interaction energies, Eint, intermolecular distances, bond critical points, and LMOEDA energy decomposition terms. Besides, EDS maps at different cutoffs were also evaluated and related with the interaction energies values. Finally, EDS maps and their corresponding values are found to correlate with Eint within systems with cooperative effects. To our knowledge, this is the first time that the EDS has been quanitatively evaluated.
Collapse
Affiliation(s)
- Iñigo Iribarren
- Trinity
Biomedical Sciences Institute, School of Chemistry, The University of Dublin, Trinity College, Dublin, Dublin 2, Ireland
| | - Goar Sánchez-Sanz
- Irish
Centre For High-End Computing, 7 Floor, The Tower, Grand Canal Quay, Dublin 2 D02 HP83, Ireland
| | - Ibon Alkorta
- Instituto
de Química Médica (IQM-CSIC), Juan de la Cierva, 3, 28006 Madrid, Spain
| | - José Elguero
- Instituto
de Química Médica (IQM-CSIC), Juan de la Cierva, 3, 28006 Madrid, Spain
| | - Cristina Trujillo
- Trinity
Biomedical Sciences Institute, School of Chemistry, The University of Dublin, Trinity College, Dublin, Dublin 2, Ireland
| |
Collapse
|
38
|
Cu-doped phosphorene as highly efficient single atom catalyst for CO oxidation: A DFT study. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
39
|
Daolio A, Pizzi A, Terraneo G, Ursini M, Frontera A, Resnati G. Anion⋅⋅⋅Anion Coinage Bonds: The Case of Tetrachloridoaurate. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Andrea Daolio
- NFMLab, Dept- Chemistry, Materials, and Chemical Engineering “Giulio Natta” Politecnico di Milano via L. Mancinelli 7 20131 Milano Italy
| | - Andrea Pizzi
- NFMLab, Dept- Chemistry, Materials, and Chemical Engineering “Giulio Natta” Politecnico di Milano via L. Mancinelli 7 20131 Milano Italy
| | - Giancarlo Terraneo
- NFMLab, Dept- Chemistry, Materials, and Chemical Engineering “Giulio Natta” Politecnico di Milano via L. Mancinelli 7 20131 Milano Italy
| | - Maurizio Ursini
- NFMLab, Dept- Chemistry, Materials, and Chemical Engineering “Giulio Natta” Politecnico di Milano via L. Mancinelli 7 20131 Milano Italy
| | - Antonio Frontera
- Dept. Chemistry Universitat de les Illes Balears Crta. de Valldemossa km 7.5 07122 Palma de Mallorca (Baleares) Spain
| | - Giuseppe Resnati
- NFMLab, Dept- Chemistry, Materials, and Chemical Engineering “Giulio Natta” Politecnico di Milano via L. Mancinelli 7 20131 Milano Italy
| |
Collapse
|
40
|
Zhao Q. σ-Hole and σ-lump interactions between gold clusters Au n (n = 2-8) and benzene. J Mol Model 2021; 27:132. [PMID: 33893891 DOI: 10.1007/s00894-021-04756-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/18/2021] [Indexed: 10/21/2022]
Abstract
In this study, the non-covalent interactions between gold cluster and benzene have been evaluated at the PBE0-D3/def2-TZVP level of theory. Gold clusters Aun (n = 2-8) were used as σ-hole and σ-lump donors, and benzene was the corresponding electron-donating and -accepting molecule. The molecular electrostatic potential of Au clusters was analyzed, and the optimized structures and interaction energies of the Aun (n = 2-8) Bz complexes with σ-hole or σ-lump interaction were studied. Strong σ-hole and relative weak σ-lump interactions exist between Au cluster and benzene. With the help of atoms-in-molecules analysis and plotting of non-covalent interaction map, the interaction zones of the complexes were found out. The nature of these interactions was revealed through energy decomposition analysis by using the symmetry-adapted perturbation theory. σ-Hole interactions are dominated by electrostatic interaction, while σ-lump interactions are mainly driven by dispersion. This study can enrich the knowledge of interaction between Au cluster and π-systems and design of new materials based on coinage metal of σ-hole and σ-lump interactions.
Collapse
Affiliation(s)
- Qiang Zhao
- Department of Chemical Engineering, Zibo Vocational Institute, Zibo, 255314, Shandong Province, People's Republic of China.
| |
Collapse
|
41
|
Jabłoński M. Study of Beryllium, Magnesium, and Spodium Bonds to Carbenes and Carbodiphosphoranes. Molecules 2021; 26:2275. [PMID: 33920004 PMCID: PMC8071025 DOI: 10.3390/molecules26082275] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/09/2021] [Accepted: 04/11/2021] [Indexed: 11/17/2022] Open
Abstract
The aim of this article is to present results of theoretical study on the properties of C⋯M bonds, where C is either a carbene or carbodiphosphorane carbon atom and M is an acidic center of MX2 (M = Be, Mg, Zn). Due to the rarity of theoretical data regarding the C⋯Zn bond (i.e., the zinc bond), the main focus is placed on comparing the characteristics of this interaction with C⋯Be (beryllium bond) and C⋯Mg (magnesium bond). For this purpose, theoretical studies (ωB97X-D/6-311++G(2df,2p)) have been performed for a large group of dimers formed by MX2 (X = H, F, Cl, Br, Me) and either a carbene ((NH2)2C, imidazol-2-ylidene, imidazolidin-2-ylidene, tetrahydropyrymid-2-ylidene, cyclopropenylidene) or carbodiphosphorane ((PH3)2C, (NH3)2C) molecule. The investigated dimers are characterized by a very strong charge transfer effect from either the carbene or carbodiphosphorane molecule to the MX2 one. This may even be over six times as strong as in the water dimer. According to the QTAIM and NCI method, the zinc bond is not very different than the beryllium bond, with both featuring a significant covalent contribution. However, the zinc bond should be definitely stronger if delocalization index is considered.
Collapse
Affiliation(s)
- Mirosław Jabłoński
- Faculty of Chemistry, Nicolaus Copernicus University, 87-100 Toruń, Poland
| |
Collapse
|
42
|
Anion-Anion Interactions in Aerogen-Bonded Complexes. Influence of Solvent Environment. Molecules 2021; 26:molecules26082116. [PMID: 33917030 PMCID: PMC8067769 DOI: 10.3390/molecules26082116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 11/17/2022] Open
Abstract
Ab initio calculations are applied to the question as to whether a AeX5- anion (Ae = Kr, Xe) can engage in a stable complex with another anion: F-, Cl-, or CN-. The latter approaches the central Ae atom from above the molecular plane, along its C5 axis. While the electrostatic repulsion between the two anions prevents their association in the gas phase, immersion of the system in a polar medium allows dimerization to proceed. The aerogen bond is a weak one, with binding energies less than 2 kcal/mol, even in highly polar aqueous solvent. The complexes are metastable in the less polar solvents THF and DMF, with dissociation opposed by a small energy barrier.
Collapse
|
43
|
Del Bene JE, Alkorta I, Elguero J. IR and NMR properties of N-base:PH2F:BeX2 ternary and corresponding binary complexes stabilised by pnicogen and beryllium bonds. Mol Phys 2021. [DOI: 10.1080/00268976.2021.1905191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Janet E. Del Bene
- Department of Chemistry, Youngstown State University, Youngstown, OH USA
| | | | | |
Collapse
|
44
|
Mondal I, Frontera A, Chattopadhyay S. On the importance of RH 3C⋯N tetrel bonding interactions in the solid state of a dinuclear zinc complex with a tetradentate Schiff base ligand. CrystEngComm 2021. [DOI: 10.1039/d0ce01864c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The tetrel bonding and π-stacking interactions in a new dinuclear zinc complex using a tetradentate N2O2 donor Schiff base have been analysed energetically using DFT calculations and several computational tools.
Collapse
Affiliation(s)
- Ipsita Mondal
- Department of Chemistry
- Inorganic Section
- Jadavpur University
- Kolkata - 700032
- India
| | - Antonio Frontera
- Departament de Quimica
- Universitat de les Illes Balears
- 07122 Palma de Mallorca
- Spain
| | | |
Collapse
|
45
|
Zhang Z, Lu T, Ding L, Wang G, Wang Z, Zheng B, Liu Y, Ding XL. Cooperativity effects between regium-bonding and pnicogen-bonding interactions in ternary MF···PH3O···MF (M = Cu, Ag, Au): an ab initio study. Mol Phys 2020. [DOI: 10.1080/00268976.2020.1784478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Zan Zhang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecular, Ministry of Education, Hunan University of Science and Technology, Xiangtan, People’s Republic of China
- Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, People’s Republic of China
| | - Tian Lu
- Beijing Kein Research Center for Natural Sciences, Beijing, People’s Republic of China
| | - Luyang Ding
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecular, Ministry of Education, Hunan University of Science and Technology, Xiangtan, People’s Republic of China
- Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, People’s Republic of China
| | - Guanyu Wang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecular, Ministry of Education, Hunan University of Science and Technology, Xiangtan, People’s Republic of China
- Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, People’s Republic of China
| | - Zhaoxu Wang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecular, Ministry of Education, Hunan University of Science and Technology, Xiangtan, People’s Republic of China
- Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, People’s Republic of China
| | - Baishu Zheng
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecular, Ministry of Education, Hunan University of Science and Technology, Xiangtan, People’s Republic of China
- Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, People’s Republic of China
| | - Yuan Liu
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecular, Ministry of Education, Hunan University of Science and Technology, Xiangtan, People’s Republic of China
- Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, People’s Republic of China
| | - Xun Lei Ding
- Institute of Clusters and Low Dimensional Nanomaterials, School of Mathematics and Physics, North China Electric Power University, Beijing, People’s Republic of China
| |
Collapse
|
46
|
Alkorta I, Elguero J, Trujillo C, Sánchez-Sanz G. Interaction between Trinuclear Regium Complexes of Pyrazolate and Anions, a Computational Study. Int J Mol Sci 2020; 21:E8036. [PMID: 33126636 PMCID: PMC7663457 DOI: 10.3390/ijms21218036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 01/27/2023] Open
Abstract
The geometry, energy and electron density properties of the 1:1, 1:2 and 1:3 complexes between cyclic (Py-M)3 (M = Au, Ag and Cu) and halide ions (F-, Cl- and Br-) were studied using Møller Plesset (MP2) computational methods. Three different configurations were explored. In two of them, the anions interact with the metal atoms in planar and apical dispositions, while in the last configuration, the anions interact with the CH(4) group of the pyrazole. The energetic results for the 1:2 and 1:3 complexes are a combination of the specific strength of the interaction plus a repulsive component due to the charge:charge coulombic term. However, stable minima structures with dissociation barriers for the anions indicate that those complexes are stable and (Py-M)3 can hold up to three anions simultaneously. A search in the CSD confirmed the presence of (Pyrazole-Cu)3 systems with two anions interacting in apical disposition.
Collapse
Affiliation(s)
- Ibon Alkorta
- Instituto de Química Médica, CSIC, Juan de la Cierva, 3, E-28006 Madrid, Spain;
| | - José Elguero
- Instituto de Química Médica, CSIC, Juan de la Cierva, 3, E-28006 Madrid, Spain;
| | - Cristina Trujillo
- Trinity Biomedical Sciences Institute, School of Chemistry, Trinity Dublin College, D02 R590 Dublin 2, Ireland;
| | - Goar Sánchez-Sanz
- Irish Centre of High-End Computing, Grand Canal Quay, Dublin 2, Ireland
- School of Chemistry, University College Dublin, Belfield, D02 HP83 Dublin 4, Ireland
| |
Collapse
|
47
|
Sánchez-Sanz G, Trujillo C, Alkorta I, Elguero J. Rivalry between Regium and Hydrogen Bonds Established within Diatomic Coinage Molecules and Lewis Acids/Bases. Chemphyschem 2020; 21:2557-2563. [PMID: 32893396 DOI: 10.1002/cphc.202000704] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/04/2020] [Indexed: 11/09/2022]
Abstract
A theoretical study of the complexes formed by Ag2 and Cu2 with different molecules, XH (FH, ClH, OH2 , SH2 , HCN, HNC, HCCH, NH3 and PH3 ) that can act as hydrogen-bond donors (Lewis acids) or regium-bond acceptors (Lewis bases) was carried out at the CCSD(T)/CBS computational level. The heteronuclear diatomic coinage molecules (AuAg, AuCu, and AgCu) have also been considered. With the exception of some of the hydrogen-bonded complexes with FH, the regium-bonded binary complexes are more stable. The AuAg and AuCu molecules show large dipole moments that weaken the regium bond (RB) with Au and favour those through the Ag and Cu atoms, respectively.
Collapse
Affiliation(s)
- Goar Sánchez-Sanz
- Irish Centre of High-End Computing, Grand Canal Quay, Dublin, D2, Ireland & School of Chemistry, University College Dublin, Belfield, Dublin, D4, Ireland
| | - Cristina Trujillo
- School of Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St., Dublin, D2, Ireland
| | - Ibon Alkorta
- Instituto de Química Médica, CSIC, Juan de la Cierva, 3, 28006, Madrid, Spain
| | - José Elguero
- Instituto de Química Médica, CSIC, Juan de la Cierva, 3, 28006, Madrid, Spain
| |
Collapse
|
48
|
Abstract
The regium-π interaction is an attractive noncovalent force between group 11 elements (Cu, Ag, and Au) acting as Lewis acids and aromatic surfaces. Herein, we report for the first time experimental (Protein Data Bank analysis) and theoretical (RI-MP2/def2-TZVP level of theory) evidence of regium-π bonds involving Au(I) and aromatic amino acids (Phe, Tyr, Trp, and His). These findings might be important in the field of drug design and for retrospectively understanding the role of gold in proteins.
Collapse
Affiliation(s)
- María de Las Nieves Piña
- Department of Chemistry, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, 07122 Palma (Baleares), Spain
| | - Antonio Frontera
- Department of Chemistry, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, 07122 Palma (Baleares), Spain
| | - Antonio Bauzá
- Department of Chemistry, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, 07122 Palma (Baleares), Spain
| |
Collapse
|
49
|
Tetrel Bonding Interactions Involving Carbon at Work: Recent Advances in Crystal Engineering and Catalysis. Mol Vis 2020. [DOI: 10.3390/c6040060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The σ- and π-hole interactions are used to define attractive forces involving elements of groups 12–18 of the periodic table acting as Lewis acids and any electron rich site (Lewis base, anion, and π-system). When the electrophilic atom belongs to group 14, the resulting interaction is termed a tetrel bond. In the first part of this feature paper, tetrel bonds formed in crystalline solids involving sp3-hybridized carbon atom are described and discussed by using selected structures retrieved from the Cambridge Structural Database. The interaction is characterized by a strong directionality (close to linearity) due to the small size of the σ-hole in the C-atom opposite the covalently bonded electron withdrawing group. The second part describes the utilization of two allotropic forms of carbon (C60 and carbon nanotubes) as supramolecular catalysts based on anion–π interactions (π-hole tetrel bonding). This part emphasizes that the π-hole, which is considerably more accessible by nucleophiles than the σ-hole, can be conveniently used in supramolecular catalysis.
Collapse
|
50
|
Abstract
Supramolecular chemistry is a very active research field that was initiated in the last century [...]
Collapse
|