1
|
Müller E, von Gunten U, Tolu J, Bouchet S, Winkel LHE. Reactions of hypobromous acid with dimethyl selenide, dimethyl diselenide and other organic selenium compounds: kinetics and product formation. ENVIRONMENTAL SCIENCE : WATER RESEARCH & TECHNOLOGY 2024; 10:620-630. [PMID: 38434173 PMCID: PMC10905664 DOI: 10.1039/d3ew00787a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/02/2024] [Indexed: 03/05/2024]
Abstract
Selenium (Se) is an essential micronutrient for many living organisms particularly due to its unique redox properties. We recently found that the sulfur (S) analog for dimethyl selenide (DMSe), i.e. dimethyl sulfide (DMS), reacts fast with the marine oxidant hypobromous acid (HOBr) which likely serves as a sink of marine DMS. Here we investigated the reactivity of HOBr with dimethyl selenide and dimethyl diselenide (DMDSe), which are the main volatile Se compounds biogenically produced in marine waters. In addition, the reactivity of HOBr with further organic Se compounds was tested, i.e., SeMet (as N-acetylated-SeMet), and selenocystine (SeCys2 as N-acetylated-SeCys2), as well as the phenyl-analogs of DMSe and DMDSe, respectively, diphenyl selenide (DPSe) and diphenyl diselenide (DPDSe). Apparent second-order rate constants at pH 8 for the reactions of HOBr with the studied Se compounds were (7.1 ± 0.7) × 107 M-1 s-1 for DMSe, (4.3 ± 0.4) × 107 M-1 s-1 for DMDSe, (2.8 ± 0.3) × 108 M-1 s-1 for SeMet, (3.8 ± 0.2) × 107 M-1 s-1 for SeCys2, (3.5 ± 0.1) × 107 M-1 s-1 for DPSe, and (8.0 ± 0.4) × 106 M-1 s-1 for DPDSe, indicating a very high reactivity of all selected Se compounds with HOBr. The reactivity between HOBr and DMSe is lower than for DMS and therefore this reaction is likely not relevant for marine DMSe abatement. However, the high reactivity of SeMet with HOBr suggests that SeMet may act as a relevant quencher of HOBr.
Collapse
Affiliation(s)
- Emanuel Müller
- Swiss Federal Institute of Aquatic Science and Technology, Department of Water Resources and Drinking Water (W+T), Eawag Ueberlandstrasse 133 CH-8600 Duebendorf Switzerland +41 58 765 5601
- Swiss Federal Institute of Technology, Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environment Systems (D-USYS), ETH Zurich Universitätsstrasse 16 8092 Zürich Switzerland
| | - Urs von Gunten
- Swiss Federal Institute of Aquatic Science and Technology, Department of Water Resources and Drinking Water (W+T), Eawag Ueberlandstrasse 133 CH-8600 Duebendorf Switzerland +41 58 765 5601
- School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
- Swiss Federal Institute of Technology, Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environment Systems (D-USYS), ETH Zurich Universitätsstrasse 16 8092 Zürich Switzerland
| | - Julie Tolu
- Swiss Federal Institute of Aquatic Science and Technology, Department of Water Resources and Drinking Water (W+T), Eawag Ueberlandstrasse 133 CH-8600 Duebendorf Switzerland +41 58 765 5601
- Swiss Federal Institute of Technology, Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environment Systems (D-USYS), ETH Zurich Universitätsstrasse 16 8092 Zürich Switzerland
| | - Sylvain Bouchet
- Swiss Federal Institute of Aquatic Science and Technology, Department of Water Resources and Drinking Water (W+T), Eawag Ueberlandstrasse 133 CH-8600 Duebendorf Switzerland +41 58 765 5601
- Swiss Federal Institute of Technology, Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environment Systems (D-USYS), ETH Zurich Universitätsstrasse 16 8092 Zürich Switzerland
| | - Lenny H E Winkel
- Swiss Federal Institute of Aquatic Science and Technology, Department of Water Resources and Drinking Water (W+T), Eawag Ueberlandstrasse 133 CH-8600 Duebendorf Switzerland +41 58 765 5601
- Swiss Federal Institute of Technology, Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environment Systems (D-USYS), ETH Zurich Universitätsstrasse 16 8092 Zürich Switzerland
| |
Collapse
|
2
|
Batabyal M, Jaiswal S, Jha RK, Kumar S. Directing Group Strategy for the Isolation of Organoselenium(VI) Benzoselenonates: Metal-Free Catalysts for Hydrogen Evolution Reaction. J Am Chem Soc 2024; 146:57-61. [PMID: 38109785 DOI: 10.1021/jacs.3c10572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
The exploration of fourth-period organoelements, particularly organoseleniums in their highest VI oxidation state, is limited owing to their stability and synthesis. Herein, the isolation of a new class of quinolinyl-embedded, hexavalent selenium(VI) benzoselenonates has been discussed and further evaluated for a metal-free electrocatalytic hydrogen evolution reaction (HER). The Se(VI) benzoselenonates exhibited high Faradaic efficiency (F.E.) of metal-free H2 gas production up to 86% with a very good turnover number (TON) up to 43 and moderate overpotential (η) of 500 mV; in the presence of mild acetic acid source in a less deprotonating DMF solvent. Taken together with various (NMR, UV-vis, and EPR) spectroscopic and DFT computation studies, a plausible HER pathway is proposed, which suggests that the electrochemical reduction of quinolinyl ring is the initiation step and Se(VI) acts as the reaction site by involving a hydridic type of intermediate for the electrochemical H2 gas generation.
Collapse
Affiliation(s)
- Monojit Batabyal
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462 066, Madhya Pradesh, India
| | - Svastik Jaiswal
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462 066, Madhya Pradesh, India
| | - Raushan Kumar Jha
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462 066, Madhya Pradesh, India
| | - Sangit Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462 066, Madhya Pradesh, India
| |
Collapse
|
3
|
Maurya SK, Tripathi A, Karuthapandi S, Singh HB. Synthesis and glutathione peroxidase (GPx)-like activity of selenocystine (SeC) bioconjugates of biotin and lipoic acid. Amino Acids 2023; 55:1981-1989. [PMID: 37971575 DOI: 10.1007/s00726-023-03348-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/10/2023] [Indexed: 11/19/2023]
Abstract
The conjugation of active biomolecules provides insight into their bioreactivity, leading to many applications in biotechnology and materials science. Herein, we report L-selenocystine (SeC) bioconjugates of lipoic acid (universal antioxidant) and biotin (Vitamin-H). The SeC-bioconjugates, SeC-Biotin (1) and SeC-Lipoic acid (2) were synthesized using solid phase peptide synthesis (SPPS) method and were characterized by multinuclear 1D (1H, 13C, 77Se) and 2D (1H-1H COSY and 1H-13C TOCSY) NMR spectroscopy, ESI-MS spectrometry, and RP-HPLC. The GPx-like enzyme mimicking activity of the SeC-bioconjugates 1 and 2 has been investigated through the coupled reductase assay method for the catalytic reductions of hydrogen peroxide into water. A significant enhancement in GPx-like enzymatic activity was observed for both novel bioconjugates SeC-Biotin (1) and SeC-Lipoic acid (2) as compared to diphenyl diselenide (Ph2Se2), L-selenocystine (SeC), biotin, lipoic acid, and ebselen.
Collapse
Affiliation(s)
- Shakti K Maurya
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Abhishek Tripathi
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Selvakumar Karuthapandi
- Department of Chemistry, School of Advanced Sciences, VIT-AP University, Amaravati, AP, 522241, India.
| | - Harkesh B Singh
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| |
Collapse
|
4
|
Tripathi A, Khan A, Srivastava R. Synthesis and screening for anticancer activity of two novel telluro-amino acids: 1,3-Tellurazolidine-4-carboxylic acid and tellurohomocystine. Amino Acids 2023; 55:1361-1370. [PMID: 37796355 DOI: 10.1007/s00726-023-03314-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/03/2023] [Indexed: 10/06/2023]
Abstract
Tellurium (Te) containing amino acids and their derivatives have the potential to participate in biological processes, which are currently being studied extensively to understand the function of Te in biological and pharmacological activities. Here, we are reporting the synthesis of two novel Te-containing unnatural amino acids; 1,3-Tellurazolidine-4-carboxylic acid [Te{CH2CH(COOH)NHCH2}] 5, and 4,4'-(1,2-Ditellurdiyl)bis(2-aminobutanoic acid), i.e., tellurohomocystine [TeCH2CH2CH(NH2)COOH]2 7, synthesized from tellurocystine, and L-methionine as precursors, respectively. These telluro-amino acids were thoroughly characterized by multinuclear (1H, 13C, 125Te) NMR spectroscopy, high-resolution ESI-mass spectrometry (ESI-MS), and elemental analysis. The telluro-amino acids 5 and 7 demonstrated good biocompatibility when in vitro cytotoxicity was analyzed on two fibroblast cell lines L929 and NIH/3T3. The treatment of telluro-amino acids 1,3-Tellurazolidine-4-carboxylic acid 5 and tellurohomocystine 7 on breast cancer cell line MCF-7 showed anticancer activity with IC50 values of 7.29 ± 0.27 µg/mL and 25.36 ± 0.12 µg/mL, respectively. The cell cycle distribution studies also revealed arrest at the sub-G1 phase suggesting telluro-amino acids to be apoptotic.
Collapse
Affiliation(s)
- Abhishek Tripathi
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Amreen Khan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
- Center for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| |
Collapse
|
5
|
Tripathi A, Khan A, Kiran P, Shetty H, Srivastava R. Screening of AS101 analog, organotellurolate (IV) compound 2 for its in vitro biocompatibility, anticancer, and antibacterial activities. Amino Acids 2023:10.1007/s00726-023-03280-7. [PMID: 37227510 DOI: 10.1007/s00726-023-03280-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/10/2023] [Indexed: 05/26/2023]
Abstract
Organotellurium compounds are being well researched as potential candidates for their functional roles in therapeutic and clinical biology. Here, we report the in vitro anticancer and antibacterial activities of an AS101 analog, cyclic zwitterionic organotellurolate (IV) compound 2 [Te-{CH2CH(NH3+)COO}(Cl)3]. Different concentrations of compound 2 were exposed to fibroblast L929 and breast cancer MCF-7 cell lines to study its effect on cell viability. The fibroblast cells with good viability confirmed the biocompatibility, and compound 2 also was less hemolytic on RBCs. A cytotoxic effect on MCF-7 breast cancer cell line investigated compound 2 to be anti-cancerous with IC50 value of 2.86 ± 0.02 µg/mL. The apoptosis was confirmed through the cell cycle phase arrest of the organotellurolate (IV) compound 2. Examination of the antibacterial potency compound 2 was done based on the agar disk diffusion, minimum inhibitory concentration, and time-dependent assay for the Gram-positive Bacillus subtilis and Gram-negative Pseudomonas putida. For both bacterial strains, tests were performed with the concentration range of 3.9-500 μg/mL, and the minimum inhibition concentration value was found to be 125 μg/mL. The time-dependent assay suggested the bactericidal activity of organotellurolate (IV) compound, 2 against the bacterial strains.
Collapse
Affiliation(s)
- Abhishek Tripathi
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Amreen Khan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
- Center for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Pallavi Kiran
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Harsha Shetty
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| |
Collapse
|
6
|
Sands KN, Burman AL, Ansah-Asamoah E, Back TG. Chemistry Related to the Catalytic Cycle of the Antioxidant Ebselen. Molecules 2023; 28:molecules28093732. [PMID: 37175141 PMCID: PMC10180093 DOI: 10.3390/molecules28093732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
The antioxidant drug ebselen has been widely studied in both laboratories and in clinical trials. The catalytic mechanism by which it destroys hydrogen peroxide via reduction with glutathione or other thiols is complex and has been the subject of considerable debate. During reinvestigations of several key steps, we found that the seleninamide that comprises the first oxidation product of ebselen underwent facile reversible methanolysis to an unstable seleninate ester and two dimeric products. In its reaction with benzyl alcohol, the seleninamide produced a benzyl ester that reacted readily by selenoxide elimination, with formation of benzaldehyde. Oxidation of ebselen seleninic acid did not afford a selenonium seleninate salt as previously observed with benzene seleninic acid, but instead generated a mixture of the seleninic and selenonic acids. Thiolysis of ebselen with benzyl thiol was faster than oxidation by ca. an order of magnitude and produced a stable selenenyl sulfide. When glutathione was employed, the product rapidly disproportionated to glutathione disulfide and ebselen diselenide. Oxidation of the S-benzyl selenenyl sulfide, or thiolysis of the seleninamide with benzyl thiol, afforded a transient thiolseleninate that also readily underwent selenoxide elimination. The S-benzyl derivative disproportionated readily when catalyzed by the simultaneous presence of both the thiol and triethylamine. The phenylthio analogue disproportionated when exposed to ambient or UV (360 nm) light by a proposed radical mechanism. These observations provide additional insight into several reactions and intermediates related to ebselen.
Collapse
Affiliation(s)
- Kai N Sands
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Austin L Burman
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Esther Ansah-Asamoah
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Thomas G Back
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
7
|
Galetto FZ, da Silva C, Beche RIM, Balaguez RA, Franco MS, de Assis FF, Frizon TEA, Su X. Decarboxylative ring-opening of 2-oxazolidinones: a facile and modular synthesis of β-chalcogen amines. RSC Adv 2022; 12:34496-34502. [PMID: 36545628 PMCID: PMC9710311 DOI: 10.1039/d2ra06070a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/18/2022] [Indexed: 12/03/2022] Open
Abstract
We report herein the synthesis of primary and secondary β-chalcogen amines through the regioselective ring-opening reaction of non-activated 2-oxazolidinones promoted by in situ generated chalcogenolate anions. The developed one-step protocol enabled the preparation of β-selenoamines, β-telluroamines and β-thioamines with appreciable structural diversity and in yields of up to 95%.
Collapse
Affiliation(s)
- Fábio Z Galetto
- Department of Chemistry, Federal University of Santa Catarina Florianópolis SC 88040-900 Brazil +554837213649
| | - Cleiton da Silva
- Department of Chemistry, Federal University of Santa Catarina Florianópolis SC 88040-900 Brazil +554837213649
| | - Ricardo I M Beche
- Department of Chemistry, Federal University of Santa Catarina Florianópolis SC 88040-900 Brazil +554837213649
| | - Renata A Balaguez
- Department of Chemistry, Federal University of Santa Catarina Florianópolis SC 88040-900 Brazil +554837213649
| | - Marcelo S Franco
- Department of Chemistry, Federal University of Santa Catarina Florianópolis SC 88040-900 Brazil +554837213649
| | - Francisco F de Assis
- Department of Chemistry, Federal University of Santa Catarina Florianópolis SC 88040-900 Brazil +554837213649
| | - Tiago E A Frizon
- Department of Energy and Sustainability, Federal University of Santa Catarina Araranguá SC Brazil
| | - Xiao Su
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| |
Collapse
|
8
|
Taheri-Ledari R, Qazi FS, Saeidirad M, Maleki A. A diselenobis-functionalized magnetic catalyst based on iron oxide/silica nanoparticles suggested for amidation reactions. Sci Rep 2022; 12:14865. [PMID: 36050366 PMCID: PMC9436994 DOI: 10.1038/s41598-022-19030-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/23/2022] [Indexed: 11/18/2022] Open
Abstract
In this study, a new heterogeneous magnetic catalytic system based on selenium-functionalized iron oxide nanoparticles is presented and suggested for facilitating amide/peptide bonds formation. The prepared nanocatalyst, entitled as "Fe3O4/SiO2-DSBA" (DSBA stands for 2,2'-diselanediylbis benzamide), has been precisely characterized for identifying its physicochemical properties. As the most brilliant point, the catalytic performance of the designed system can be mentioned, where only a small amount of Fe3O4/SiO2-DSBA (0.25 mol%) has resulted in 89% reaction yield, under a mild condition. Also, given high importance of green chemistry, convenient catalyst particles separation from the reaction medium through its paramagnetic property (ca. 30 emu·g-1) should be noticed. This particular property provided a substantial opportunity to recover the catalyst particles and successfully reuse them for at least three successive times. Moreover, due to showing other excellences, such as economic benefits and nontoxicity, the presented catalytic system is recommended to be scaled up and exploited in the industrial applications.
Collapse
Affiliation(s)
- Reza Taheri-Ledari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 16846-13114, Tehran, Iran
| | - Fateme Sadat Qazi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 16846-13114, Tehran, Iran
| | - Mahdi Saeidirad
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 16846-13114, Tehran, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 16846-13114, Tehran, Iran.
| |
Collapse
|
9
|
Liu B, Su Y, Wu S, Shen J. Local Photothermal/Photodynamic Synergistic Antibacterial Therapy Based on Two-dimensional BP@CQDs Triggered by Single NIR Light Source. Photodiagnosis Photodyn Ther 2022; 39:102905. [DOI: 10.1016/j.pdpdt.2022.102905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 12/24/2022]
|
10
|
Tripathi A, Deka R, Butcher RJ, Turner DR, Deacon GB, Singh HB. Exploring the reactivity of L-tellurocystine, Te-protected tellurocysteine conjugates and diorganodiselenides towards hydrogen peroxide: synthesis and molecular structure analysis. NEW J CHEM 2022. [DOI: 10.1039/d2nj00997h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of a series of novel organotellurium species and diorganoselenones is reported.
Collapse
Affiliation(s)
- Abhishek Tripathi
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
- IITB-Monash Research Academy, Powai, Mumbai 400076, India
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Rajesh Deka
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
- IITB-Monash Research Academy, Powai, Mumbai 400076, India
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Ray J. Butcher
- Department of Chemistry, Howard University, Washington, D. C. 20059, USA
| | - David R. Turner
- IITB-Monash Research Academy, Powai, Mumbai 400076, India
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Glen B. Deacon
- IITB-Monash Research Academy, Powai, Mumbai 400076, India
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Harkesh B. Singh
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
- IITB-Monash Research Academy, Powai, Mumbai 400076, India
| |
Collapse
|
11
|
Morajkar RV, Fatrekar AP, Mohanty A, Vernekar AA. A review on the role of transition metals in selenylation reactions. Curr Org Synth 2021; 19:366-392. [PMID: 34544346 DOI: 10.2174/1570179418666210920150142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 11/22/2022]
Abstract
Organoselenium chemistry has emerged as a distinctive area of research with tremendous utility in the synthesis of biologically and pharmaceutically active molecules. Significant synthetic approaches have been made for the construction of C-Se bonds which find use in other organic transformations. This review focuses on the versatility of transition metal-mediated selenylation reactions, providing insights into various synthetic pathways and mechanistic details. Further, this review aims to offer a broad perspective for designing efficient and novel catalysts to incorporate organoselenium moiety into the inert C-H bonds.
Collapse
Affiliation(s)
- Rasmi V Morajkar
- Inorganic and Physical Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Adyar, Chennai-600020. India
| | - Adarsh P Fatrekar
- Inorganic and Physical Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Adyar, Chennai-600020. India
| | - Abhijeet Mohanty
- Inorganic and Physical Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Adyar, Chennai-600020. India
| | - Amit A Vernekar
- Inorganic and Physical Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Adyar, Chennai-600020. India
| |
Collapse
|
12
|
Tripathi A, Daolio A, Pizzi A, Guo Z, Turner DR, Baggioli A, Famulari A, Deacon GB, Resnati G, Singh HB. Chalcogen Bonds in Selenocysteine Seleninic Acid, a Functional GPx Constituent, and in Other Seleninic or Sulfinic Acid Derivatives. Chem Asian J 2021; 16:2351-2360. [PMID: 34214252 PMCID: PMC8456948 DOI: 10.1002/asia.202100545] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/01/2021] [Indexed: 11/24/2022]
Abstract
The controlled oxidation reaction of L-selenocystine under neutral pH conditions affords selenocysteine seleninic acid (3-selenino-L-alanine) which is characterized also by means of single-crystal X-ray diffraction. This technique shows that selenium forms three chalcogen bonds (ChBs), one of them being outstandingly short. A survey of seleninic acid derivatives in the Cambridge Structural Database (CSD) confirms that the C-Se(=O)O- functionality tends to act as a ChB donor robust enough to systematically influence the interactional landscape in the solid. Quantum Theory of Atom in Molecules (QTAIM) analysis proves the attractive nature of the short contacts observed in crystals containing the seleninic functionality and calculation of surface molecular electrostatic potential (MEP) reveals that remarkably positive σ-holes can frequently be found opposite to the covalent bonds at selenium. Both CSD searches and QTAIM and MEP approaches show that also the sulfinic acid moiety can function as a ChB donor, albeit less frequently than the seleninic acid one. These findings may contribute to a better understanding, at the atomic level, of the mechanism of action of the enzymes that control oxidative stress and ROS deactivation and that contain selenocysteine seleninic acid and cysteine sulfinic acid in the active site.
Collapse
Affiliation(s)
- Abhishek Tripathi
- Department of ChemistryIndian Institute of Technology BombayMumbai400076India
- School of ChemistryMonash UniversityClaytonVictoria3800Australia
- IITB-Monash Research AcademyMonash UniversityPowai, Mumbai400076India
| | - Andrea Daolio
- Department of Chemistry, Materials and Chemical Engineering“Giulio Natta”Politecnico di MilanoVia Luigi Mancinelli 720131MilanoItaly
| | - Andrea Pizzi
- Department of Chemistry, Materials and Chemical Engineering“Giulio Natta”Politecnico di MilanoVia Luigi Mancinelli 720131MilanoItaly
| | - Zhifang Guo
- School of ChemistryMonash UniversityClaytonVictoria3800Australia
| | - David R. Turner
- School of ChemistryMonash UniversityClaytonVictoria3800Australia
- IITB-Monash Research AcademyMonash UniversityPowai, Mumbai400076India
| | - Alberto Baggioli
- Department of Chemistry, Materials and Chemical Engineering“Giulio Natta”Politecnico di MilanoVia Luigi Mancinelli 720131MilanoItaly
| | - Antonino Famulari
- Department of Chemistry, Materials and Chemical Engineering“Giulio Natta”Politecnico di MilanoVia Luigi Mancinelli 720131MilanoItaly
| | - Glen B. Deacon
- School of ChemistryMonash UniversityClaytonVictoria3800Australia
- IITB-Monash Research AcademyMonash UniversityPowai, Mumbai400076India
| | - Giuseppe Resnati
- Department of Chemistry, Materials and Chemical Engineering“Giulio Natta”Politecnico di MilanoVia Luigi Mancinelli 720131MilanoItaly
| | - Harkesh B. Singh
- Department of ChemistryIndian Institute of Technology BombayMumbai400076India
- IITB-Monash Research AcademyMonash UniversityPowai, Mumbai400076India
| |
Collapse
|
13
|
Mikami R, Tsukagoshi S, Oda Y, Arai K. S-Denitrosylase-like Activity of Cyclic Diselenides Conjugated with Xaa-His Dipeptide: Role of Proline Spacer as a Key Activity Booster. Chembiochem 2021; 23:e202100394. [PMID: 34350692 DOI: 10.1002/cbic.202100394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Indexed: 11/05/2022]
Abstract
This study developed dipeptide-conjugated 1,2-diselenan-4-amine (1), i.e., 1-Xaa-His, as a new class of S-denitrosylase mimic. The synthesized compounds, especially 1-Pro-His, remarkably promoted S-denitrosylation of nitrosothiols (RSNO) via a catalytic cycle involving the reversible redox reaction between the diselenide and its corresponding diselenol ([SeH,SeH]) form with coexisting reductant thiols (R'SH), during which the [SeH,SeH] form as a key reactive species reduces RSNO to the corresponding thiol (RSH). Structural analyses of 1-Pro-His suggested that the peptide backbone of [SeH,SeH] is rigidly bent to form a γ-turn, possibly including an NH···Se hydrogen bond between the imidazole ring of His and selenol group, thus stabilizing the [SeH,SeH] form thermodynamically, and dramatically enhancing the catalytic activity. Furthermore, the synthetic compounds were found to prohibit S-nitrosylation-induced protein misfolding in the presence of RSNO, eventually implying their potential as a drug seed for misfolding diseases caused by the dysregulation of the S-denitrosylation system.
Collapse
Affiliation(s)
- Rumi Mikami
- Tokai University - Shonan Campus: Tokai Daigaku, Chemistry, Kitakaname, 259-1292, Hiratsuka-shi, JAPAN
| | - Shunsuke Tsukagoshi
- Tokai University - Shonan Campus: Tokai Daigaku, Chemistry, Kitakaname, 259-1292, Hiratsuka-shi, JAPAN
| | - Yoshiki Oda
- Tokai University - Shonan Campus: Tokai Daigaku, Technology Joint Management Office, Kitakaname, 259-1292, Hiratsuka-shi, JAPAN
| | - Kenta Arai
- Tokai University, Chemistry, Kitakaname, 259-1292, Hiratsuka-shi, JAPAN
| |
Collapse
|
14
|
Sands KN, Gelfand BS, Back TG. One-Pot Synthesis of Aryl Selenonic Acids and Some Unexpected Byproducts. J Org Chem 2021; 86:9938-9944. [PMID: 34269577 DOI: 10.1021/acs.joc.1c01369] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The synthesis of aryl selenonic acids was achieved from diverse aryl bromides via a one-pot method involving metalation, selenation, and oxidation with hydrogen peroxide followed by ion exchange to afford the pure products in 77-90% yield. An o-hydroxymethyl derivative was found to dehydrate readily, affording the first example of a cyclic selenonic ester, while two minor byproducts were isolated and shown by X-ray crystallography to be mixed salts of aryl selenonic acids with either the corresponding aryl seleninic or selenious acid.
Collapse
Affiliation(s)
- Kai N Sands
- Department of Chemistry, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | - Benjamin S Gelfand
- Department of Chemistry, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | - Thomas G Back
- Department of Chemistry, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| |
Collapse
|
15
|
Zhu PC, Chen YX. Facile Synthesis of Boc-Protected Selenocystine and its Compatibility with Late-Stage Farnesylation at Cysteine Site. Protein Pept Lett 2021; 28:603-611. [PMID: 33357178 DOI: 10.2174/0929866527666201223094249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 09/10/2020] [Accepted: 11/02/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The unique hypervariable C-terminal region (HVR) of K-Ras4B, one of the most frequently mutated proteins in many powerful cancers, contains a C-terminal farnesylated and methylated Cys and a poly-lysine motif, which decides the association of K-Ras4B to the inner leaflet of plasma membrane for activating the downstream signaling activity. In our previous work, we inserted an additional Cys in K-Ras4B HVR peptide synthesis for NCL in the semi-synthesis of K-Ras4b protein, but it is not suitable for application in protein dimerization research. The recently developed selenocysteine (Sec, U) mediated native chemical ligation reaction followed by selective deselenization, which can help to broaden the scope of protein synthesis, requires the generation of the peptide fragment with an N-terminal Sec. OBJECTIVE To synthesize K-Ras4B HVR peptide containing both N-terminal Sec and C-terminal farnesylated and methylated Cys to achieve traceless protein semi-synthesis. METHODS AND RESULTS We have developed a facile synthesis approach for producing Boc-Sec)2-OH using economic Se powder, which can facilitate scaling up preparation of peptides containing Sec at the N-terminus. Furthermore, we synthesized K-Ras4B HVR peptide containing selenocystine by utilization of Boc-Sec)2-OH. Finally, we took K-Ras4B HVR peptide as an example to test the compatibility of farnesylation reaction at Cys with the N-terminal Sec)2, and the farnesyl group was successfully added to the thiol group of Cys.
Collapse
Affiliation(s)
- Peng-Cheng Zhu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yong-Xiang Chen
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
16
|
Chen H, Wen K, Chen J, Xing W, Wu X, Shi Q, Peng A, Huang H. Ultra-stable tellurium-doped carbon quantum dots for cell protection and near-infrared photodynamic application. Sci Bull (Beijing) 2020; 65:1580-1586. [PMID: 36738076 DOI: 10.1016/j.scib.2020.05.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/30/2020] [Accepted: 05/20/2020] [Indexed: 02/07/2023]
Abstract
It is important to regulate the concentration of reactive oxygen species (ROS) in cells since they play important roles in metabolism. Thus, developing nanoreagents to control the ROS is critical. Herein, tellurium-doped carbon quantum dots (Te-CDs) were developed by a simple and efficient hydrothermal method, which can scavenge H2O2 to protect cells under ambient condition, but generate ·OH under 808 nm irradiation as photodynamic application. This contribution presented a kind of novel CDs with dual-functions, which can potentially regulate ROS under different conditions.
Collapse
Affiliation(s)
- Hao Chen
- Center of Materials Science and Opto-electronic Technology, College of Materials Science and Opto-electronic Technology & CAS Center for Excellence in Topological Quantum Computation & CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaikai Wen
- Center of Materials Science and Opto-electronic Technology, College of Materials Science and Opto-electronic Technology & CAS Center for Excellence in Topological Quantum Computation & CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingya Chen
- Center of Materials Science and Opto-electronic Technology, College of Materials Science and Opto-electronic Technology & CAS Center for Excellence in Topological Quantum Computation & CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China
| | - Wang Xing
- Center of Materials Science and Opto-electronic Technology, College of Materials Science and Opto-electronic Technology & CAS Center for Excellence in Topological Quantum Computation & CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoxi Wu
- Center of Materials Science and Opto-electronic Technology, College of Materials Science and Opto-electronic Technology & CAS Center for Excellence in Topological Quantum Computation & CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qinqin Shi
- Center of Materials Science and Opto-electronic Technology, College of Materials Science and Opto-electronic Technology & CAS Center for Excellence in Topological Quantum Computation & CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Aidong Peng
- Center of Materials Science and Opto-electronic Technology, College of Materials Science and Opto-electronic Technology & CAS Center for Excellence in Topological Quantum Computation & CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Hui Huang
- Center of Materials Science and Opto-electronic Technology, College of Materials Science and Opto-electronic Technology & CAS Center for Excellence in Topological Quantum Computation & CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
17
|
Irfan M, Rehman R, Razali MR, Shafiq-Ur-Rehman, Ateeq-Ur-Rehman, Iqbal MA. Organotellurium compounds: an overview of synthetic methodologies. REV INORG CHEM 2020. [DOI: 10.1515/revic-2020-0006] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Abstract
In wake of emerging applications of organotellurium compounds in biological and material science avenues, the current review describes their key synthetic methodologies while focusing the synthesis of organotellurium compounds through five ligand-to-metal linkages including carbon; carbon-oxygen; carbon-nitrogen; carbon-metal; carbon-sulfur to tellurium. In all of these linkages whether tellurium links with ligands through a complicated or simple pathways, it is often governed through electrophilic substitution reactions. The present study encompasses these major synthetic routes so as to acquire comprehensive understanding of synthetic organotellurium compounds.
Collapse
Affiliation(s)
- Muhammad Irfan
- Department of Chemistry , University of Agriculture , Faisalabad - 38040 , Pakistan
- Organometallic & Coordination Chemistry Laboratory , University of Agriculture , Faisalabad - 38040 , Pakistan
| | - Rabia Rehman
- Institute of Chemistry , University of the Punjab , Lahore - 54590 , Pakistan
| | - Mohd. R. Razali
- School of Chemical Sciences , Universiti Sains Malaysia , 11800-USM , Penang , Malaysia
| | - Shafiq-Ur-Rehman
- Department of Chemistry , University of Agriculture , Faisalabad - 38040 , Pakistan
| | - Ateeq-Ur-Rehman
- Department of Physics , University of Agriculture , Faisalabad - 38040 , Pakistan
| | - Muhammad Adnan Iqbal
- Department of Chemistry , University of Agriculture , Faisalabad - 38040 , Pakistan
- Organometallic & Coordination Chemistry Laboratory , University of Agriculture , Faisalabad - 38040 , Pakistan
| |
Collapse
|
18
|
Tanini D, Ricci L, Capperucci A. Rongalite‐Promotedon WaterSynthesis of Functionalised Tellurides and Ditellurides. Adv Synth Catal 2020. [DOI: 10.1002/adsc.201901536] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Damiano Tanini
- University of FlorenceDepartment of Chemistry “Ugo Schiff” Via della Lastruccia 3–13 I-50019 Sesto Fiorentino Italy
| | - Lorenzo Ricci
- University of FlorenceDepartment of Chemistry “Ugo Schiff” Via della Lastruccia 3–13 I-50019 Sesto Fiorentino Italy
| | - Antonella Capperucci
- University of FlorenceDepartment of Chemistry “Ugo Schiff” Via della Lastruccia 3–13 I-50019 Sesto Fiorentino Italy
| |
Collapse
|
19
|
Sands KN, Mendoza Rengifo E, George GN, Pickering IJ, Gelfand BS, Back TG. The Unexpected Role of Se
VI
Species in Epoxidations with Benzeneseleninic Acid and Hydrogen Peroxide. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Kai N. Sands
- Department of Chemistry University of Calgary 2500 University Drive NW Calgary Alberta T2N 1N4 Canada
| | - Emerita Mendoza Rengifo
- Department of Geological Sciences University of Saskatchewan 114 Science Place Saskatoon Saskatchewan S7N 5E2 Canada
| | - Graham N. George
- Department of Geological Sciences University of Saskatchewan 114 Science Place Saskatoon Saskatchewan S7N 5E2 Canada
| | - Ingrid J. Pickering
- Department of Geological Sciences University of Saskatchewan 114 Science Place Saskatoon Saskatchewan S7N 5E2 Canada
| | - Benjamin S. Gelfand
- Department of Chemistry University of Calgary 2500 University Drive NW Calgary Alberta T2N 1N4 Canada
| | - Thomas G. Back
- Department of Chemistry University of Calgary 2500 University Drive NW Calgary Alberta T2N 1N4 Canada
| |
Collapse
|
20
|
Sands KN, Mendoza Rengifo E, George GN, Pickering IJ, Gelfand BS, Back TG. The Unexpected Role of Se VI Species in Epoxidations with Benzeneseleninic Acid and Hydrogen Peroxide. Angew Chem Int Ed Engl 2020; 59:4283-4287. [PMID: 31875332 PMCID: PMC7054174 DOI: 10.1002/anie.201913566] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/04/2019] [Indexed: 11/08/2022]
Abstract
Benzeneperoxyseleninic acid has been proposed as the key intermediate in the widely used epoxidation of alkenes with benzeneseleninic acid and hydrogen peroxide. However, it reacts sluggishly with cyclooctene and instead rapidly decomposes in solution to a mixed selenonium-selenonate salt that was identified by X-ray absorption and 77 Se NMR spectroscopy, as well as by single crystal X-ray diffraction. This process includes a selenoxide elimination of the peroxyseleninic acid with liberation of oxygen and additional redox steps. The salt is relatively stable in the solid state, but generates the corresponding selenonic acid in the presence of hydrogen peroxide. The selenonic acid is inert towards cyclooctene on its own; however, rapid epoxidation occurs when hydrogen peroxide is added. This shows that the selenonic acid must first be activated through further oxidation, presumably to the heretofore unknown benzeneperoxyselenonic acid. The latter is the principal oxidant in this epoxidation.
Collapse
Affiliation(s)
- Kai N Sands
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Emerita Mendoza Rengifo
- Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan, S7N 5E2, Canada
| | - Graham N George
- Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan, S7N 5E2, Canada
| | - Ingrid J Pickering
- Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan, S7N 5E2, Canada
| | - Benjamin S Gelfand
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Thomas G Back
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| |
Collapse
|
21
|
Chand A, Biswal HS. Hydrogen Bonds with Chalcogens: Looking Beyond the Second Row of the Periodic Table. J Indian Inst Sci 2019. [DOI: 10.1007/s41745-019-00140-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
22
|
Tanini D, Ricci L, Capperucci A, Di Cesare Mannelli L, Ghelardini C, Peat TS, Carta F, Angeli A, Supuran CT. Synthesis of novel tellurides bearing benzensulfonamide moiety as carbonic anhydrase inhibitors with antitumor activity. Eur J Med Chem 2019; 181:111586. [PMID: 31401537 DOI: 10.1016/j.ejmech.2019.111586] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/23/2019] [Accepted: 08/04/2019] [Indexed: 12/30/2022]
Abstract
We have synthetized a novel series of β-hydroxy tellurides bearing the benzenesulfonamide group as potent inhibitors of carbonic anhydrase enzymes. In a one pot procedure, we discovered both the ring opening reaction of the three-membered ring and the cleavage of the sulfonamide protecting moiety at the same time. Moreover, the first X-ray co-crystallographic structure of a β-hydroxy telluride derivative with hCA II is reported. The potent effects of these compounds against the tumor-associated hCA IX with low nanomolar constant inhibition values give the possibility to evaluate their activity in vitro using a breast cancer cell line (MDA-MB-231). Compounds 7e and 7g induced significant toxic effects against tumor cells after 48 h incubation in normoxic conditions killing over 50% of tumor cells at 3 μM, but their efficacy decreased in hypoxic conditions reaching the 50% of the tumor cell viability only at 30 μM. These unusual features make them interesting lead compounds to act as antitumor agents, not only as Carbonic Anhydrase IX inhibitors, but reasonably in different pathways, where hCA IX is not overexpressed.
Collapse
Affiliation(s)
- Damiano Tanini
- University of Florence, Department of Chemistry "Ugo Schiff", Via della Lastruccia 3-13, I-50019, Sesto Fiorentino, Italy
| | - Lorenzo Ricci
- University of Florence, Department of Chemistry "Ugo Schiff", Via della Lastruccia 3-13, I-50019, Sesto Fiorentino, Italy
| | - Antonella Capperucci
- University of Florence, Department of Chemistry "Ugo Schiff", Via della Lastruccia 3-13, I-50019, Sesto Fiorentino, Italy
| | - Lorenzo Di Cesare Mannelli
- NEUROFARBA Department, Section of Pharmacology and Toxicology, Università degli Studi di Firenze, Viale Pieraccini 6, 50139, Florence, Italy
| | - Carla Ghelardini
- NEUROFARBA Department, Section of Pharmacology and Toxicology, Università degli Studi di Firenze, Viale Pieraccini 6, 50139, Florence, Italy
| | - Thomas S Peat
- CSIRO, 343 Royal Parade, Parkville, Victoria, 3052, Australia
| | - Fabrizio Carta
- Department of University of Florence, NEUROFARBA Dept., Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Florence, Italy
| | - Andrea Angeli
- Department of University of Florence, NEUROFARBA Dept., Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Florence, Italy; Centre of Advanced Research in Bionanoconjugates and Biopolymers Department, "Petru Poni" Institute of Macromolecular Chemistry, Iasi, Romania.
| | - Claudiu T Supuran
- Department of University of Florence, NEUROFARBA Dept., Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
23
|
Gokula RP, Patel K, Maurya SK, Singh HB. Facile synthesis of stable selenocystine peptides and their solution state NMR studies. Org Biomol Chem 2019; 17:8533-8536. [PMID: 31517367 DOI: 10.1039/c9ob01910c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A facile general route for the synthesis of various selenocystine tripeptides containing acidic, basic and neutral side chain amino acids is reported. Here, TFA labile side chain protected selenocysteine has been used as a precursor for the synthesis of selenopeptides. The peptides are highly stable in dimethyl sulphoxide, thus enabling detailed NMR studies by solution phase 1- and 2-dimensional NMR spectroscopy.
Collapse
Affiliation(s)
- Ram P Gokula
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | | | | | | |
Collapse
|
24
|
Gupta A, Deka R, Sarkar A, Singh HB, Butcher RJ. Oxidation behavior of intramolecularly coordinated unsymmetrical diorganotellurides: isolation of novel tetraorganoditelluronic acids, [RR'Te(μ-O)(OH) 2] 2. Dalton Trans 2019; 48:10979-10985. [PMID: 31210248 DOI: 10.1039/c9dt01926j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The oxidation reaction of unsymmetrical diorganotellurides, namely, bis[2-{(dimethylamino)methyl}aryl]tellurides [aryl = phenyl (6), 2-methylphenyl (7), 2,6-dimethylphenyl (8) and 2,6-diisopropylphenyl (9)] with meta-chloroperbenzoic acid afforded the first examples of tetraorganoditelluronic acids, [RR'Te(μ-O)(OH)2]2, where R = 2-NMe2CH2C6H4, R' = C6H5 (10), 2-MeC6H4 (11), 2,6-MeC6H3 (12) and 2,6-iPrC6H3 (13). The structures of tetraorganoditelluronic acids 10-13 were authenticated by single crystal X-ray diffraction studies. From the molecular structures of 10-13, it was observed that the sp3 N-donor atoms, which were initially involved in intramolecular TeN bonding interactions in diorganotellurides 6-9, did not interact with the tellurium atoms in tetraorganoditelluronic acids 10-13. The 125Te chemical shifts for 10-13 were considerably downfield shifted as compared with the values observed for the corresponding tellurides 6-9. The relative stabilities of the tetraorganoditelluronic acids 10-13 with respect to their lighter analogues (S and Se) have been assessed using DFT calculations.
Collapse
Affiliation(s)
- Anand Gupta
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India.
| | - Rajesh Deka
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India.
| | - Arup Sarkar
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India.
| | - Harkesh B Singh
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India.
| | - Ray J Butcher
- Department of Chemistry, Howard University, Washington, D. C. 20059, USA
| |
Collapse
|
25
|
Boknevitz K, Italia JS, Li B, Chatterjee A, Liu SY. Synthesis and characterization of an unnatural boron and nitrogen-containing tryptophan analogue and its incorporation into proteins. Chem Sci 2019; 10:4994-4998. [PMID: 31183048 PMCID: PMC6524624 DOI: 10.1039/c8sc05167d] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 04/15/2019] [Indexed: 12/12/2022] Open
Abstract
A boron and nitrogen containing unnatural analogue of tryptophan is synthesized and incorporated into proteins.
A boron and nitrogen containing unnatural analogue of tryptophan is synthesized through the functionalization of BN-indole. The spectroscopic properties of BN-tryptophan are reported with respect to the natural tryptophan, and the incorporation of BN-tryptophan into proteins expressed in E. coli using selective pressure incorporation is described. This work shows that a cellular system can recognize the unnatural, BN-containing tryptophan. More importantly, it presents the first example of an azaborine containing amino acid being incorporated into proteins.
Collapse
Affiliation(s)
- Katherine Boknevitz
- Department of Chemistry , Boston College , Chestnut Hill , MA 02467 , USA . ;
| | - James S Italia
- Department of Chemistry , Boston College , Chestnut Hill , MA 02467 , USA . ;
| | - Bo Li
- Department of Chemistry , Boston College , Chestnut Hill , MA 02467 , USA . ;
| | - Abhishek Chatterjee
- Department of Chemistry , Boston College , Chestnut Hill , MA 02467 , USA . ;
| | - Shih-Yuan Liu
- Department of Chemistry , Boston College , Chestnut Hill , MA 02467 , USA . ;
| |
Collapse
|
26
|
Rathore V, Jose C, Kumar S. Organoselenium small molecules as catalysts for the oxidative functionalization of organic molecules. NEW J CHEM 2019. [DOI: 10.1039/c9nj00964g] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This perspective highlights the critical analysis of the challenges, in the past decade, which led to the development of organoselenium compounds and their use as versatile catalysts in organic synthesis towards the oxidation of olefins and C–H bonds. Furthermore, the emphasis here differs from previous reviews of the field by classifying the various types of catalyses and the diverse strategies.
Collapse
Affiliation(s)
- Vandana Rathore
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER)
- Bhopal
- India
| | - Cavya Jose
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER)
- Bhopal
- India
| | - Sangit Kumar
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER)
- Bhopal
- India
| |
Collapse
|