1
|
Liu Y, Wang L, Wei F, Tian Y, Mou J, Yang S, Wu H. Modulation of hypoxia and redox in the solid tumor microenvironment with a catalytic nanoplatform to enhance combinational chemodynamic/sonodynamic therapy. Biomater Sci 2023; 11:1739-1753. [PMID: 36648208 DOI: 10.1039/d2bm01251k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The efficacy of reactive oxygen species-mediated therapy is generally limited by hypoxia and overexpressed glutathione (GSH) in the tumor microenvironment (TME). To address these issues, herein, a smart Mn3O4/OCN-PpIX@BSA nanoplatform is rationally developed to enhance the combinational therapeutic efficacy of chemodynamic therapy (CDT) and sonodynamic therapy (SDT) through TME modulation. For constructing the catalytic nanoplatform (Mn3O4/OCN-PpIX@BSA), Mn3O4 nanoparticles were grown in situ on oxidized g-C3N4 (OCN) nanosheets, and the as-prepared Mn3O4/OCN nano-hybrids were then successively loaded with protoporphyrin (PpIX) and coated with bovine serum albumin (BSA). The catalase-like Mn3O4 nanoparticles are able to effectively catalyze the overexpressed endogenous H2O2 to produce O2, which could relieve hypoxia and improve the therapeutic effect of combinational CDT/SDT. The decomposition of Mn3O4 by GSH enables the release of Mn2+ ions, which not only facilitates good T1/T2 dual-modal magnetic resonance imaging for tumor localization but also results in the depletion of GSH and the Mn2+-driven Fenton-like reaction, thus further amplifying the oxidative stress and achieving improved therapeutic efficacy. It is worth noting that the Mn3O4/OCN-PpIX@BSA nanocomposites exhibit minimal toxicity to normal tissues at therapeutic doses. These positive findings provide a new strategy for the convenient construction of TME-regulating smart theranostic nanoagents to improve the therapeutic outcomes towards malignant tumors effectively.
Collapse
Affiliation(s)
- Yeping Liu
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, and Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China.
| | - Likai Wang
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, and Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China.
| | - Fengyuan Wei
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, and Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China.
| | - Ya Tian
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, and Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China.
| | - Juan Mou
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, and Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China.
| | - Shiping Yang
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, and Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China.
| | - Huixia Wu
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, and Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China.
| |
Collapse
|
2
|
Fan M, Xu J, Wang Y, Yuan Q, Zhao Y, Wang Z, Jiang J. CO
2
Laser‐Induced Graphene with an Appropriate Oxygen Species as an Efficient Electrocatalyst for Hydrogen Peroxide Synthesis. Chemistry 2022; 28:e202201996. [DOI: 10.1002/chem.202201996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Mengmeng Fan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources International Innovation Center for Forest Chemicals and Materials College of Chemical Engineering Nanjing Forestry University 159 Longpan Road 210037 Nanjing China
- Key Lab of Biomass Energy and Material of Jiangsu Province Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources Institute of Chemical Industry of Forest Products Chinese Academy of Forestry 16 Suojin Wucun Road 210042 Nanjing China
| | - Jing Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources International Innovation Center for Forest Chemicals and Materials College of Chemical Engineering Nanjing Forestry University 159 Longpan Road 210037 Nanjing China
| | - Yan Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources International Innovation Center for Forest Chemicals and Materials College of Chemical Engineering Nanjing Forestry University 159 Longpan Road 210037 Nanjing China
| | - Qixin Yuan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources International Innovation Center for Forest Chemicals and Materials College of Chemical Engineering Nanjing Forestry University 159 Longpan Road 210037 Nanjing China
| | - Yuying Zhao
- Key Lab of Biomass Energy and Material of Jiangsu Province Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources Institute of Chemical Industry of Forest Products Chinese Academy of Forestry 16 Suojin Wucun Road 210042 Nanjing China
| | - Zeming Wang
- Institute of Nanochemistry and Nanobiology School of Environmental and Chemical Engineering Shanghai University 99 Shangda Road 200444 Shanghai China
| | - Jianchun Jiang
- Key Lab of Biomass Energy and Material of Jiangsu Province Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources Institute of Chemical Industry of Forest Products Chinese Academy of Forestry 16 Suojin Wucun Road 210042 Nanjing China
| |
Collapse
|
3
|
Karunanithi B, Kannaiyan SK, Balakrishnan K, Muralidharan S, Gopi G. Adsorption of Brilliant Blue and Malachite Green by Nano‐graphene Exfoliated from Waste Batteries. Chem Eng Technol 2021. [DOI: 10.1002/ceat.202100213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Sathish Kumar Kannaiyan
- Sri Sivasubramaniya Nadar College of Engineering Chemical Engineering 603110 Kalavakkam Tamil Nadu India
| | - Karunanithi Balakrishnan
- SRM Institute of Science and Technology Chemical Engineering 603203 Kattankulathur Tamil Nadu India
| | | | - Gowri Gopi
- Agni College of Technology Chemical Engineering 600130 Thalambur Tamil Nadu India
| |
Collapse
|
4
|
Huang W, Wang F, Qiu N, Wu X, Zang C, Li A, Xu L. Enteromorpha prolifera-derived Fe 3C/C composite as advanced catalyst for hydroxyl radical generation and efficient removal for organic dye and antibiotic. JOURNAL OF HAZARDOUS MATERIALS 2019; 378:120728. [PMID: 31202067 DOI: 10.1016/j.jhazmat.2019.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 05/03/2019] [Accepted: 06/02/2019] [Indexed: 06/09/2023]
Abstract
Enteromorpha prolifera-derived Fe3C/C composite has been fabricated through a facile one-step calcination method. As an advanced Fenton-like catalyst, the obtained Fe3C/C composite displayed high catalytic reactivity to generate hydroxyl radicals. It is worth to note that the removal rate of methylene blue (MB) could effectively reach 100% in a wide pH range (pH = 2˜12) and the maximum degradation capacity of the composite is 660 mg/g. The stability and reusability of Fe3C/C composite catalyst have also been tested, which could remain the removal rate at 100% after 6 consecutive runs. To illustrate the practical application possibility, the Fe3C/C composite catalyst was used for degradation of papermaking and dyeing waste water, which could reduce the COD (chemical oxygen demand) value to less than 50. Additionally, the antibiotic norfloxacin (NOR) could also be catalytically removed by the Fe3C/C composite and the possible removal pathway has also been proposed. The excellent removal performance of Fe3C/C composite for MB and NOR may be attributed to the synergistic effect between porous carbon adsorption and Fe3C catalysis. This study not only provides novel insights into recycling of waste biomass, but also paves a new way for the application of Fe3C/C in dyes and antibiotics waste water treatment areas.
Collapse
Affiliation(s)
- Wei Huang
- College of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University, Zaozhuang 277160, China
| | - Feng Wang
- College of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University, Zaozhuang 277160, China
| | - Na Qiu
- College of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University, Zaozhuang 277160, China
| | - Xiaoxia Wu
- College of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University, Zaozhuang 277160, China
| | - Chuansheng Zang
- College of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University, Zaozhuang 277160, China
| | - Aihua Li
- College of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University, Zaozhuang 277160, China.
| | - Liqiang Xu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| |
Collapse
|
5
|
Pan X, Cheng S, Su T, Zuo G, Zhao W, Qi X, Wei W, Dong W. Fenton-like catalyst Fe3O4@polydopamine-MnO2 for enhancing removal of methylene blue in wastewater. Colloids Surf B Biointerfaces 2019; 181:226-233. [DOI: 10.1016/j.colsurfb.2019.05.048] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 05/02/2019] [Accepted: 05/20/2019] [Indexed: 01/12/2023]
|
6
|
Sun M, Li D, Wang Y, Liu W, Ren M, Kong F, Wang S, Guo Y, Liu Y. Mn
3
O
4
@NC Composite Nanorods as a Cathode for Rechargeable Aqueous Zn‐Ion Batteries. ChemElectroChem 2019. [DOI: 10.1002/celc.201900376] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Ming Sun
- School of Materials Science and EngineeringKey Laboratory of Amorphous and Polycrystalline MaterialsKey Laboratory of Processing and Testing Technology ofGlass Functional Ceramics of Shandong ProvinceQilu University of Technology (Shandong Academy of Sciences) Jinan 250353 China
| | - Dong‐Shuai Li
- School of Materials Science and EngineeringKey Laboratory of Amorphous and Polycrystalline MaterialsKey Laboratory of Processing and Testing Technology ofGlass Functional Ceramics of Shandong ProvinceQilu University of Technology (Shandong Academy of Sciences) Jinan 250353 China
| | - Yi‐Fan Wang
- School of Materials Science and EngineeringKey Laboratory of Amorphous and Polycrystalline MaterialsKey Laboratory of Processing and Testing Technology ofGlass Functional Ceramics of Shandong ProvinceQilu University of Technology (Shandong Academy of Sciences) Jinan 250353 China
| | - Wei‐Liang Liu
- School of Materials Science and EngineeringKey Laboratory of Amorphous and Polycrystalline MaterialsKey Laboratory of Processing and Testing Technology ofGlass Functional Ceramics of Shandong ProvinceQilu University of Technology (Shandong Academy of Sciences) Jinan 250353 China
| | - Man‐Man Ren
- School of Materials Science and EngineeringKey Laboratory of Amorphous and Polycrystalline MaterialsKey Laboratory of Processing and Testing Technology ofGlass Functional Ceramics of Shandong ProvinceQilu University of Technology (Shandong Academy of Sciences) Jinan 250353 China
| | - Fan‐Gong Kong
- State Key Laboratory of Biobased Material and Green PapermakingKey Laboratory of Pulp & Paper Science andTechnology of Shandong Province/Ministry of EducationQilu University of Technology (Shandong Academy of Sciences Jinan 250353 China
| | - Shou‐Juan Wang
- State Key Laboratory of Biobased Material and Green PapermakingKey Laboratory of Pulp & Paper Science andTechnology of Shandong Province/Ministry of EducationQilu University of Technology (Shandong Academy of Sciences Jinan 250353 China
| | - Yong‐Ze Guo
- School of Materials Science and EngineeringKey Laboratory of Amorphous and Polycrystalline MaterialsKey Laboratory of Processing and Testing Technology ofGlass Functional Ceramics of Shandong ProvinceQilu University of Technology (Shandong Academy of Sciences) Jinan 250353 China
| | - Yong‐Mei Liu
- School of Materials Science and EngineeringKey Laboratory of Amorphous and Polycrystalline MaterialsKey Laboratory of Processing and Testing Technology ofGlass Functional Ceramics of Shandong ProvinceQilu University of Technology (Shandong Academy of Sciences) Jinan 250353 China
| |
Collapse
|