1
|
Nowack MH, Johansen MB, Sams S, Hillers-Bendtsen AE, Mikkelsen KV, Laursen BW. Tuning Tetramethoxy-acridiniums for Fluorophores and Organic Photoredox Catalysis. Chemistry 2024:e202403451. [PMID: 39498876 DOI: 10.1002/chem.202403451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/07/2024]
Abstract
Tetramethoxy substituted alkyl-acridiniums (TMAcr+) are readily available by facile nucleophilic aromatic substitution on tris(2,6-dimethoxyphenyl)carbenium, but are non-fluorescent, presumably due to intramolecular photoinduced electron transfer quenching. In this work we introduce electron withdrawing groups by electrophilic aromatic substitution reactions, leading to fluorescence turn-on. The acridiniums are moderately fluorescent (φf=20 %) with long fluorescene lifetimes (τf=9 ns). The positive excited state reduction potentials (E*red=+1.6 V) make the TMAcr+ excellent electron acceptors in the excited state, and efficient reductive photoredox catalysts able to oxidize a broad range of substrates.
Collapse
Affiliation(s)
- Marko H Nowack
- Nano-Science Center, Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen Ø, Denmark
| | - Magnus B Johansen
- Nano-Science Center, Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen Ø, Denmark
| | - Søren Sams
- Nano-Science Center, Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen Ø, Denmark
| | - Andreas E Hillers-Bendtsen
- Nano-Science Center, Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen Ø, Denmark
| | - Kurt V Mikkelsen
- Nano-Science Center, Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen Ø, Denmark
| | - Bo W Laursen
- Nano-Science Center, Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen Ø, Denmark
| |
Collapse
|
2
|
Pérez-Aguilar MC, Entgelmeier LM, Herrera-Luna JC, Daniliuc CG, Consuelo Jiménez M, Pérez-Ruiz R, García Mancheño O. Unlocking Photocatalytic Activity of Acridinium Salts by Anion-Binding Co-Catalysis. Chemistry 2024; 30:e202400541. [PMID: 38739757 DOI: 10.1002/chem.202400541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/17/2024] [Accepted: 05/13/2024] [Indexed: 05/16/2024]
Abstract
The in situ generation of active photoredox organic catalysts upon anion-binding co-catalysis by making use of the ionic nature of common photosensitizers is reported. Hence, the merge of anion-binding and photocatalysis permitted the modulation of the photocatalytic activity of simple acridinium halide salts, building an effective anion-binding - photoredox ion pair complex able to promote a variety of visible light driven transformations, such as anti-Markovnikov addition to olefins, Diels-Alder and the desilylative C-C bond forming reactions. Anion-binding studies, together with steady-state and time-resolved spectroscopy analysis, supported the postulated ion pair formation between the thiourea hydrogen-bond donor organocatalyst and the acridinium salt, which proved essential for unlocking the photocatalytic activity of the photosensitizer.
Collapse
Affiliation(s)
- María C Pérez-Aguilar
- Institute of Organic Chemistry, University of Münster, Corrensstraße 36, 48149, Münster, Germany
| | - Lukas-M Entgelmeier
- Institute of Organic Chemistry, University of Münster, Corrensstraße 36, 48149, Münster, Germany
| | - Jorge C Herrera-Luna
- Departamento de Química, Universitat Politècnica de València (UPV), Camino de Vera s/n, 46022, Valencia, Spain
- Current address: Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, 4 Place Jussieu, CC 229, 75252, Paris Cedex 05, France
| | - Constantin G Daniliuc
- Institute of Organic Chemistry, University of Münster, Corrensstraße 36, 48149, Münster, Germany
| | - M Consuelo Jiménez
- Departamento de Química, Universitat Politècnica de València (UPV), Camino de Vera s/n, 46022, Valencia, Spain
| | - Raúl Pérez-Ruiz
- Departamento de Química, Universitat Politècnica de València (UPV), Camino de Vera s/n, 46022, Valencia, Spain
| | - Olga García Mancheño
- Institute of Organic Chemistry, University of Münster, Corrensstraße 36, 48149, Münster, Germany
| |
Collapse
|
3
|
Sau SC, Schmitz M, Burdenski C, Baumert M, Antoni PW, Kerzig C, Hansmann MM. Dicationic Acridinium/Carbene Hybrids as Strongly Oxidizing Photocatalysts. J Am Chem Soc 2024; 146:3416-3426. [PMID: 38266168 DOI: 10.1021/jacs.3c12766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
A new design concept for organic, strongly oxidizing photocatalysts is described based upon dicationic acridinium/carbene hybrids. A highly modular synthesis of such hybrids is presented, and the dications are utilized as novel, tailor-made photoredox catalysts in the direct oxidative C-N coupling. Under optimized conditions, benzene and even electron-deficient arenes can be oxidized and coupled with a range of N-heterocycles in high to excellent yields with a single low-energy photon per catalytic turnover, while commonly used acridinium photocatalysts are not able to perform the challenging oxidation step. In contrast to traditional photocatalysts, the hybrid photocatalysts reported here feature a reversible two-electron redox system with regular or inverted redox potentials for the two-electron transfer. The different oxidation states could be isolated and structurally characterized supported by NMR, EPR, and X-ray analysis. Mechanistic experiments employing time-resolved emission and transient absorption spectroscopy unambiguously reveal the outstanding excited-state potential of our best-performing catalyst (+2.5 V vs SCE), and they provide evidence for mechanistic key steps and intermediates.
Collapse
Affiliation(s)
- Samaresh C Sau
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Str. 6, Dortmund 44227, Germany
| | - Matthias Schmitz
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, Mainz 55128, Germany
| | - Chris Burdenski
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Str. 6, Dortmund 44227, Germany
| | - Marcel Baumert
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Str. 6, Dortmund 44227, Germany
| | - Patrick W Antoni
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Str. 6, Dortmund 44227, Germany
| | - Christoph Kerzig
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, Mainz 55128, Germany
| | - Max M Hansmann
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Str. 6, Dortmund 44227, Germany
| |
Collapse
|
4
|
Singh PP, Singh J, Srivastava V. Visible-light acridinium-based organophotoredox catalysis in late-stage synthetic applications. RSC Adv 2023; 13:10958-10986. [PMID: 37033422 PMCID: PMC10077514 DOI: 10.1039/d3ra01364b] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/29/2023] [Indexed: 04/11/2023] Open
Abstract
The field of photoredox catalysis has been transformed by the use of organic photocatalysts, which give access to re-activities that were previously only possible with transition-metal photocatalysts. Recent advancements in the use of an acridinium photocatalyst in organic synthesis are covered in this review. Both the late-stage functionalization of biorelevant molecules and the activation of inert chemical bonds are explored, with an emphasis on their mechanistic features.
Collapse
Affiliation(s)
- Praveen P Singh
- Department of Chemistry, United College of Engineering & Research Naini Prayagraj 211010 India
| | - Jaya Singh
- Department of Chemistry, LRPG College Sahibabad Gaziabad Uttar Pradesh India
| | - Vishal Srivastava
- Department of Chemistry, CMP Degree College, University of Allahabad Prayagraj 211002 Uttar Pradesh India
| |
Collapse
|
5
|
Jakobi M, Zilate B, Sparr C. Synthesis of Diarylaminoacridinium Photocatalysts by Halogen‐Metal Exchange Combined with Directed <i>ortho</i> Metalations. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
6
|
Wu X, Sparr C. Stereoselective Synthesis of Atropisomeric Acridinium Salts by the Catalyst-Controlled Cyclization of ortho-Quinone Methide Iminiums. Angew Chem Int Ed Engl 2022; 61:e202201424. [PMID: 35167176 PMCID: PMC9306694 DOI: 10.1002/anie.202201424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Indexed: 11/07/2022]
Abstract
Quinone methides are fundamental intermediates for a wide range of reactions in which catalyst stereocontrol is often achieved by hydrogen bonding. Herein, we describe the feasibility of an intramolecular Friedel-Crafts 6π electrocyclization through ortho-quinone methide iminiums stereocontrolled by a contact ion pair. A disulfonimide catalyst activates racemic trichloroacetimidate substrates and imparts stereocontrol in the cyclization step, providing a new avenue for selective ortho-quinone methide iminium functionalization. A highly stereospecific oxidation readily transforms the enantioenriched acridanes into rotationally restricted acridiniums. Upon ion exchange, the method selectively affords atropisomeric acridinium tetrafluoroborate salts in high yields and an enantioenrichment of up to 93 : 7 e.r. We envision that ion-pairing catalysis over ortho-quinone methide iminiums enables the selective synthesis of a diversity of heterocycles and aniline derivatives with distinct stereogenic units.
Collapse
Affiliation(s)
- Xingxing Wu
- Department of ChemistryUniversity of BaselSt. Johanns-Ring 194056BaselSwitzerland
- NCCR Molecular Systems Engineering, BPR 1095Mattenstrasse 24a4058BaselSwitzerland
| | - Christof Sparr
- Department of ChemistryUniversity of BaselSt. Johanns-Ring 194056BaselSwitzerland
- NCCR Molecular Systems Engineering, BPR 1095Mattenstrasse 24a4058BaselSwitzerland
| |
Collapse
|
7
|
Lohmann N, Milovanović V, Piekarski DG, García Mancheño O. Metal-free oxoammonium salt-mediated C(sp 3)-H oxidative Ugi-azide multicomponent reaction. Org Biomol Chem 2022; 20:2896-2908. [PMID: 35319061 DOI: 10.1039/d2ob00101b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this work, an efficient oxidative C(sp3)-H Ugi-azide multicomponent reaction of cyclic benzylic amines to the corresponding α-tetrazolo compounds using a TEMPO salt as mild hydride abstractor-type oxidant is reported. This simple one-pot approach allows the direct functionalization of N-heterocycles such as tetrahydroisoquinolines with a variety of isocyanides and NaN3 as a practical azide source. The reaction proceeds at room temperature and without the need of acid additives, allowing for the use of sensitive substrates, while minimizing isocyanide polymerization to provide the desired heterocycle-tetrazole products in synthetically useful yields (up to 99%).
Collapse
Affiliation(s)
- Niklas Lohmann
- University of Münster, Organic Chemistry Institute, Corrensstraße 40, 48149 Münster, Germany.
| | - Vesna Milovanović
- University of Münster, Organic Chemistry Institute, Corrensstraße 40, 48149 Münster, Germany. .,University of Kragujevac, Faculty of Agronomy, Department of Chemistry and Chemical Engineering, Cara Dušana 34, 32000 Čačak, Serbia
| | - Dariusz G Piekarski
- Polish Academy of Sciences, Institute of Physical Chemistry, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Olga García Mancheño
- University of Münster, Organic Chemistry Institute, Corrensstraße 40, 48149 Münster, Germany.
| |
Collapse
|
8
|
Cao YX, Zhu G, Li Y, Le Breton N, Gourlaouen C, Choua S, Boixel J, Jacquot de Rouville HP, Soulé JF. Photoinduced Arylation of Acridinium Salts: Tunable Photoredox Catalysts for C-O Bond Cleavage. J Am Chem Soc 2022; 144:5902-5909. [PMID: 35316065 DOI: 10.1021/jacs.1c12961] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A photoinduced arylation of N-substituted acridinium salts has been developed and has exhibited a high functional group tolerance (e.g., halogen, nitrile, ketone, ester, and nitro). A broad range of well-decorated C9-arylated acridinium-based catalysts with fine-tuned photophysical and photochemical properties, namely, excited-state lifetimes and redox potentials have been synthetized in a one-step procedure. These functionalized acridinium salts were later evaluated in the photoredox-catalyzed fragmentation of 1,2-diol derivatives (lignin models). Among them, 2-bromophenyl substituted N-methyl acridinium has outperformed all photoredox catalysts, including commercial Fukuzumi's catalyst, for the selective CβO-Ar bond cleavage of diol monoarylethers to afford 1,2-diols in good yields.
Collapse
Affiliation(s)
- Yi-Xuan Cao
- Univ Rennes, CNRS, UMR 6226, F-3500 Rennes, France
| | - Gan Zhu
- Univ Rennes, CNRS, UMR 6226, F-3500 Rennes, France.,Department of Chemistry, Jinan University, 511443 Guangzhou, China
| | - Yiqun Li
- Department of Chemistry, Jinan University, 511443 Guangzhou, China
| | - Nolwenn Le Breton
- Institut de Chimie de Strasbourg, CNRS UMR 7177, Université de Strasbourg, 4 rue Blaise Pascal, 67000 Strasbourg, France
| | - Christophe Gourlaouen
- Institut de Chimie de Strasbourg, CNRS UMR 7177, Université de Strasbourg, 4 rue Blaise Pascal, 67000 Strasbourg, France
| | - Sylvie Choua
- Institut de Chimie de Strasbourg, CNRS UMR 7177, Université de Strasbourg, 4 rue Blaise Pascal, 67000 Strasbourg, France
| | | | | | | |
Collapse
|
9
|
Tang S, Guillot R, Grimaud L, Vitale MR, Vincent G. Electrochemical Benzylic C-H Functionalization with Isocyanides. Org Lett 2022; 24:2125-2130. [PMID: 35286094 DOI: 10.1021/acs.orglett.2c00364] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We report the challenging direct carbamoylation or cyanation of benzylic C(sp3)-H bonds with an isocyanide via an electrochemical process giving rise to structures that are encountered in several biologically relevant compounds and drugs. This transformation proceeds under mild conditions without the need for any external oxidant and avoids the necessity to start from a prefunctionalized benzylic substrate or the deployment of the cation pool method. The anodic oxidation of the benzylic position and the subsequent addition of the isocyanide lead to the formation of a C-C bond and to a nitrilium cation that hydrolyzes to yield α-aryl acetamide derivatives, whereas the elimination of a t-butyl cation delivers α-aryl acetonitrile derivatives.
Collapse
Affiliation(s)
- Shanyu Tang
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Université Paris-Saclay, CNRS, 91405 Orsay, France
| | - Régis Guillot
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Université Paris-Saclay, CNRS, 91405 Orsay, France
| | - Laurence Grimaud
- Laboratoire des Biomolécules (LBM), Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Maxime R Vitale
- Laboratoire des Biomolécules (LBM), Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Guillaume Vincent
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Université Paris-Saclay, CNRS, 91405 Orsay, France
| |
Collapse
|
10
|
Wu X, Sparr C. Stereoselective Synthesis of Atropisomeric Acridinium Salts by the Catalyst‐Controlled Cyclization of
ortho
‐Quinone Methide Iminiums. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xingxing Wu
- Department of Chemistry University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
- NCCR Molecular Systems Engineering, BPR 1095 Mattenstrasse 24a 4058 Basel Switzerland
| | - Christof Sparr
- Department of Chemistry University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
- NCCR Molecular Systems Engineering, BPR 1095 Mattenstrasse 24a 4058 Basel Switzerland
| |
Collapse
|
11
|
Kuhlmann JH, Uygur M, García Mancheño O. Protodesilylation of Arylsilanes by Visible-Light Photocatalysis. Org Lett 2022; 24:1689-1694. [PMID: 35196013 DOI: 10.1021/acs.orglett.2c00288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The first visible-light-mediated photocatalytic, metal- and base-free protodesilylation of arylsilanes is presented. The C(sp2)-Si bond cleavage process is catalyzed by a 5 mol % loading of a commercially available acridinium salt upon blue-light irradiation. Two simple approaches have been identified employing either aerobic or hydrogen atom transfer cocatalytic conditions, which enable the efficient and selective desilylation of a broad variety of simple and complex arylsilanes under mild conditions.
Collapse
Affiliation(s)
- Jan H Kuhlmann
- Organic Chemistry Institute, Westfälische Wilhelms University Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Mustafa Uygur
- Organic Chemistry Institute, Westfälische Wilhelms University Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Olga García Mancheño
- Organic Chemistry Institute, Westfälische Wilhelms University Münster, Corrensstraße 36, 48149 Münster, Germany
| |
Collapse
|
12
|
Bortolato T, Cuadros S, Simionato G, Dell'Amico L. The advent and development of organophotoredox catalysis. Chem Commun (Camb) 2022; 58:1263-1283. [PMID: 34994368 DOI: 10.1039/d1cc05850a] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In the last decade, photoredox catalysis has unlocked unprecedented reactivities in synthetic organic chemistry. Seminal advancements in the field have involved the use of well-studied metal complexes as photoredox catalysts (PCs). More recently, the synthetic community, looking for more sustainable approaches, has been moving towards the use of purely organic molecules. Organic PCs are generally cheaper and less toxic, while allowing their rational modification to an increased generality. Furthermore, organic PCs have allowed reactivities that are inaccessible by using common metal complexes. Likewise, in synthetic catalysis, the field of photocatalysis is now experiencing a green evolution moving from metal catalysis to organocatalysis. In this feature article, we discuss and critically comment on the scientific reasons for this ongoing evolution in the field of photoredox catalysis, showing how and when organic PCs can efficiently replace their metal counterparts.
Collapse
Affiliation(s)
- Tommaso Bortolato
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, Padova, 35131, Italy.
| | - Sara Cuadros
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, Padova, 35131, Italy.
| | - Gianluca Simionato
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, Padova, 35131, Italy.
| | - Luca Dell'Amico
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, Padova, 35131, Italy.
| |
Collapse
|
13
|
Kwon K, Simons RT, Nandakumar M, Roizen JL. Strategies to Generate Nitrogen-centered Radicals That May Rely on Photoredox Catalysis: Development in Reaction Methodology and Applications in Organic Synthesis. Chem Rev 2022; 122:2353-2428. [PMID: 34623809 PMCID: PMC8792374 DOI: 10.1021/acs.chemrev.1c00444] [Citation(s) in RCA: 141] [Impact Index Per Article: 70.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
For more than 70 years, nitrogen-centered radicals have been recognized as potent synthetic intermediates. This review is a survey designed for use by chemists engaged in target-oriented synthesis. This review summarizes the recent paradigm shift in access to and application of N-centered radicals enabled by visible-light photocatalysis. This shift broadens and streamlines approaches to many small molecules because visible-light photocatalysis conditions are mild. Explicit attention is paid to innovative advances in N-X bonds as radical precursors, where X = Cl, N, S, O, and H. For clarity, key mechanistic data is noted, where available. Synthetic applications and limitations are summarized to illuminate the tremendous utility of photocatalytically generated nitrogen-centered radicals.
Collapse
Affiliation(s)
- Kitae Kwon
- Duke University, Department of Chemistry, Box 90346, Durham, North Carolina 27708-0354, United States
| | - R Thomas Simons
- Duke University, Department of Chemistry, Box 90346, Durham, North Carolina 27708-0354, United States
| | - Meganathan Nandakumar
- Duke University, Department of Chemistry, Box 90346, Durham, North Carolina 27708-0354, United States
| | - Jennifer L Roizen
- Duke University, Department of Chemistry, Box 90346, Durham, North Carolina 27708-0354, United States
| |
Collapse
|
14
|
Tlili A, Lakhdar S. Acridinium Salts and Cyanoarenes as Powerful Photocatalysts: Opportunities in Organic Synthesis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102262] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Anis Tlili
- Institute of Chemistry and Biochemistry (ICBMS-UMR CNRS 5246) Univ Lyon, Université Lyon 1 CNRS CPE-Lyon INSA 43 Bd du 11 Novembre 1918 69622 Villeurbanne France
| | - Sami Lakhdar
- CNRS/Université Toulouse III—Paul Sabatier Laboratoire Hétérochimie Fondamentale et Appliquée LHFA UMR 5069 118 Route de Narbonne 31062 Toulouse Cedex 09 France
| |
Collapse
|
15
|
Tlili A, Lakhdar S. Acridinium Salts and Cyanoarenes as Powerful Photocatalysts: Opportunities in Organic Synthesis. Angew Chem Int Ed Engl 2021; 60:19526-19549. [PMID: 33881207 DOI: 10.1002/anie.202102262] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/16/2021] [Indexed: 01/18/2023]
Abstract
The use of organic photocatalysts has revolutionized the field of photoredox catalysis, as it allows access to reactivities that were traditionally restricted to transition-metal photocatalysts. This Minireview reports recent developments in the use of acridinium ions and cyanoarene derivatives in organic synthesis. The activation of inert chemical bonds as well as the late-stage functionalization of biorelevant molecules are discussed, with a special focus on their mechanistic aspects.
Collapse
Affiliation(s)
- Anis Tlili
- Institute of Chemistry and Biochemistry (ICBMS-UMR CNRS 5246), Univ Lyon, Université Lyon 1, CNRS, CPE-Lyon, INSA, 43 Bd du 11 Novembre 1918, 69622, Villeurbanne, France
| | - Sami Lakhdar
- CNRS/Université Toulouse III-Paul Sabatier, Laboratoire Hétérochimie Fondamentale et Appliquée, LHFA UMR 5069, 118 Route de Narbonne, 31062, Toulouse Cedex 09, France
| |
Collapse
|
16
|
Pan N, Xinen Lee M, Bunel L, Grimaud L, Vitale MR. Electrochemical TEMPO-Catalyzed Oxidative Ugi-Type Reaction. ACS ORGANIC & INORGANIC AU 2021; 1:18-22. [PMID: 36855635 PMCID: PMC9954374 DOI: 10.1021/acsorginorgau.1c00003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Oxidative isocyanide-based multicomponent reactions (oxidative IMCRs) are very useful tools for the rapid construction of molecular diversity starting from readily available and stable substrates. Despite all their benefits, such multicomponent reactions are underdeveloped and strictly limited to 3-component processes. Indeed, in the presence of several reaction partners, the oxidation event needs to be rigorously chemoselective, which becomes incredibly more intricate as the number of reactive components increases. Nonetheless, we could overcome this significant pitfall and reach the first oxidative Ugi-type 4-IMCR by capitalizing on a very mild and green TEMPO-catalyzed electro-oxidation process. Employing alcohols as aldehyde surrogates and in the notable absence of any supporting electrolyte, this transformation proved to be extremely chemoselective in the presence of an amine and was compatible with a wide range of alcohols, amines, isocyanides, and carboxylic acids.
Collapse
Affiliation(s)
- Na Pan
- Laboratoire des
biomolécules, LBM, Département de chimie, École
Normale Supérieure, PSL University,
Sorbonne Université, CNRS, 75005 Paris, France,Shanghai Engineering Research Center of Molecular Therapeutics and
New Drug Development, SCME, East China Normal
University, 3663 Zhongshanbei Road, Shanghai 200062, China
| | - Maegan Xinen Lee
- Laboratoire des
biomolécules, LBM, Département de chimie, École
Normale Supérieure, PSL University,
Sorbonne Université, CNRS, 75005 Paris, France
| | - Louis Bunel
- Laboratoire des
biomolécules, LBM, Département de chimie, École
Normale Supérieure, PSL University,
Sorbonne Université, CNRS, 75005 Paris, France
| | - Laurence Grimaud
- Laboratoire des
biomolécules, LBM, Département de chimie, École
Normale Supérieure, PSL University,
Sorbonne Université, CNRS, 75005 Paris, France,
| | - Maxime R. Vitale
- Laboratoire des
biomolécules, LBM, Département de chimie, École
Normale Supérieure, PSL University,
Sorbonne Université, CNRS, 75005 Paris, France,
| |
Collapse
|
17
|
A Rational Approach to Organo‐Photocatalysis: Novel Designs and Structure‐Property Relationships. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006416] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
18
|
Vega‐Peñaloza A, Mateos J, Companyó X, Escudero‐Casao M, Dell'Amico L. A Rational Approach to Organo‐Photocatalysis: Novel Designs and Structure‐Property Relationships. Angew Chem Int Ed Engl 2020; 60:1082-1097. [DOI: 10.1002/anie.202006416] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/14/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Alberto Vega‐Peñaloza
- Department of Chemical Sciences University of Padova Via Marzolo 1 35131 Padova Italy
| | - Javier Mateos
- Department of Chemical Sciences University of Padova Via Marzolo 1 35131 Padova Italy
| | - Xavier Companyó
- Department of Chemical Sciences University of Padova Via Marzolo 1 35131 Padova Italy
| | | | - Luca Dell'Amico
- Department of Chemical Sciences University of Padova Via Marzolo 1 35131 Padova Italy
| |
Collapse
|
19
|
|
20
|
Tan ML, Tong S, Hou SK, You J, Wang MX. Copper-Catalyzed N,N-Diarylation of Amides for the Construction of 9,10-Dihydroacridine Structure and Applications in the Synthesis of Diverse Nitrogen-Embedded Polyacenes. Org Lett 2020; 22:5417-5422. [PMID: 32588635 DOI: 10.1021/acs.orglett.0c01775] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We reported herein CuI/DMEDA catalyzed N,N-diarylation reaction of amides with various di(o-bromoaryl)methanes to produce diverse 9,10-dihydroacridine derivatives. The resulting 9,10-dihydroacridine derivatives were oxidized selectively under mild conditions to afford acridine, acridinone, and acridinium derivatives. The copper-catalyzed N,N-diarylation reaction coupled with oxidative aromatization reaction enabled the facile construction of nitrogen atom-embedded tetracenes and pentacenes of different ortho-fused patterns. The luminescence properties, especially the effect of fusion pattern on fluorescence emission of acquired N-polycenes, were also demonstrated.
Collapse
Affiliation(s)
- Mei-Ling Tan
- MOE Key Laboratory of Green Chemistry and Technology, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Shuo Tong
- MOE Key Laboratory of Bioorganic Phosphorous and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Sheng-Kai Hou
- MOE Key Laboratory of Bioorganic Phosphorous and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jingsong You
- MOE Key Laboratory of Green Chemistry and Technology, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Mei-Xiang Wang
- MOE Key Laboratory of Bioorganic Phosphorous and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
21
|
Petzold D, Giedyk M, Chatterjee A, König B. A Retrosynthetic Approach for Photocatalysis. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901421] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Daniel Petzold
- Department of Organic Chemistry University of Regensburg Universitätsstraße 31 93053 Regensburg Germany
| | - Maciej Giedyk
- Department of Organic Chemistry University of Regensburg Universitätsstraße 31 93053 Regensburg Germany
- Institute of Organic Chemistry Polish Academy of Sciences Kasprzaka 44/52 01‐224 Warsaw Poland
| | - Anamitra Chatterjee
- Department of Organic Chemistry University of Regensburg Universitätsstraße 31 93053 Regensburg Germany
| | - Burkhard König
- Department of Organic Chemistry University of Regensburg Universitätsstraße 31 93053 Regensburg Germany
| |
Collapse
|
22
|
Rigotti T, Alemán J. Visible light photocatalysis – from racemic to asymmetric activation strategies. Chem Commun (Camb) 2020; 56:11169-11190. [DOI: 10.1039/d0cc03738a] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The most significant contributions towards enantioselective photocatalysis have been described with a special emphasis on the various activation strategies.
Collapse
Affiliation(s)
- Thomas Rigotti
- Organic Chemistry Department
- Universidad Autónoma de Madrid
- 28049 Madrid
- Spain
| | - José Alemán
- Organic Chemistry Department
- Universidad Autónoma de Madrid
- 28049 Madrid
- Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem)
| |
Collapse
|
23
|
Zilate B, Fischer C, Sparr C. Design and application of aminoacridinium organophotoredox catalysts. Chem Commun (Camb) 2020; 56:1767-1775. [PMID: 31998897 DOI: 10.1039/c9cc08524f] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Recent developments in preparative photocatalysis have reshaped synthetic strategies and now represent an integral part of current organic chemistry. Due to their favourable electrochemical and photophysical properties, the nowadays most frequently used photocatalysts are based on precious Ru- and Ir-polypyridyl complexes. Apart from that, organic catalysts such as the acridinium salts are now commonly employed to complement transition metals to provide potentially sustainable strategies amenable to large-scale synthesis. In this feature article, the design, synthesis and application of aminoacridinium photoredox catalysts as well as their exceptionally broad range of redox properties are highlighted. Due to their modularity, this burgeoning class of organophotocatalysts is anticipated to contribute significantly to synthetic methodology development and the translation to a wide range of innovative implementations.
Collapse
Affiliation(s)
- Bouthayna Zilate
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, CH-4056, Basel, Switzerland.
| | | | | |
Collapse
|
24
|
Fischer C, Kerzig C, Zilate B, Wenger OS, Sparr C. Modulation of Acridinium Organophotoredox Catalysts Guided by Photophysical Studies. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03606] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Christian Fischer
- Department of Chemistry, University of Basel, Basel CH-4056, Switzerland
| | - Christoph Kerzig
- Department of Chemistry, University of Basel, Basel CH-4056, Switzerland
| | - Bouthayna Zilate
- Department of Chemistry, University of Basel, Basel CH-4056, Switzerland
| | - Oliver S. Wenger
- Department of Chemistry, University of Basel, Basel CH-4056, Switzerland
| | - Christof Sparr
- Department of Chemistry, University of Basel, Basel CH-4056, Switzerland
| |
Collapse
|
25
|
Brandhofer T, Gini A, Stockerl S, Piekarski DG, García Mancheño O. Direct C–H Bond Imidation with Benzoyl Peroxide as a Mild Oxidant and a Reagent. J Org Chem 2019; 84:12992-13002. [DOI: 10.1021/acs.joc.9b01765] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Tobias Brandhofer
- Institute of Organic Chemistry, University of Münster, 48149 Münster, Germany
- Institute for Organic Chemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Andrea Gini
- Institute for Organic Chemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Sebastian Stockerl
- Institute of Organic Chemistry, University of Münster, 48149 Münster, Germany
| | | | | |
Collapse
|
26
|
Gini A, Rigotti T, Pérez‐Ruiz R, Uygur M, Mas‐Ballesté R, Corral I, Martínez‐Fernández L, de la Peña O'Shea VA, García Mancheño O, Alemán J. Mesityl or Imide Acridinium Photocatalysts: Accessible Versus Inaccessible Charge‐Transfer States in Photoredox Catalysis. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201900116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Andrea Gini
- Organic Chemistry Department, Módulo 1Universidad Autónoma de Madrid, Facultad de Ciencias Calle Francisco Tomás y Valiente, 7 28049 Madrid Spain
| | - Thomas Rigotti
- Organic Chemistry Department, Módulo 1Universidad Autónoma de Madrid, Facultad de Ciencias Calle Francisco Tomás y Valiente, 7 28049 Madrid Spain
| | - Raúl Pérez‐Ruiz
- Photoactivated Process UnitIMDEA Energy Av. Ramón de la Sagra 3 28935 Madrid Spain
| | - Mustafa Uygur
- Organic Chemistry InstituteUniversity of Mϋnster Corrensstraße 40 48149 Münster Germany
| | - Rubén Mas‐Ballesté
- Inorganic Chemistry Department, Módulo 7Universidad Autónoma de Madrid, Facultad de Ciencias Calle Francisco Tomás y Valiente, 7 28049 Madrid Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem)Universidad Autónoma de Madrid, Facultad de Ciencias Calle Francisco Tomás y Valiente, 7 28049 Madrid Spain
| | - Inés Corral
- Institute for Advanced Research in Chemical Sciences (IAdChem)Universidad Autónoma de Madrid, Facultad de Ciencias Calle Francisco Tomás y Valiente, 7 28049 Madrid Spain
- Condensed Matter Physics Center (IFIMAC)Universidad Autónoma de Madrid, Facultad de Ciencias Calle Francisco Tomás y Valiente, 7 28049 Madrid Spain
- Chemistry Department, Módulo 13Universidad Autónoma de Madrid, Facultad de Ciencias Calle Francisco Tomás y Valiente, 7 28049 Madrid Spain
| | - Lara Martínez‐Fernández
- Condensed Matter Physics Center (IFIMAC)Universidad Autónoma de Madrid, Facultad de Ciencias Calle Francisco Tomás y Valiente, 7 28049 Madrid Spain
| | | | - Olga García Mancheño
- Organic Chemistry InstituteUniversity of Mϋnster Corrensstraße 40 48149 Münster Germany
| | - José Alemán
- Organic Chemistry Department, Módulo 1Universidad Autónoma de Madrid, Facultad de Ciencias Calle Francisco Tomás y Valiente, 7 28049 Madrid Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem)Universidad Autónoma de Madrid, Facultad de Ciencias Calle Francisco Tomás y Valiente, 7 28049 Madrid Spain
| |
Collapse
|
27
|
Brandhofer T, Özdemir A, Gini A, Mancheño OG. Double Cu‐Catalyzed Direct Csp3−H Azidation/CuAAC Reaction: A Direct Approach towards Demanding Triazole Conjugates. Chemistry 2019; 25:4077-4086. [DOI: 10.1002/chem.201806288] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/21/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Tobias Brandhofer
- Organic Chemistry InstituteMünster University Corrensstr. 40 48149 Münster Germany
- Organic Chemistry InstituteRegensburg University Universitätstr. 31 93053 Regensburg Germany
| | - Aysegül Özdemir
- Organic Chemistry InstituteRegensburg University Universitätstr. 31 93053 Regensburg Germany
| | - Andrea Gini
- Organic Chemistry InstituteRegensburg University Universitätstr. 31 93053 Regensburg Germany
| | - Olga García Mancheño
- Organic Chemistry InstituteMünster University Corrensstr. 40 48149 Münster Germany
| |
Collapse
|
28
|
Uygur M, García Mancheño O. Visible light-mediated organophotocatalyzed C-H bond functionalization reactions. Org Biomol Chem 2019; 17:5475-5489. [PMID: 31115431 DOI: 10.1039/c9ob00834a] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Over the last decade, a variety of methodologies for the direct functionalization of C-H bonds have been developed. Among others, visible light photoredox reactions have recently emerged as one of the most efficient and highly selective processes for the direct introduction of a functionality into organic molecules. Easy reaction setups, as well as mild reaction conditions, make this approach superior to other methodologies applying transition metals or strong oxidants, in terms of both costs and substrate and functional group tolerance. In this review, the recent developments in organophotocatalyzed C-H bond functionalization reactions are presented.
Collapse
Affiliation(s)
- Mustafa Uygur
- Organic Chemistry Institute, Münster University, Corrensstr. 40, 48149 Münster, Germany.
| | | |
Collapse
|
29
|
Uygur M, Danelzik T, García Mancheño O. Metal-free desilylative C–C bond formation by visible-light photoredox catalysis. Chem Commun (Camb) 2019; 55:2980-2983. [DOI: 10.1039/c8cc10239b] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A novel metal-free desilylative C–C bond formation from simple organosilanes by visible-light acridinium photoredox catalysis is presented.
Collapse
Affiliation(s)
- Mustafa Uygur
- Münster University
- Organic Chemistry Institute
- 48149 Münster
- Germany
| | - Tobias Danelzik
- Münster University
- Organic Chemistry Institute
- 48149 Münster
- Germany
| | | |
Collapse
|