1
|
Xu G, Wang H, Zhang J, Gao J, Guan J, Xu Q, Truhlar DG, Wang Z. Combining synchrotron vacuum-ultraviolet photoionization mass spectrometry and gas chromatography-mass spectrometry for isomer-specific mechanistic analysis with application to the benzyl self-reaction. Nat Commun 2024; 15:10755. [PMID: 39737901 DOI: 10.1038/s41467-024-53889-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 10/25/2024] [Indexed: 01/01/2025] Open
Abstract
Elucidating the formation mechanism of polycyclic aromatic hydrocarbons (PAHs) is crucial to understand processes in the contexts of combustion, environmental science, astrochemistry, and nanomaterials synthesis. An excited electronic-state pathway has been proposed to account for the formation of 14π aromatic anthracene in the benzyl (b-C7H7) self-reaction. Here, to improve our understanding of anthracene formation, we investigate C7H7 bimolecular reactions in a tubular SiC microreactor through an isomer-resolved method that combines in situ synchrotron-radiation VUV photoionization mass spectrometry and ex-situ gas chromatography-mass spectrometry. We observe the formation of o-tolyl (o-C7H7) radical isomer, and identify several C14H10 products (diphenylacetylene, phenanthrene and anthracene) and key C14H14 and C14H12 intermediates. These isomer-specific results support the occurrence of reactions on the electronic ground-state potential energy surface, with no evidence for key intermediates of the proposed excited-state pathway as the key pathway. Furthermore, theoretical calculations unveil new facile reaction pathways that may contribute to the enhanced production of anthracene, and these mechanistic findings are further substantiated by pyrolysis experiments. The results add insight into the molecular formation of PAHs in C7H7 bimolecular reaction, and contribute to establishing accurate models to predict PAH chemistry in diverse laboratory, environmental, and extraterrestrial contexts.
Collapse
Affiliation(s)
- Guangxian Xu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Hong Wang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Jinyang Zhang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Jiao Gao
- School of Pharmacy, Anhui Medical College, Hefei, Anhui, PR China
| | - Jiwen Guan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, PR China.
| | - Qiang Xu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Donald G Truhlar
- Department of Chemistry, University of Minnesota, Minneapolis, MN, USA.
| | - Zhandong Wang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, PR China.
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui, PR China.
| |
Collapse
|
2
|
Wang H, Guan J, Gao J, Zhang J, Xu Q, Xu G, Jiang L, Xing L, Truhlar DG, Wang Z. Direct Observation of Covalently Bound Clusters in Resonantly Stabilized Radical Reactions and Implications for Carbonaceous Particle Growth. J Am Chem Soc 2024; 146:13571-13579. [PMID: 38710105 DOI: 10.1021/jacs.4c03417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Based on quantum mechanically guided experiments that observed elusive intermediates in the domain of inception that lies between large molecules and soot particles, we provide a new mechanism for the formation of carbonaceous particles from gas-phase molecular precursors. We investigated the clustering behavior of resonantly stabilized radicals (RSRs) and their interactions with unsaturated hydrocarbons through a combination of gas-phase reaction experiments and theoretical calculations. Our research directly observed a sequence of covalently bound clusters (CBCs) as key intermediates in the evolution from small RSRs, such as benzyl (C7H7), indenyl (C9H7), 1-methylnaphthyl (1-C11H9), and 2-methylnaphthyl (2-C11H9), to large polycyclic aromatic hydrocarbons (PAHs) consisting of 28 to 55 carbons. We found that hydrogen abstraction and RSR addition drive the formation and growth of CBCs, leading to progressive H-losses, the generation of large PAHs and PAH radicals, and the formation of white smoke (incipient carbonaceous particles). This mechanism of progressive H-losses from CBCs (PHLCBC) elucidates the crucial relationship among RSRs, CBCs, and PAHs, and this study provides an unprecedentedly seamless path of observed assembly from small RSRs to large nanoparticles. Understanding the PHLCBC mechanism over a wide temperature range may enhance the accuracy of multiscale models of soot formation, guide the synthesis of carbonaceous nanomaterials, and deepen our understanding of the origin and evolution of carbon within our galaxy.
Collapse
Affiliation(s)
- Hong Wang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, Anhui, P. R. China
| | - Jiwen Guan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, Anhui, P. R. China
| | - Jiao Gao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Jinyang Zhang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, Anhui, P. R. China
| | - Qiang Xu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, Anhui, P. R. China
| | - Guangxian Xu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, Anhui, P. R. China
| | - Ling Jiang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Lili Xing
- Energy and Power Engineering Institute, Henan University of Science and Technology, Luoyang 471003, Henan, P. R. China
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Zhandong Wang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, Anhui, P. R. China
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| |
Collapse
|
3
|
Preitschopf T, Sturm F, Stroganova I, Lemmens AK, Rijs AM, Fischer I. IR/UV Double Resonance Study of the 2-Phenylallyl Radical and its Pyrolysis Products. Chemistry 2023; 29:e202202943. [PMID: 36479856 DOI: 10.1002/chem.202202943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
Isolated 2-phenylallyl radicals (2-PA), generated by pyrolysis from a nitrite precursor, have been investigated by IR/UV ion dip spectroscopy using free electron laser radiation. 2-PA is a resonance-stabilized radical that is considered to be involved in the formation of polycyclic aromatic hydrocarbons (PAH) in combustion, but also in interstellar space. The radical is identified based on its gas-phase IR spectrum. Furthermore, a number of bimolecular reaction products are identified, showing that the self-reaction as well as reactions with unimolecular decomposition products of 2-PA form several PAH efficiently. Possible mechanisms are discussed and the chemistry of 2-PA is compared with the one of the related 2-methylallyl and phenylpropargyl radicals.
Collapse
Affiliation(s)
- Tobias Preitschopf
- Institute of Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Floriane Sturm
- Institute of Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Iuliia Stroganova
- Division of BioAnalytical Chemistry, AIMMS Amsterdam Institute of Molecular and Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Alexander K Lemmens
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, 6525 ED, Nijmegen, The Netherlands
| | - Anouk M Rijs
- Division of BioAnalytical Chemistry, AIMMS Amsterdam Institute of Molecular and Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Ingo Fischer
- Institute of Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
4
|
Hirsch F, Fischer I, Bakels S, Rijs AM. Gas-Phase Infrared Spectra of the C 7H 5 Radical and Its Bimolecular Reaction Products. J Phys Chem A 2022; 126:2532-2540. [PMID: 35427137 DOI: 10.1021/acs.jpca.2c01228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Resonance-stabilized radicals are considered as possible intermediates in the formation of polycyclic aromatic hydrocarbons (PAHs) in interstellar space. Here, we investigate the fulvenallenyl radical, the most stable C7H5 isomer by IR/UV ion dip spectroscopy employing free electron laser radiation in the mid-infrared region between 550 and 1750 cm-1. The radical is generated by pyrolysis from phthalide. Various jet-cooled reaction products are identified by their mass-selective IR spectra in the fingerprint region, based on a comparison with computed spectra. Interestingly, benzyl is present as a second resonance-stabilized radical. It is connected to fulvenallenyl by a sequence of two H atom losses or additions. Among the identified aromatic hydrocarbons are toluene and styrene, as well as polycyclic molecules, such as indene, naphthalene, fluorene and phenanthrene. Mechanisms for the formation of PAH from C7H5 have already been suggested in previous computational work. In particular, the radical/radical reaction of two fulvenallenyl radicals provides an efficient route to phenanthrene in one bimolecular step and might be relevant for PAH formation under astrochemical conditions.
Collapse
Affiliation(s)
- Florian Hirsch
- Institute of Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Ingo Fischer
- Institute of Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Sjors Bakels
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, 6525 ED Nijmegen, The Netherlands
| | - Anouk M Rijs
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, 6525 ED Nijmegen, The Netherlands
| |
Collapse
|
5
|
Preitschopf T, Hirsch F, Lemmens AK, Rijs AM, Fischer I. The gas-phase infrared spectra of the 2-methylallyl radical and its high-temperature reaction products. Phys Chem Chem Phys 2022; 24:7682-7690. [PMID: 35302151 DOI: 10.1039/d2cp00400c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The resonance-stabilized 2-methylallyl radical, 2-MA, is considered as a possible intermediate in the formation of polycyclic aromatic hydrocarbons (PAHs) in combustion processes. In this work, we report on its contribution to molecular growth in a high-temperature microreactor and provide mass-selective IR/UV ion dip spectra of the radical, as well as the various jet-cooled reaction products, employing free electron laser radiation in the mid-infrared region. Small (aromatic) hydrocarbons such as fulvene, benzene, styrene, or para-xylene, as well as polycyclic molecules, like (methylated) naphthalene, were identified with the aid of ab initio DFT computations. Several reaction products differ by one or more methyl groups, suggesting that molecular growth is dominated by (de)methylation in the reactor.
Collapse
Affiliation(s)
- Tobias Preitschopf
- Institute of Physical and Theoretical Chemistry, University of Wuerzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Florian Hirsch
- Institute of Physical and Theoretical Chemistry, University of Wuerzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Alexander K Lemmens
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands.
| | - Anouk M Rijs
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands.
| | - Ingo Fischer
- Institute of Physical and Theoretical Chemistry, University of Wuerzburg, Am Hubland, 97074 Würzburg, Germany.
| |
Collapse
|
6
|
Kaiser RI, Zhao L, Lu W, Ahmed M, Krasnoukhov VS, Azyazov VN, Mebel AM. Unconventional excited-state dynamics in the concerted benzyl (C 7H 7) radical self-reaction to anthracene (C 14H 10). Nat Commun 2022; 13:786. [PMID: 35145103 PMCID: PMC8831467 DOI: 10.1038/s41467-022-28466-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/25/2022] [Indexed: 12/20/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are prevalent in deep space and on Earth as products in combustion processes bearing direct relevance to energy efficiency and environmental remediation. Reactions between hydrocarbon radicals in particular have been invoked as critical molecular mass growth processes toward cyclization leading to these PAHs. However, the mechanism of the formation of PAHs through radical – radical reactions are largely elusive. Here, we report on a combined computational and experimental study of the benzyl (C7H7) radical self-reaction to phenanthrene and anthracene (C14H10) through unconventional, isomer-selective excited state dynamics. Whereas phenanthrene formation is initiated via a barrierless recombination of two benzyl radicals on the singlet ground state surface, formation of anthracene commences through an exotic transition state on the excited state triplet surface through cycloaddition. Our findings challenge conventional wisdom that PAH formation via radical-radical reactions solely operates on electronic ground state surfaces and open up a previously overlooked avenue for a more “rapid” synthesis of aromatic, multi-ringed structures via excited state dynamics in the gas phase. The reaction of benzyl radical self-reaction to anthracene opens-up a previously overlooked avenue for a more efficient synthesis of aromatic, multi-ringed structures via excited state dynamics in the gas phase.
Collapse
Affiliation(s)
- Ralf I Kaiser
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI, 96822, USA.
| | - Long Zhao
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Wenchao Lu
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Musahid Ahmed
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - Vladislav S Krasnoukhov
- Samara National Research University, Samara 443086 and Lebedev Physical Institute, 443011, Samara, Russian Federation
| | - Valeriy N Azyazov
- Samara National Research University, Samara 443086 and Lebedev Physical Institute, 443011, Samara, Russian Federation
| | - Alexander M Mebel
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, 33199, USA.
| |
Collapse
|
7
|
Couch DE, Zhang AJ, Taatjes CA, Hansen N. Experimental Observation of Hydrocarbon Growth by Resonance‐Stabilized Radical–Radical Chain Reaction. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- David E. Couch
- Gas Phase Chemical Physics Department Combustion Research Facility Sandia National Laboratories Livermore CA 94550 USA
| | - Angie J. Zhang
- Gas Phase Chemical Physics Department Combustion Research Facility Sandia National Laboratories Livermore CA 94550 USA
| | - Craig A. Taatjes
- Gas Phase Chemical Physics Department Combustion Research Facility Sandia National Laboratories Livermore CA 94550 USA
| | - Nils Hansen
- Gas Phase Chemical Physics Department Combustion Research Facility Sandia National Laboratories Livermore CA 94550 USA
| |
Collapse
|
8
|
Couch DE, Zhang AJ, Taatjes CA, Hansen N. Experimental Observation of Hydrocarbon Growth by Resonance-Stabilized Radical-Radical Chain Reaction. Angew Chem Int Ed Engl 2021; 60:27230-27235. [PMID: 34605134 DOI: 10.1002/anie.202110929] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Indexed: 01/08/2023]
Abstract
Rapid molecular-weight growth of hydrocarbons occurs in flames, in industrial synthesis, and potentially in cold astrochemical environments. A variety of high- and low-temperature chemical mechanisms have been proposed and confirmed, but more facile pathways may be needed to explain observations. We provide laboratory confirmation in a controlled pyrolysis environment of a recently proposed mechanism, radical-radical chain reactions of resonance-stabilized species. The recombination reaction of phenyl (c-C6 H5 ) and benzyl (c-C6 H5 CH2 ) radicals produces both diphenylmethane and diphenylmethyl radicals, the concentration of the latter increasing with rising temperature. A second phenyl addition to the product radical forms both triphenylmethane and triphenylmethyl radicals, confirming the propagation of radical-radical chain reactions under the experimental conditions of high temperature (1100-1600 K) and low pressure (ca. 3 kPa). Similar chain reactions may contribute to particle growth in flames, the interstellar medium, and industrial reactors.
Collapse
Affiliation(s)
- David E Couch
- Gas Phase Chemical Physics Department, Combustion Research Facility, Sandia National Laboratories, Livermore, CA, 94550, USA
| | - Angie J Zhang
- Gas Phase Chemical Physics Department, Combustion Research Facility, Sandia National Laboratories, Livermore, CA, 94550, USA
| | - Craig A Taatjes
- Gas Phase Chemical Physics Department, Combustion Research Facility, Sandia National Laboratories, Livermore, CA, 94550, USA
| | - Nils Hansen
- Gas Phase Chemical Physics Department, Combustion Research Facility, Sandia National Laboratories, Livermore, CA, 94550, USA
| |
Collapse
|
9
|
Altmann L, Zantop V, Wenisch P, Diesendorf N, Heinrich MR. Visible Light Promoted, Catalyst-Free Radical Carbohydroxylation and Carboetherification under Mild Biomimetic Conditions. Chemistry 2021; 27:2452-2462. [PMID: 33006177 PMCID: PMC7898656 DOI: 10.1002/chem.202004234] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Indexed: 11/25/2022]
Abstract
Metal and catalyst-free carbohydroxylations and carboetherifications at room temperature have been achieved by a combination of beneficial factors including high aryl diazonium concentration and visible light irradiation. The acceleration of the reaction by visible light irradiation is particularly remarkable against the background that neither the aryldiazonium salt nor the alkene show absorptions in the respective range of wavelength. These observations point to weak charge transfer interactions between diazonium salt and alkene, which are nevertheless able to considerably influence the reaction course. As highly promising perspective, many more aryldiazonium-based radical arylations might benefit from simple light irradiation without requiring a photocatalyst or particular additive.
Collapse
Affiliation(s)
- Lisa‐Marie Altmann
- Department of Chemistry and Pharmacy, Pharmaceutical ChemistryFriedrich-Alexander-Universität Erlangen-NürnbergNikolaus-Fiebiger-Str. 1091058ErlangenGermany
| | - Viviane Zantop
- Department of Chemistry and Pharmacy, Pharmaceutical ChemistryFriedrich-Alexander-Universität Erlangen-NürnbergNikolaus-Fiebiger-Str. 1091058ErlangenGermany
| | - Pia Wenisch
- Department of Chemistry and Pharmacy, Pharmaceutical ChemistryFriedrich-Alexander-Universität Erlangen-NürnbergNikolaus-Fiebiger-Str. 1091058ErlangenGermany
| | - Nina Diesendorf
- Department of Chemistry and Pharmacy, Pharmaceutical ChemistryFriedrich-Alexander-Universität Erlangen-NürnbergNikolaus-Fiebiger-Str. 1091058ErlangenGermany
| | - Markus R. Heinrich
- Department of Chemistry and Pharmacy, Pharmaceutical ChemistryFriedrich-Alexander-Universität Erlangen-NürnbergNikolaus-Fiebiger-Str. 1091058ErlangenGermany
| |
Collapse
|
10
|
Kohse-Höinghaus K. Combustion in the future: The importance of chemistry. PROCEEDINGS OF THE COMBUSTION INSTITUTE. INTERNATIONAL SYMPOSIUM ON COMBUSTION 2020; 38:S1540-7489(20)30501-0. [PMID: 33013234 PMCID: PMC7518234 DOI: 10.1016/j.proci.2020.06.375] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 05/18/2020] [Accepted: 06/28/2020] [Indexed: 06/11/2023]
Abstract
Combustion involves chemical reactions that are often highly exothermic. Combustion systems utilize the energy of chemical compounds released during this reactive process for transportation, to generate electric power, or to provide heat for various applications. Chemistry and combustion are interlinked in several ways. The outcome of a combustion process in terms of its energy and material balance, regarding the delivery of useful work as well as the generation of harmful emissions, depends sensitively on the molecular nature of the respective fuel. The design of efficient, low-emission combustion processes in compliance with air quality and climate goals suggests a closer inspection of the molecular properties and reactions of conventional, bio-derived, and synthetic fuels. Information about flammability, reaction intensity, and potentially hazardous combustion by-products is important also for safety considerations. Moreover, some of the compounds that serve as fuels can assume important roles in chemical energy storage and conversion. Combustion processes can furthermore be used to synthesize materials with attractive properties. A systematic understanding of the combustion behavior thus demands chemical knowledge. Desirable information includes properties of the thermodynamic states before and after the combustion reactions and relevant details about the dynamic processes that occur during the reactive transformations from the fuel and oxidizer to the products under the given boundary conditions. Combustion systems can be described, tailored, and improved by taking chemical knowledge into account. Combining theory, experiment, model development, simulation, and a systematic analysis of uncertainties enables qualitative or even quantitative predictions for many combustion situations of practical relevance. This article can highlight only a few of the numerous investigations on chemical processes for combustion and combustion-related science and applications, with a main focus on gas-phase reaction systems. It attempts to provide a snapshot of recent progress and a guide to exciting opportunities that drive such research beyond fossil combustion.
Collapse
Key Words
- 2M2B, 2-methyl-2-butene
- AFM, atomic force microscopy
- ALS, Advanced Light Source
- APCI, atmospheric pressure chemical ionization
- ARAS, atomic resonance absorption spectroscopy
- ATcT, Active Thermochemical Tables
- BC, black carbon
- BEV, battery electric vehicle
- BTL, biomass-to-liquid
- Biofuels
- CA, crank angle
- CCS, carbon capture and storage
- CEAS, cavity-enhanced absorption spectroscopy
- CFD, computational fluid dynamics
- CI, compression ignition
- CRDS, cavity ring-down spectroscopy
- CTL, coal-to-liquid
- Combustion
- Combustion chemistry
- Combustion diagnostics
- Combustion kinetics
- Combustion modeling
- Combustion synthesis
- DBE, di-n-butyl ether
- DCN, derived cetane number
- DEE, diethyl ether
- DFT, density functional theory
- DFWM, degenerate four-wave mixing
- DMC, dimethyl carbonate
- DME, dimethyl ether
- DMM, dimethoxy methane
- DRIFTS, diffuse reflectance infrared Fourier transform spectroscopy
- EGR, exhaust gas recirculation
- EI, electron ionization
- Emissions
- Energy
- Energy conversion
- FC, fuel cell
- FCEV, fuel cell electric vehicle
- FRET, fluorescence resonance energy transfer
- FT, Fischer-Tropsch
- FTIR, Fourier-transform infrared
- Fuels
- GC, gas chromatography
- GHG, greenhouse gas
- GTL, gas-to-liquid
- GW, global warming
- HAB, height above the burner
- HACA, hydrogen abstraction acetylene addition
- HCCI, homogeneous charge compression ignition
- HFO, heavy fuel oil
- HRTEM, high-resolution transmission electron microscopy
- IC, internal combustion
- ICEV, internal combustion engine vehicle
- IE, ionization energy
- IPCC, Intergovernmental Panel on Climate Change
- IR, infrared
- JSR, jet-stirred reactor
- KDE, kernel density estimation
- KHP, ketohydroperoxide
- LCA, lifecycle analysis
- LH2, liquid hydrogen
- LIF, laser-induced fluorescence
- LIGS, laser-induced grating spectroscopy
- LII, laser-induced incandescence
- LNG, liquefied natural gas
- LOHC, liquid organic hydrogen carrier
- LT, low-temperature
- LTC, low-temperature combustion
- MBMS, molecular-beam MS
- MDO, marine diesel oil
- MS, mass spectrometry
- MTO, methanol-to-olefins
- MVK, methyl vinyl ketone
- NOx, nitrogen oxides
- NTC, negative temperature coefficient
- OME, oxymethylene ether
- OTMS, Orbitrap MS
- PACT, predictive automated computational thermochemistry
- PAH, polycyclic aromatic hydrocarbon
- PDF, probability density function
- PEM, polymer electrolyte membrane
- PEPICO, photoelectron photoion coincidence
- PES, photoelectron spectrum/spectra
- PFR, plug-flow reactor
- PI, photoionization
- PIE, photoionization efficiency
- PIV, particle imaging velocimetry
- PLIF, planar laser-induced fluorescence
- PM, particulate matter
- PM10 PM2,5, sampled fractions with sizes up to ∼10 and ∼2,5 µm
- PRF, primary reference fuel
- QCL, quantum cascade laser
- RCCI, reactivity-controlled compression ignition
- RCM, rapid compression machine
- REMPI, resonance-enhanced multi-photon ionization
- RMG, reaction mechanism generator
- RON, research octane number
- Reaction mechanisms
- SI, spark ignition
- SIMS, secondary ion mass spectrometry
- SNG, synthetic natural gas
- SNR, signal-to-noise ratio
- SOA, secondary organic aerosol
- SOEC, solid-oxide electrolysis cell
- SOFC, solid-oxide fuel cell
- SOx, sulfur oxides
- STM, scanning tunneling microscopy
- SVO, straight vegetable oil
- Synthetic fuels
- TDLAS, tunable diode laser absorption spectroscopy
- TOF-MS, time-of-flight MS
- TPES, threshold photoelectron spectrum/spectra
- TPRF, toluene primary reference fuel
- TSI, threshold sooting index
- TiRe-LII, time-resolved LII
- UFP, ultrafine particle
- VOC, volatile organic compound
- VUV, vacuum ultraviolet
- WLTP, Worldwide Harmonized Light Vehicle Test Procedure
- XAS, X-ray absorption spectroscopy
- YSI, yield sooting index
Collapse
|
11
|
Hirsch F, Pachner K, Fischer I, Issler K, Petersen J, Mitric R, Bakels S, Rijs AM. Do Xylylenes Isomerize in Pyrolysis? Chemphyschem 2020; 21:1515-1518. [PMID: 32501625 PMCID: PMC7496364 DOI: 10.1002/cphc.202000317] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/05/2020] [Indexed: 01/06/2023]
Abstract
We report infrared spectra of xylylene isomers in the gas phase, using free electron laser (FEL) radiation. All xylylenes were generated by flash pyrolysis. The IR spectra were obtained by monitoring the ion dip signal, using a IR/UV double resonance scheme. A gas phase IR spectrum of para-xylylene was recorded, whereas ortho- and meta-xylylene were found to partially rearrange to benzocyclobutene and styrene. Computations of the UV oscillator strength for all molecules were carried out and provde an explanation for the observation of the isomerization products.
Collapse
Affiliation(s)
- Florian Hirsch
- Institute for Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Kai Pachner
- Institute for Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Ingo Fischer
- Institute for Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Kevin Issler
- Institute for Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Jens Petersen
- Institute for Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Roland Mitric
- Institute for Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Sjors Bakels
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED, Nijmegen, The, Netherlands
| | - Anouk M Rijs
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED, Nijmegen, The, Netherlands
| |
Collapse
|
12
|
Lemmens AK, Rap DB, Thunnissen JMM, Willemsen B, Rijs AM. Polycyclic aromatic hydrocarbon formation chemistry in a plasma jet revealed by IR-UV action spectroscopy. Nat Commun 2020; 11:269. [PMID: 31937755 PMCID: PMC6959308 DOI: 10.1038/s41467-019-14092-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 12/16/2019] [Indexed: 11/09/2022] Open
Abstract
Large polycyclic aromatic hydrocarbons (PAHs) are the most abundant complex molecules in the interstellar medium; however, their possible formation pathways from small molecular species are still elusive. In the present work, we follow and characterize the formation of PAHs in an electrical discharge, specifically the PAH naphthalene in a molecular beam of argon. The fragments, products and reaction intermediates are unambiguously structurally identified by mass-selective IR-UV spectroscopy combined with quantum chemical calculations. This experiment provides evidence of the formation of larger PAHs containing up to four cyclic rings in the gas phase originating from a non-radical PAH molecule as a precursor. In addition to PAH formation, key resonance stabilized radical intermediates and intermediates containing di-acetylenic side groups are unambiguously identified in our experiment. We thereby not only reveal competing formation pathways to larger PAHs, but also identify intermediate species to PAH formation that are candidates for detection in radio-astronomy. Polycyclic aromatic hydrocarbons (PAHs) are present in the interstellar medium but their origin is unclear. Here the authors investigate large PAH formation from smaller PAHs in a plasma jet by mass-selective IR and UV laser spectroscopy, uncovering diacetylene radical addition as formation mechanism.
Collapse
Affiliation(s)
- Alexander K Lemmens
- Radboud University, Institute of Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, 6525 ED, Nijmegen, The Netherlands.,Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Daniël B Rap
- Radboud University, Institute of Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, 6525 ED, Nijmegen, The Netherlands
| | - Johannes M M Thunnissen
- Radboud University, Institute of Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, 6525 ED, Nijmegen, The Netherlands
| | - Bryan Willemsen
- Radboud University, Institute of Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, 6525 ED, Nijmegen, The Netherlands
| | - Anouk M Rijs
- Radboud University, Institute of Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, 6525 ED, Nijmegen, The Netherlands.
| |
Collapse
|
13
|
Hirsch F, Flock M, Fischer I, Bakels S, Rijs AM. The Gas-Phase Infrared Spectra of Xylyl Radicals. J Phys Chem A 2019; 123:9573-9578. [PMID: 31593463 DOI: 10.1021/acs.jpca.9b09153] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The three isomers of the xylyl radical, C8H9, are possible intermediates in the formation of soot and polycyclic aromatic hydrocarbons (PAH). Their infrared spectra have been recorded by IR/UV ion dip spectroscopy using free electron laser radiation. The radicals were generated by flash pyrolysis from the corresponding nitrites and resonantly ionized via the D3 ← D0 transition around 310 nm. Mid-infrared spectra of the three xylyl isomers were recorded between 550 and 1700 cm-1 and are in excellent agreement with computations, provided that overtones and combination bands are included in the simulation. The results show that the three xylyl isomers can be distinguished by their infrared spectra and that no isomerization occurs in the pyrolysis reactor. The IR spectra obtained at m/z = 208 indicate that dimerization of xylyl radicals leads to substituted stilbenes, which has not been observed for benzyl.
Collapse
Affiliation(s)
- Florian Hirsch
- Institute of Physical and Theoretical Chemistry , University of Wuerzburg , Am Hubland Süd, 97074 Würzburg , Germany
| | - Marco Flock
- Institute of Physical and Theoretical Chemistry , University of Wuerzburg , Am Hubland Süd, 97074 Würzburg , Germany
| | - Ingo Fischer
- Institute of Physical and Theoretical Chemistry , University of Wuerzburg , Am Hubland Süd, 97074 Würzburg , Germany
| | - Sjors Bakels
- Radboud University , Institute for Molecules and Materials, FELIX Laboratory , Toernooiveld 7-c , 6525 Nijmegen , the Netherlands
| | - Anouk M Rijs
- Radboud University , Institute for Molecules and Materials, FELIX Laboratory , Toernooiveld 7-c , 6525 Nijmegen , the Netherlands
| |
Collapse
|
14
|
Kozliak E, Sulkes M, Alhroub I, Kubátová A, Andrianova A, Seames W. Influence of early stages of triglyceride pyrolysis on the formation of PAHs as coke precursors. Phys Chem Chem Phys 2019; 21:20189-20203. [PMID: 31486462 DOI: 10.1039/c9cp02025j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molecular beam (MB) time-of-flight mass spectrometry has been used to investigate thermal decomposition of triolein, to reveal the mechanisms of low temperature soot/coke formation characteristic for triglycerides (TGs). Mass detected pyrolysis products were observed at incremented temperatures using both VUV single photon ionization (general product detection) and REMPI based selective detection of aromatic products. To augment the simple mass characterizations, we have employed stoichiometric considerations; we have supplemented the analysis further by using the detailed information available from product analysis of batch reactor TG cracking. Both the VUV photoionization and batch reactor studies indicated that formation of C7-sized stable products is a marker of significant triolein decomposition that is coupled with PAH formation. A significant fraction of the C7 species observed likely formed as a result of a C-C bond scission at the allylic position to the ω-9 double bond of oleic acid. REMPI detection indicated a high specificity for PAH formation at three distinct molecular weight values, 276, 352 and 444 amu (the latter being a fullerene precursor). The stoichiometric analysis has shown that these PAHs likely arise from condensation reactions of either C7- or C8-sized fragments (three, four and five, respectively). The C8-sized intermediate would become essential whenever the PAH product of C7 fragment condensation contained an odd number of carbon atoms, resulting in a less stable aromatic structure with an incomplete double bond conjugation. MB experiments involving either addition or in situ generation of hydrogen resulted in an enhancement of lower molecular weight PAH formation, i.e., a decrease in the effective number of condensing fragments. In contrast, an increase in temperature yielded the opposite effect.
Collapse
|
15
|
Hirsch F, Reusch E, Constantinidis P, Fischer I, Bakels S, Rijs AM, Hemberger P. Self-Reaction of ortho-Benzyne at High Temperatures Investigated by Infrared and Photoelectron Spectroscopy. J Phys Chem A 2018; 122:9563-9571. [PMID: 30444617 DOI: 10.1021/acs.jpca.8b09640] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
ortho-Benzyne, a Kekulé-type biradical is considered to be a key intermediate in the formation of polycyclic aromatic hydrocarbons (PAH) and soot. In the present work we study the ortho-benzyne self-reactions in a hot microreactor and identify the high-temperature products by IR/UV spectroscopy and by photoion mass-selected threshold photoelectron spectroscopy (ms-TPES) in a free jet. Ms-TPES confirms formation of ortho-benzyne as generated from benzocyclobutenedione, as well as benzene, biphenylene, diacetylene, and acetylene, originating from the reaction o-C6H4 → HCC-CCH + C2H2, and CH3. PAH molecules like naphthalene, 2-ethynylnaphthalene, fluorene, phenanthrene, and triphenylene are identified based on their IR/UV spectra. By comparison with recent computations their formation starting from o-benzyne can be readily understood and supports the importance of the biradical addition (1,4-cycloaddition followed by fragmentation) pathway to PAH molecules, recently proposed by Comandini et al.
Collapse
Affiliation(s)
- Florian Hirsch
- Institute of Physical and Theoretical Chemistry , University of Würzburg , Am Hubland, D-97074 Würzburg , Germany
| | - Engelbert Reusch
- Institute of Physical and Theoretical Chemistry , University of Würzburg , Am Hubland, D-97074 Würzburg , Germany
| | - Philipp Constantinidis
- Institute of Physical and Theoretical Chemistry , University of Würzburg , Am Hubland, D-97074 Würzburg , Germany
| | - Ingo Fischer
- Institute of Physical and Theoretical Chemistry , University of Würzburg , Am Hubland, D-97074 Würzburg , Germany
| | - Sjors Bakels
- Radboud University , Institute for Molecules and Materials, FELIX Laboratory , Toernooiveld 7c , 6525 ED Nijmegen , The Netherlands
| | - Anouk M Rijs
- Radboud University , Institute for Molecules and Materials, FELIX Laboratory , Toernooiveld 7c , 6525 ED Nijmegen , The Netherlands
| | - Patrick Hemberger
- Laboratory for Femtochemistry and Synchrotron Radiation , Paul Scherrer Institut (PSI) , CH-5232 Villigen , Switzerland
| |
Collapse
|