1
|
Guo B, Wen X, Xu L, Ren X, Niu S, YangCheng R, Ma G, Zhang J, Guo Y, Xu P, Li S. Noble Metal Phosphides: Robust Electrocatalysts toward Hydrogen Evolution Reaction. SMALL METHODS 2024; 8:e2301469. [PMID: 38161258 DOI: 10.1002/smtd.202301469] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Indexed: 01/03/2024]
Abstract
Facing with serious carbon emission issues, the production of green H2 from electrocatalytic hydrogen evolution reaction (HER) has received extensive research interest. Almost all kinds of noble metal phosphides (NMPs) consisting of Pt-group elements (i.e., Ru, Rh, Pd, Os, Ir and Pt) are all highly active and pH-universal electrocatalysts toward HER. In this review, the recent progress of NMP-based HER electrocatalysts is summarized. It is further take typical examples for discussing important impact factors on the HER performance of NMPs, including crystalline phase, morphology, noble metal element and doping. Moreover, the synthesis and HER application of hybrid catalysts consisting of NMPs and other materials such as transition metal phosphides, oxides, sulfides and phosphates, carbon materials and noble metals is also reviewed. Reducing the use of noble metal is the key idea for NMP-based hybrid electrocatalysts, while the expanded functionality and structure-performance relationship are also noticed in this part. At last, the potential opportunities and challenges for this kind of highly active catalyst is discussed.
Collapse
Affiliation(s)
- Bingrong Guo
- Institute of Industrial Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xinxin Wen
- Institute of Industrial Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Li Xu
- Novel Energy Materials & Catalysis Research Center, Shanwei Innovation Industrial Design & Research Institute, Shanwei, 516600, P. R. China
| | - Xiaoqian Ren
- Institute of Industrial Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Siqi Niu
- Division of Energy Storage, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Ruixue YangCheng
- Institute of Industrial Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Guoxin Ma
- Institute of Industrial Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Junchao Zhang
- Institute of Industrial Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Ying Guo
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, P. R. China
| | - Ping Xu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Siwei Li
- Institute of Industrial Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
2
|
A critical review on transition metal phosphide based catalyst for electrochemical hydrogen evolution reaction: Gibbs free energy, composition, stability, and true identity of active site. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
3
|
Xiong X, Geng W, Cao M, Cao R. Hierarchically structured flower-like Ru nanoparticles-cucurbit[6]uril/multiwalled carbon nanotubes as efficient pH-universal hydrogen evolution electrocatalyst. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.07.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
Vanni M, Provinciali G, Calvo FD, Carignani E, Dreyfuss S, Mézailles N, Mio AM, Nicotra G, Caporali S, Borsacchi S, Peruzzini M, Caporali M. Ru‐P nanoalloy from elemental phosphorus as P‐source: synthesis, characterization and catalytic evaluation. ChemCatChem 2022. [DOI: 10.1002/cctc.202200685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Matteo Vanni
- ICCOM CNR Firenze: Istituto di Chimica dei Composti Organo Metallici Consiglio Nazionale Delle Ricerche Sezione di Firenze National Research Council ITALY
| | - Giacomo Provinciali
- ICCOM CNR Firenze: Istituto di Chimica dei Composti Organo Metallici Consiglio Nazionale Delle Ricerche Sezione di Firenze National Research Council ITALY
| | - Fuencisla Delgado Calvo
- ICCOM CNR Firenze: Istituto di Chimica dei Composti Organo Metallici Consiglio Nazionale Delle Ricerche Sezione di Firenze National Research Council ITALY
| | - Elisa Carignani
- ICCOM CNR Pisa: Istituto di Chimica dei Composti Organo Metallici Consiglio Nazionale delle Ricerche Sezione di Pisa National Research Council ITALY
| | - Sébastien Dreyfuss
- Universite Paul Sabatier: Universite Toulouse III Paul Sabatier Laboratoire Hétérochimie Fondamentale et Appliquée FRANCE
| | - Nicolas Mézailles
- University of Toulouse: Universite Federale Toulouse Midi-Pyrenees Laboratoire Hétérochimie Fondamentale et Appliquée FRANCE
| | - Antonio Massimiliano Mio
- IMM CNR: Istituto per la Microelettronica e Microsistemi Consiglio Nazionale delle Ricerche National Research Council ITALY
| | - Giuseppe Nicotra
- IMM CNR: Istituto per la Microelettronica e Microsistemi Consiglio Nazionale delle Ricerche National Research Council ITALY
| | - Stefano Caporali
- University of Florence: Universita degli Studi di Firenze Department of Industrial Engineering ITALY
| | - Silvia Borsacchi
- ICCOM CNR Pisa: Istituto di Chimica dei Composti Organo Metallici Consiglio Nazionale delle Ricerche Sezione di Pisa National Research Council ITALY
| | - Maurizio Peruzzini
- ICCOM CNR Firenze: Istituto di Chimica dei Composti Organo Metallici Consiglio Nazionale Delle Ricerche Sezione di Firenze National Research Council ITALY
| | - Maria Caporali
- National Research Council Institute of Chemistry of Organometallic Compounds Via Madonna del Piano 10 50019 Sesto Fiorentino ITALY
| |
Collapse
|
5
|
Zhu X, Li Y, Yang Y, He Y, Gao M, Peng W, Wu Q, Zhang G, Zhou Y, Chen F, Bao J, Li W. Ordered micropattern arrays fabricated by lung-derived dECM hydrogels for chemotherapeutic drug screening. Mater Today Bio 2022; 15:100274. [PMID: 35601895 DOI: 10.1016/j.mtphys.2020.100274] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 05/28/2023] Open
Abstract
AIMS This study aims to evaluate ECM-coated micropattern arrays derived from decellularization of native porcine lungs as a novel three-dimensional cell culture platform. METHODS ECM derived from decellularization of native porcine lungs was exploited to prepare hydrogels. Then, dECM-coated micropattern arrays were fabricated at four different diameters (50, 100, 150 and 200 μm) using polydimethylsiloxane (PDMS). Two lung cancer cell lines, A549 and H1299, were tested on a dECM-coated micropattern array as a novel culture platform for cell adhesion, distribution, proliferation, viability, phenotype expression, and drug screening to evaluate the cytotoxicity of paclitaxel, doxorubicin and cisplatin. RESULTS The ECM derived from decellularization of native porcine lungs supported cell adhesion, distribution, viability and proliferation better than collagen I and Matrigel as the coated matrix on the surface. Moreover, the optimal diameter of the micropattern arrays was 100-150 μm, as determined by measuring the morphology, viability, proliferation and phenotype of the cancer cell spheroids. Cell spheroids of A549 and H1299 on dECM-coated micropattern arrays showed chemoresistance to anticancer drugs compared to that of the monolayer. The different distributions of HIF-1α, MCL-1 (in the center) and Ki-67 and MRP2 (in the periphery) of the spheroids demonstrated the good establishment of basal-lateral polarity and explained the chemoresistance phenomenon of spheroids. CONCLUSIONS This novel three-dimensional cell culture platform is stable and reliable for anticancer drug testing. Drug screening in dECM-coated micropattern arrays provides a powerful alternative to existing methods for drug testing and metabolic profiling in the drug discovery process.
Collapse
Affiliation(s)
- Xinglong Zhu
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yi Li
- Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Precision Medicine Key Laboratory, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ying Yang
- Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Precision Medicine Key Laboratory, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuting He
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Mengyu Gao
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Wanliu Peng
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Qiong Wu
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Guangyue Zhang
- West China School of Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yanyan Zhou
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Fei Chen
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ji Bao
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Weimin Li
- Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Precision Medicine Key Laboratory, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
6
|
Qian Q, Wang W, Wang G, He X, Feng Y, Li Z, Zhu Y, Zhang Y, Zhang G. Phase-Selective Synthesis of Ruthenium Phosphide in Hybrid Structure Enables Efficient Hybrid Water Electrolysis Under pH-Universal Conditions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200242. [PMID: 35434924 DOI: 10.1002/smll.202200242] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Hydrazine-assisted hybrid water electrolysis is an energy-saving approach to produce high-purity hydrogen, whereas the development of pH-universal bifunctional catalysts encounters a grand challenge. Herein, a phase-selective synthesis of ruthenium phosphide compounds hybrid with carbon forming pancake-like particles (denoted as Rux P/C-PAN, x = 1 or 2) is presented. The obtained RuP/C-PAN exhibits the highest catalytic activity among the control samples, delivering ultralow cell voltages of 0.03, 0.27, and 0.65 V to drive 10 mA cm-2 using hybrid water electrolysis corresponding to pH values of 14, 7, and 0, respectively. Theoretical calculation deciphers that the RuP phase displays optimized free energy for hydrogen adsorption and reduced energy barrier for hydrazine dehydrogenation. This work may not only open up a new avenue in exploring universally compatible catalyst to transcend the limitation on the pH value of electrolytes, but also push forward the development of an energy-saving hydrogen generation technique based on emerging hybrid water electrolysis.
Collapse
Affiliation(s)
- Qizhu Qian
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Wentao Wang
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science Guizhou Education University, Guiyang, 550018, China
| | - Gongrui Wang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xiaoyue He
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yafei Feng
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Ziyun Li
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yin Zhu
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yangyang Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Genqiang Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
7
|
Li P, Li W, Huang Y, Li J, Huang Q, Zhao S, Tian S. Encapsulated RuP 2-RuS 2 nanoheterostructure with regulated interfacial charge redistribution for synergistically boosting hydrogen evolution electrocatalysis. NANOSCALE 2022; 14:6258-6267. [PMID: 35411901 DOI: 10.1039/d2nr00822j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Exploring cost-effective electrocatalysts with suitable hydrogen binding strength and rational micro/nano-architecture towards the hydrogen evolution reaction (HER) is crucial for energy technologies, yet remains a tough challenge. Herein we present the first instance of a nanoscale RuP2-RuS2 heterostructure encapsulated in N, P, and S co-doped porous carbon nanosheets (RuP2-RuS2/NPS-C) for boosting the HER. The synthesis involves the construction of a 2D core-shell structured precursor in which Ru3+-functionalized g-C3N4 is wrapped by poly(cyclotriphosphazene-co-4,4'-sulfonyldiphenol) followed by pyrolysis. In this nanocomposite, the unique architecture with a highly dispersed embedded RuP2-RuS2 nanoheterostructure guarantees not only full exposure of the active sites with enhanced robustness but also smooth mass/charge transfer. More significantly, the experimental results and theoretical calculations reveal that coupling RuP2 with RuS2 to construct a heterointerface can induce charge redistribution, giving rise to optimized hydrogen adsorption energy for substantially accelerating the HER. This work provides a novel strategy to engineer high-performance Ru-based electrocatalysts by elegantly modulating the micro-/nano-architecture and interface coupling effect.
Collapse
Affiliation(s)
- Ping Li
- School of Environmental Science and Engineering, Sun Yat-Sen (Zhongshan) University, Guangzhou 510275, PR China.
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, PR China
| | - Wenqin Li
- School of Environmental Science and Engineering, Sun Yat-Sen (Zhongshan) University, Guangzhou 510275, PR China.
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, PR China
| | - Yuqi Huang
- School of Environmental Science and Engineering, Sun Yat-Sen (Zhongshan) University, Guangzhou 510275, PR China.
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, PR China
| | - Jixin Li
- School of Environmental Science and Engineering, Sun Yat-Sen (Zhongshan) University, Guangzhou 510275, PR China.
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, PR China
| | - Quhua Huang
- School of Environmental Science and Engineering, Sun Yat-Sen (Zhongshan) University, Guangzhou 510275, PR China.
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, PR China
| | - Shien Zhao
- School of Environmental Science and Engineering, Sun Yat-Sen (Zhongshan) University, Guangzhou 510275, PR China.
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, PR China
| | - Shuanghong Tian
- School of Environmental Science and Engineering, Sun Yat-Sen (Zhongshan) University, Guangzhou 510275, PR China.
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, PR China
| |
Collapse
|
8
|
Cai C, Liu K, Zhu Y, Li P, Wang Q, Liu B, Chen S, Li H, Zhu L, Li H, Fu J, Chen Y, Pensa E, Hu J, Lu Y, Chan T, Cortés E, Liu M. Optimizing Hydrogen Binding on Ru Sites with RuCo Alloy Nanosheets for Efficient Alkaline Hydrogen Evolution. Angew Chem Int Ed Engl 2022; 61:e202113664. [PMID: 34822728 PMCID: PMC9300137 DOI: 10.1002/anie.202113664] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Indexed: 01/06/2023]
Abstract
Ruthenium (Ru)-based catalysts, with considerable performance and desirable cost, are becoming highly interesting candidates to replace platinum (Pt) in the alkaline hydrogen evolution reaction (HER). The hydrogen binding at Ru sites (Ru-H) is an important factor limiting the HER activity. Herein, density functional theory (DFT) simulations show that the essence of Ru-H binding energy is the strong interaction between the 4 d z 2 orbital of Ru and the 1s orbital of H. The charge transfer between Ru sites and substrates (Co and Ni) causes the appropriate downward shift of the 4 d z 2 -band center of Ru, which results in a Gibbs free energy of 0.022 eV for H* in the RuCo system, much lower than the 0.133 eV in the pure Ru system. This theoretical prediction has been experimentally confirmed using RuCo alloy-nanosheets (RuCo ANSs). They were prepared via a fast co-precipitation method followed with a mild electrochemical reduction. Structure characterizations reveal that the Ru atoms are embedded into the Co substrate as isolated active sites with a planar symmetric and Z-direction asymmetric coordination structure, obtaining an optimal 4 d z 2 modulated electronic structure. Hydrogen sensor and temperature program desorption (TPD) tests demonstrate the enhanced Ru-H interactions in RuCo ANSs compared to those in pure Ru nanoparticles. As a result, the RuCo ANSs reach an ultra-low overpotential of 10 mV at 10 mA cm-2 and a Tafel slope of 20.6 mV dec-1 in 1 M KOH, outperforming that of the commercial Pt/C. This holistic work provides a new insight to promote alkaline HER by optimizing the metal-H binding energy of active sites.
Collapse
Affiliation(s)
- Chao Cai
- School of Physics and ElectronicsCentral South UniversityChangsha410083P. R. China
| | - Kang Liu
- School of Physics and ElectronicsCentral South UniversityChangsha410083P. R. China
| | - Yuanmin Zhu
- Department of Materials Science and EngineeringSouthern University of Science and TechnologyShenzhen518055P. R. China
| | - Pengcheng Li
- School of Physics and ElectronicsCentral South UniversityChangsha410083P. R. China
| | - Qiyou Wang
- School of Physics and ElectronicsCentral South UniversityChangsha410083P. R. China
| | - Bao Liu
- School of Physics and ElectronicsCentral South UniversityChangsha410083P. R. China
| | - Shanyong Chen
- School of Physics and ElectronicsCentral South UniversityChangsha410083P. R. China
| | - Huangjingwei Li
- School of Physics and ElectronicsCentral South UniversityChangsha410083P. R. China
| | - Li Zhu
- School of Physics and ElectronicsCentral South UniversityChangsha410083P. R. China
- Nanoinstitut MünchenFakultät für PhysikLudwig-Maximilians-Universität München80539MünchenGermany
| | - Hongmei Li
- School of Physics and ElectronicsCentral South UniversityChangsha410083P. R. China
| | - Junwei Fu
- School of Physics and ElectronicsCentral South UniversityChangsha410083P. R. China
| | - Yu Chen
- School of Physics and ElectronicsCentral South UniversityChangsha410083P. R. China
| | - Evangelina Pensa
- Nanoinstitut MünchenFakultät für PhysikLudwig-Maximilians-Universität München80539MünchenGermany
| | - Junhua Hu
- School of Materials Science and EngineeringZhengzhou UniversityZhengzhou450001P. R. China
| | - Ying‐Rui Lu
- National Synchrotron Radiation Research CenterHsinchu300Taiwan
| | - Ting‐Shan Chan
- National Synchrotron Radiation Research CenterHsinchu300Taiwan
| | - Emiliano Cortés
- Nanoinstitut MünchenFakultät für PhysikLudwig-Maximilians-Universität München80539MünchenGermany
| | - Min Liu
- School of Physics and ElectronicsCentral South UniversityChangsha410083P. R. China
| |
Collapse
|
9
|
Cai C, Liu K, Zhu Y, Li P, Wang Q, Liu B, Chen S, Li H, Zhu L, Li H, Fu J, Chen Y, Pensa E, Hu J, Lu Y, Chan T, Cortés E, Liu M. Optimizing Hydrogen Binding on Ru Sites with RuCo Alloy Nanosheets for Efficient Alkaline Hydrogen Evolution. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202113664] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Chao Cai
- School of Physics and Electronics Central South University Changsha 410083 P. R. China
| | - Kang Liu
- School of Physics and Electronics Central South University Changsha 410083 P. R. China
| | - Yuanmin Zhu
- Department of Materials Science and Engineering Southern University of Science and Technology Shenzhen 518055 P. R. China
| | - Pengcheng Li
- School of Physics and Electronics Central South University Changsha 410083 P. R. China
| | - Qiyou Wang
- School of Physics and Electronics Central South University Changsha 410083 P. R. China
| | - Bao Liu
- School of Physics and Electronics Central South University Changsha 410083 P. R. China
| | - Shanyong Chen
- School of Physics and Electronics Central South University Changsha 410083 P. R. China
| | - Huangjingwei Li
- School of Physics and Electronics Central South University Changsha 410083 P. R. China
| | - Li Zhu
- School of Physics and Electronics Central South University Changsha 410083 P. R. China
- Nanoinstitut München Fakultät für Physik Ludwig-Maximilians-Universität München 80539 München Germany
| | - Hongmei Li
- School of Physics and Electronics Central South University Changsha 410083 P. R. China
| | - Junwei Fu
- School of Physics and Electronics Central South University Changsha 410083 P. R. China
| | - Yu Chen
- School of Physics and Electronics Central South University Changsha 410083 P. R. China
| | - Evangelina Pensa
- Nanoinstitut München Fakultät für Physik Ludwig-Maximilians-Universität München 80539 München Germany
| | - Junhua Hu
- School of Materials Science and Engineering Zhengzhou University Zhengzhou 450001 P. R. China
| | - Ying‐Rui Lu
- National Synchrotron Radiation Research Center Hsinchu 300 Taiwan
| | - Ting‐Shan Chan
- National Synchrotron Radiation Research Center Hsinchu 300 Taiwan
| | - Emiliano Cortés
- Nanoinstitut München Fakultät für Physik Ludwig-Maximilians-Universität München 80539 München Germany
| | - Min Liu
- School of Physics and Electronics Central South University Changsha 410083 P. R. China
| |
Collapse
|
10
|
Chen D, Zhu J, Pu Z, Mu S. Anion Modulation of Pt-Group Metals and Electrocatalysis Applications. Chemistry 2021; 27:12257-12271. [PMID: 34129268 DOI: 10.1002/chem.202101645] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Indexed: 12/14/2022]
Abstract
Pt-group metal (PGM) electrocatalysts with unique electronic structures and irreplaceable comprehensive properties play crucial roles in electrocatalysis. Anion engineering can create a series of PGM compounds (such as RuP2 , IrP2 , PtP2 , RuB2 , Ru2 B3 , RuS2 , etc.) that provide a promising prospect for improving the electrocatalytic performance and use of Pt-group noble metals. This review seeks the electrochemical activity origin of anion-modulated PGM compounds, and systematically analyzes and summarizes their synthetic strategies and energy-relevant applications in electrocatalysis. Orientation towards the sustainable development of nonfossil resources has stimulated a blossoming interest in the design of advanced electrocatalysts for clean energy conversion. The anion-modulated strategy for Pt-group metals (PGMs) by means of anion engineering possesses high flexibility to regulate the electronic structure, providing a promising prospect for constructing electrocatalysts with superior activity and stability to satisfy a future green electrochemical energy conversion system. Based on the previous work of our group and others, this review summarizes the up-to-date progress on anion-modulated PGM compounds (such as RuP2 , IrP2 , PtP2 , RuB2 , Ru2 B3 , RuS2 , etc.) in energy-related electrocatalysis from the origin of their activity and synthetic strategies to electrochemical applications including hydrogen evolution reaction (HER), oxygen evolution reaction (OER), oxygen reduction reaction (ORR), hydrogen oxidation reaction (HOR), N2 reduction reaction (NRR), and CO2 reduction reaction (CO2 RR). At the end, the key problems, countermeasures and future development orientations of anion-modulated PGM compounds toward electrocatalytic applications are proposed.
Collapse
Affiliation(s)
- Ding Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China.,Foshan Xianhu Laboratory of Advanced Energy Science and Technology, Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan, 528200, P. R. China
| | - Jiawei Zhu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Zonghua Pu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Shichun Mu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China.,Foshan Xianhu Laboratory of Advanced Energy Science and Technology, Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan, 528200, P. R. China
| |
Collapse
|
11
|
Dai H, Wang L, Zhao Y, Xue J, Zhou R, Yu C, An J, Zhou J, Chen Q, Sun G, Huang W. Recent Advances in Molybdenum-Based Materials for Lithium-Sulfur Batteries. RESEARCH (WASHINGTON, D.C.) 2021; 2021:5130420. [PMID: 33748762 PMCID: PMC7949955 DOI: 10.34133/2021/5130420] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/27/2021] [Indexed: 12/01/2022]
Abstract
Lithium-sulfur (Li-S) batteries as power supply systems possessing a theoretical energy density of as high as 2600 Wh kg-1 are considered promising alternatives toward the currently used lithium-ion batteries (LIBs). However, the insulation characteristic and huge volume change of sulfur, the generation of dissolvable lithium polysulfides (LiPSs) during charge/discharge, and the uncontrollable dendrite formation of Li metal anodes render Li-S batteries serious cycling issues with rapid capacity decay. To address these challenges, extensive efforts are devoted to designing cathode/anode hosts and/or modifying separators by incorporating functional materials with the features of improved conductivity, lithiophilic, physical/chemical capture ability toward LiPSs, and/or efficient catalytic conversion of LiPSs. Among all candidates, molybdenum-based (Mo-based) materials are highly preferred for their tunable crystal structure, adjustable composition, variable valence of Mo centers, and strong interactions with soluble LiPSs. Herein, the latest advances in design and application of Mo-based materials for Li-S batteries are comprehensively reviewed, covering molybdenum oxides, molybdenum dichalcogenides, molybdenum nitrides, molybdenum carbides, molybdenum phosphides, and molybdenum metal. In the end, the existing challenges in this research field are elaborately discussed.
Collapse
Affiliation(s)
- Henghan Dai
- Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Lumin Wang
- Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Yue Zhao
- Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Jialu Xue
- Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Ruicong Zhou
- Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Chenyang Yu
- Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Jianing An
- Institute of Photonics Technology, Jinan University, Guangzhou 510632, China
| | - Jinyuan Zhou
- School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Qiang Chen
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China
| | - Gengzhi Sun
- Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), Xi'an 710072, China
| | - Wei Huang
- Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), Xi'an 710072, China
| |
Collapse
|
12
|
Zhao M, Li H, Li W, Li J, Yi L, Hu W, Li CM. Ru-Doping Enhanced Electrocatalysis of Metal-Organic Framework Nanosheets toward Overall Water Splitting. Chemistry 2020; 26:17091-17096. [PMID: 32734617 DOI: 10.1002/chem.202002072] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/29/2020] [Indexed: 11/08/2022]
Abstract
An Ru-doping strategy is reported to substantially improve both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) electrocatalytic activity of Ni/Fe-based metal-organic framework (MOF) for overall water splitting. As-synthesized Ru-doped Ni/Fe MIL-53 MOF nanosheets grown on nickel foam (MIL-53(Ru-NiFe)@NF) afford HER and OER current density of 50 mA cm-2 at an overpotential of 62 and 210 mV, respectively, in alkaline solution with a nominal Ru loading of ≈110 μg cm-2 . When using as both anodic and cathodic (pre-)catalyst, MIL-53(Ru-NiFe)@NF enables overall water splitting at a current density of 50 mA cm-2 for a cell voltage of 1.6 V without iR compensation, which is much superior to state-of-the-art RuO2 -Pt/C-based electrolyzer. It is discovered that the Ru-doping considerably modulates the growth of MOF to form thin nanosheets, and enhances the intrinsic HER electrocatalytic activity by accelerating the sluggish Volmer step and improving the intermediate oxygen adsorption for increased OER catalytic activity.
Collapse
Affiliation(s)
- Ming Zhao
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education; School of Materials & Energy, Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Southwest University, Chongqing, 400715, P. R. China
| | - Huilin Li
- Institute of Henan Key Laboratory of Photovoltaic Material, Henan University, Kaifeng, 475001, P. R. China
| | - Wei Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education; School of Materials & Energy, Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Southwest University, Chongqing, 400715, P. R. China
| | - Junying Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education; School of Materials & Energy, Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Southwest University, Chongqing, 400715, P. R. China
| | - Lingya Yi
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education; School of Materials & Energy, Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Southwest University, Chongqing, 400715, P. R. China
| | - Weihua Hu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education; School of Materials & Energy, Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Southwest University, Chongqing, 400715, P. R. China
| | - Chang Ming Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education; School of Materials & Energy, Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Southwest University, Chongqing, 400715, P. R. China
| |
Collapse
|
13
|
Zhang S, Li J, Wang E. Recent Progress of Ruthenium‐based Nanomaterials for Electrochemical Hydrogen Evolution. ChemElectroChem 2020. [DOI: 10.1002/celc.202001149] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Shan Zhang
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Renmin Street 5265 Changchun 130022 P. R. China
| | - Jing Li
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Renmin Street 5265 Changchun 130022 P. R. China
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Renmin Street 5265 Changchun 130022 P. R. China
| |
Collapse
|
14
|
Liu X, Liu F, Yu J, Xiong G, Zhao L, Sang Y, Zuo S, Zhang J, Liu H, Zhou W. Charge Redistribution Caused by S,P Synergistically Active Ru Endows an Ultrahigh Hydrogen Evolution Activity of S-Doped RuP Embedded in N,P,S-Doped Carbon. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001526. [PMID: 32995134 PMCID: PMC7507474 DOI: 10.1002/advs.202001526] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/14/2020] [Indexed: 05/22/2023]
Abstract
Water splitting for production of hydrogen as a clean energy alternative to fossil fuel has received much attention, but it is still a tough challenge to synthesize electrocatalysts with controllable bonding and charge distribution. In this work, ultrafine S-doped RuP nanoparticles homogeneously embedded in a N, P, and S-codoped carbon sheet (S-RuP@NPSC) is synthesized by pyrolysis of poly(cyclotriphosphazene-co-4,4'-sulfonyldiphenol) (PZS) as the source of C/N/S/P. The bondings between Ru and N, P, S in PZS are regulated to synthesize RuS2 (800 °C) and S-RuP (900 °C) by different calcination temperatures. The S-RuP@NPSC with low Ru loading of 0.8 wt% with abundant active catalytic sites possesses high utilization of Ru, the mass catalytic activity is 22.88 times than 20 wt% Pt/C with the overpotential of 250 mV. Density functional theory calculation confirms that the surface Ru (-0.18 eV) and P (0.05 eV) are catalytic active sites for the hydrogen evolution reaction (HER), and the according charge redistribution of Ru is regulated by S and P with reverse electronegativity and electron-donor property to induce a synergistically enhanced reactivity toward the HER. This work provides a rational method to regulate the bonding and charge distribution of Ru-based electrocatalysts by reacting macromolecules with multielement of C/N/S/P with Ru.
Collapse
Affiliation(s)
- Xiaoyu Liu
- State Key Laboratory of Crystal MaterialsShandong UniversityJinan250100P. R. China
| | - Fan Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy of ShandongInstitute for Advanced Interdisciplinary Research (iAIR)University of JinanJinan250022P. R. China
| | - Jiayuan Yu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy of ShandongInstitute for Advanced Interdisciplinary Research (iAIR)University of JinanJinan250022P. R. China
- Guangzhou Key Laboratory for Surface Chemistry of Energy MaterialsSchool of Environment and EnergySouth China University of TechnologyGuangdong510006P. R. China
| | - Guowei Xiong
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy of ShandongInstitute for Advanced Interdisciplinary Research (iAIR)University of JinanJinan250022P. R. China
| | - Lili Zhao
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy of ShandongInstitute for Advanced Interdisciplinary Research (iAIR)University of JinanJinan250022P. R. China
| | - Yuanhua Sang
- State Key Laboratory of Crystal MaterialsShandong UniversityJinan250100P. R. China
| | - Shouwei Zuo
- Beijing Synchrotron Radiation FacilityInstitute of High Energy PhysicsChinese Academy of SciencesBeijing100049P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Jing Zhang
- Beijing Synchrotron Radiation FacilityInstitute of High Energy PhysicsChinese Academy of SciencesBeijing100049P. R. China
| | - Hong Liu
- State Key Laboratory of Crystal MaterialsShandong UniversityJinan250100P. R. China
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy of ShandongInstitute for Advanced Interdisciplinary Research (iAIR)University of JinanJinan250022P. R. China
| | - Weijia Zhou
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy of ShandongInstitute for Advanced Interdisciplinary Research (iAIR)University of JinanJinan250022P. R. China
| |
Collapse
|
15
|
Ma F, Wang X, Wang J, Tian Y, Liang J, Fan Y, Wang L, Wang T, Cao R, Jiao S, Han J, Huang Y, Li Q. Phase-transformed Mo4P3 nanoparticles as efficient catalysts towards lithium polysulfide conversion for lithium–sulfur battery. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135310] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Jia X, Streb C, Song Y. Devisable POM/Ni Foam Composite: Precisely Control Synthesis toward Enhanced Hydrogen Evolution Reaction at High pH. Chemistry 2019; 25:15548-15554. [PMID: 31536174 PMCID: PMC6973057 DOI: 10.1002/chem.201903059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Indexed: 11/17/2022]
Abstract
Polyoxometalates (POMs) are promising catalysts for the electrochemical hydrogen production from water owing to their high intrinsic catalytic activity and chemical tunability. However, poor electrical conductivity and easy detachment of the POMs from the electrode cause significant challenges under operating condition. Herein, a simple one-step hydrothermal method is reported to synthesize a series of Dexter-Silverton POM/Ni foam composites (denoted as NiM-POM/Ni; M=Co, Zn, Mn), in which the stable linkage between the POM catalysts and the Ni foam electrodes lead to high activity for the hydrogen evolution reaction (HER). Among them, the highest HER performance can be observed in the NiCo-POM/Ni, featuring an overpotential of 64 mV (at 10 mA cm-2 , vs. reversible hydrogen electrode), and a Tafel slope of 75 mV dec-1 in 1.0 m aqueous KOH. Moreover, the NiCo-POM/Ni catalyst showed a high faradaic efficiency ≈97 % for HER. Post-catalytic of NiCo-POM/Ni analyses showed virtually no mechanical or chemical degradation. The findings propose a facile and inexpensive method to design stable and effective POM-based catalysts for HER in alkaline water electrolysis.
Collapse
Affiliation(s)
- Xueying Jia
- State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Carsten Streb
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Yu‐Fei Song
- State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical TechnologyBeijing100029P. R. China
| |
Collapse
|
17
|
Li P, Duan X, Wang S, Zheng L, Li Y, Duan H, Kuang Y, Sun X. Amorphous Ruthenium-Sulfide with Isolated Catalytic Sites for Pt-Like Electrocatalytic Hydrogen Production Over Whole pH Range. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1904043. [PMID: 31529772 DOI: 10.1002/smll.201904043] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/02/2019] [Indexed: 05/28/2023]
Abstract
Electrocatalytic hydrogen evolution reaction (HER) is an efficient way to generate hydrogen fuel for the storage of renewable energy. Currently, the widely used Pt-based catalysts suffer from high costs and limited electrochemical stability; therefore, developing an efficient alternative catalyst is very urgent. Herein, one pot hydrothermal synthesis is reported of amorphous ruthenium-sulfide (RuSx ) nanoparticles (NPs) supported on sulfur-doped graphene oxide (GO). The as-obtained composite serves as a Pt-like HER electrocatalyst. Achieving a current density of -10 mA cm-2 only requires a small overpotential (-31, -46, and -58 mV in acidic, neutral, and alkaline electrolyte, respectively) with high durability. The isolated Ru active site inducing Volmer-Heyrovsky mechanism in the RuSx NPs is demonstrated by the Tafel analysis and X-ray absorption spectroscopy characterization. Theoretical simulation indicates the isolated Ru site exhibits Pt-like Gibbs free energy of hydrogen adsorption (-0.21 eV) therefore generating high intrinsic HER activity. Moreover, the strong bonding between the RuSx and S-GO, as well as pH tolerance of RuSx are believed to contribute to the high stability. This work shows a new insight for amorphous materials and provides alternative opportunities in designing advanced electrocatalysts with low-cost for HER in the hydrogen economy.
Collapse
Affiliation(s)
- Pengsong Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Department of Chemistry and Energy Sciences Institute, Yale University, West Haven, CT, 06516, USA
| | - Xinxuan Duan
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Shiyuan Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Lirong Zheng
- Institute of High Energy Physics (IHEP) of the Chinese Academy of Sciences (CAS) Beijing, Beijing, 100049, China
| | - Yaping Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Haohong Duan
- Department of Chemistry, Tsinghua University, 30 Shuangqing Rd, Haidian Qu, Beijing Shi, 100084, China
| | - Yun Kuang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xiaoming Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
18
|
Li Y, Chu F, Bu Y, Kong Y, Tao Y, Zhou X, Yu H, Yu J, Tang L, Qin Y. Controllable fabrication of uniform ruthenium phosphide nanocrystals for the hydrogen evolution reaction. Chem Commun (Camb) 2019; 55:7828-7831. [DOI: 10.1039/c9cc03668g] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ruthenium phosphide (Ru2P and RuP) nanocrystals are controllably fabricated, and exhibit a remarkable hydrogen evolution reaction performance.
Collapse
|