1
|
Roy S, Laha J, Reja A, Das D. Allosteric Control of the Catalytic Properties of Dipeptide-Based Supramolecular Assemblies. J Am Chem Soc 2024; 146:22522-22529. [PMID: 39088245 DOI: 10.1021/jacs.4c06447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Allostery, as seen in extant biology, governs the activity regulation of enzymes through the redistribution of conformational equilibria upon binding an effector. Herein, a minimal design is demonstrated where a dipeptide can exploit dynamic imine linkage to condense with simple aldehydes to access spherical aggregates as catalytically active states, which facilitates an orthogonal reaction due to the closer proximity of catalytic residues (imidazoles). The allosteric site (amine) of the minimal catalyst can concomitantly bind to an inhibitor via a dynamic exchange, which leads to the alternation of the energy landscape of the self-assembled state, resulting in downregulation of catalytic activity. Further, temporal control over allosteric regulation is realized via a feedback-controlled autonomous reaction network that utilizes the hydrolytic activity of the (in)active state as a function of time.
Collapse
Affiliation(s)
- Soumili Roy
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India
| | - Janmejay Laha
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India
| | - Antara Reja
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India
| | - Dibyendu Das
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India
| |
Collapse
|
2
|
Rieu T, Osypenko A, Lehn JM. Triple Adaptation of Constitutional Dynamic Networks of Imines in Response to Micellar Agents: Internal Uptake-Interfacial Localization-Shape Transition. J Am Chem Soc 2024; 146:9096-9111. [PMID: 38526415 DOI: 10.1021/jacs.3c14200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Understanding the behavior of complex chemical reaction networks and how environmental conditions can modulate their organization as well as the associated outcomes may take advantage of the design of related artificial systems. Microenvironments with defined boundaries are of particular interest for their unique properties and prebiotic significance. Dynamic covalent libraries (DCvLs) and their underlying constitutional dynamic networks (CDNs) have been shown to be appropriate for studying adaptation to several processes, including compartmentalization. However, microcompartments (e.g., micelles) provide specific environments for the selective protection from interfering reactions such as hydrolysis and an enhanced chemical promiscuity due to the interface, governing different processes of network modulation. Different interactions between the micelles and the library constituents lead to dynamic sensing, resulting in different expressions of the network through pattern generation. The constituents integrated into the micelles are protected from hydrolysis and hence preferentially expressed in the network composition at the cost of constitutionally linked members. In the present work, micellar integration was observed for two processes: internal uptake based on hydrophobic forces and interfacial localization relying on attractive electrostatic interactions. The latter drives a complex triple adaptation of the network with feedback on the shape of the self-assembled entity. Our results demonstrate how microcompartments can enforce the expression of constituents of CDNs by reducing the hydrolysis of uptaken members, unravelling processes that govern the response of reactions networks. Such studies open the way toward using DCvLs and CDNs to understand the emergence of complexity within reaction networks by their interactions with microenvironments.
Collapse
Affiliation(s)
- Tanguy Rieu
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg, 8 allée Gaspard Monge, 67000 Strasbourg, France
| | - Artem Osypenko
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg, 8 allée Gaspard Monge, 67000 Strasbourg, France
| | - Jean-Marie Lehn
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg, 8 allée Gaspard Monge, 67000 Strasbourg, France
| |
Collapse
|
3
|
Tchakalova V, Lutz E, Lamboley S, Moulin E, Benczédi D, Giuseppone N, Herrmann A. Design of Stimuli-Responsive Dynamic Covalent Delivery Systems for Volatile Compounds (Part 2): Fragrance-Releasing Cleavable Surfactants in Functional Perfumery Applications. Chemistry 2021; 27:13468-13476. [PMID: 34270131 DOI: 10.1002/chem.202102051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Indexed: 11/11/2022]
Abstract
Amphiphilic imines prepared by condensation of a hydrophobic fragrance aldehyde with a hydrophilic amine derived from a poly(propylene oxide) and poly(ethylene oxide) diblock copolymer were investigated as cleavable surfactant profragrances in applications of functional perfumery. In water, the cleavable surfactants assemble into micelles that allow solubilization of perfume molecules that are not covalently attached to the surfactant. Dynamic headspace analysis on a glass surface showed that solubilized perfume molecules evaporated in a similar manner in the presence of the cleavable surfactant as compared with a non-cleavable reference surfactant. Under application conditions, the cleavable surfactant imine hydrolysed to release the covalently linked fragrance aldehyde. The profragrances were stable during storage in aqueous media, and upon dilution showed a blooming effect for the hydrolytical fragrance release and a more balanced performance of a solubilized perfume by retaining the more volatile fragrances and boosting the evaporation of the less volatile fragrances.
Collapse
Affiliation(s)
- Vera Tchakalova
- Firmenich SA, Corporate R&D Division, Rue de la Bergère 7, 1242, Satigny, Switzerland
| | - Eric Lutz
- SAMS research group Institut Charles Sadron, CNRS, University of Strasbourg, 23 rue du Loess, BP 84047, 67034, Strasbourg Cedex 2, France
| | - Serge Lamboley
- Firmenich SA, Corporate R&D Division, Rue de la Bergère 7, 1242, Satigny, Switzerland
| | - Emilie Moulin
- SAMS research group Institut Charles Sadron, CNRS, University of Strasbourg, 23 rue du Loess, BP 84047, 67034, Strasbourg Cedex 2, France
| | - Daniel Benczédi
- Firmenich SA, Corporate R&D Division, Rue de la Bergère 7, 1242, Satigny, Switzerland
| | - Nicolas Giuseppone
- SAMS research group Institut Charles Sadron, CNRS, University of Strasbourg, 23 rue du Loess, BP 84047, 67034, Strasbourg Cedex 2, France
| | - Andreas Herrmann
- Firmenich SA, Corporate R&D Division, Rue de la Bergère 7, 1242, Satigny, Switzerland
| |
Collapse
|
4
|
Lutz E, Moulin E, Tchakalova V, Benczédi D, Herrmann A, Giuseppone N. Design of Stimuli-Responsive Dynamic Covalent Delivery Systems for Volatile Compounds (Part 1): Controlled Hydrolysis of Micellar Amphiphilic Imines in Water. Chemistry 2021; 27:13457-13467. [PMID: 34270124 DOI: 10.1002/chem.202102049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Indexed: 12/29/2022]
Abstract
Despite their intrinsic hydrolysable character, imine bonds can become remarkably stable in water when self-assembled in amphiphilic micellar structures. In this work, we systematically studied some of these structures and the influence of various parameters that can be used to take control of their hydrolysis, including pH, concentration, the position of the imine function in the amphiphilic structure, relative lengths of the linked hydrophilic and hydrophobic moieties. Thermodynamic and kinetic data led us to the rational design of stable imines in water, partly based on the location of the imine function within the hydrophobic part of the amphiphile and on a predictable quantitative term that we define as the total hydrophilic-lipophilic balance (HLB). In addition, we show that such stable systems are also stimuli-responsive and therefore, of potential interest in trapping and releasing micellar components on demand.
Collapse
Affiliation(s)
- Eric Lutz
- SAMS Research Group, Institut Charles Sadron, CNRS, University of Strasbourg, 23 rue du Loess, BP 84047, 67034, Strasbourg Cedex 2, France
| | - Emilie Moulin
- SAMS Research Group, Institut Charles Sadron, CNRS, University of Strasbourg, 23 rue du Loess, BP 84047, 67034, Strasbourg Cedex 2, France
| | - Vera Tchakalova
- Firmenich SA, Corporate R&D Division, Rue de la Bergère 7, 1242, Satigny, Switzerland
| | - Daniel Benczédi
- Firmenich SA, Corporate R&D Division, Rue de la Bergère 7, 1242, Satigny, Switzerland
| | - Andreas Herrmann
- Firmenich SA, Corporate R&D Division, Rue de la Bergère 7, 1242, Satigny, Switzerland
| | - Nicolas Giuseppone
- SAMS Research Group, Institut Charles Sadron, CNRS, University of Strasbourg, 23 rue du Loess, BP 84047, 67034, Strasbourg Cedex 2, France
| |
Collapse
|
5
|
Chirumbolo S, Vella A. Molecules, Information and the Origin of Life: What Is Next? Molecules 2021; 26:molecules26041003. [PMID: 33672848 PMCID: PMC7917628 DOI: 10.3390/molecules26041003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/20/2022] Open
Abstract
How life did originate and what is life, in its deepest foundation? The texture of life is known to be held by molecules and their chemical-physical laws, yet a thorough elucidation of the aforementioned questions still stands as a puzzling challenge for science. Focusing solely on molecules and their laws has indirectly consolidated, in the scientific knowledge, a mechanistic (reductionist) perspective of biology and medicine. This occurred throughout the long historical path of experimental science, affecting subsequently the onset of the many theses and speculations about the origin of life and its maintenance. Actually, defining what is life, asks for a novel epistemology, a ground on which living systems’ organization, whose origin is still questioned via chemistry, physics and even philosophy, may provide a new key to focus onto the complex nature of the human being. In this scenario, many issues, such as the role of information and water structure, have been long time neglected from the theoretical basis on the origin of life and marginalized as a kind of scenic backstage. On the contrary, applied science and technology went ahead on considering molecules as the sole leading components in the scenery. Water physics and information dynamics may have a role in living systems much more fundamental than ever expected. Can an organism be simply explained by a mechanistic view of its nature or we need “something else”? Probably, we can earn sound foundations about life by simply changing our prejudicial view about living systems simply as complex, highly ordered machines. In this manuscript we would like to reappraise many fundamental aspects of molecular and chemical biology and reading them through a new paradigm, which includes Prigogine’s dissipative structures and informational dissipation (Shannon dissipation). This would provide readers with insightful clues about how biology and chemistry may be thoroughly revised, referring to new models, such as informational dissipation. We trust they are enabled to address a straightforward contribution in elucidating what life is for science. This overview is not simply a philosophical speculation, but it would like to affect deeply our way to conceive and describe the foundations of organisms’ life, providing intriguing suggestions for readers in the field.
Collapse
Affiliation(s)
- Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy
- Correspondence: ; Tel.: +39-0458027645
| | - Antonio Vella
- Verona-Unit of Immunology, Azienda Ospedaliera Universitaria Integrata, 37134 Verona, Italy;
| |
Collapse
|