1
|
Kristinsson B, Janiw M, Damodaran KK. Single Crystal to Single Crystal Transformation of Porous Materials Based on Zinc Nodes and Mercaptobenzoic Acid. Chempluschem 2024; 89:e202400351. [PMID: 38984751 DOI: 10.1002/cplu.202400351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/11/2024]
Abstract
Porous coordination polymers (PCPs) are an excellent class of porous crystalline materials with tunable properties and intriguing potential applications spanning multiple disciplines. In this work, we report the synthesis and characterization of a PCP (HI-103) based on 4,4'-dithiodibenzoic acid ligand and zinc nitrate with two DMF molecules residing in the porous network. The stability of the porous network was analyzed by heating the compound at 60.0 °C for two days, and the structural analysis revealed a new PCP (HI-104) was formed with one of the DMF molecules, indicating a single-crystal to single-crystal (SCSC) transformation. The solvent molecules were completely removed by extensive drying (HI-103-dry), and the integrity of the porous network was verified by powder X-ray diffraction (PXRD) and thermogravimetric analysis. The reversibility of SCSC transformation was confirmed by treating HI-103-dry with DMF molecules, resulting in HI-103 after five days. The adsorption studies of HI-103-dry with other solvents revealed that SCSC transformation was not observed for DMA and DEA, but some structural changes were observed in the presence of DMSO. The adsorption studies performed in the presence of an equimolar mixture of DMF, DMA, and DMA indicated that HI-103-dry could selectively adsorb DMF molecules from the analogous mixture.
Collapse
Affiliation(s)
- Baldur Kristinsson
- Department of Chemistry, Science Institute, University of Iceland, Dunhagi 3, 107, Reykjavík, Iceland
| | - Mieszko Janiw
- Department of Chemistry, Science Institute, University of Iceland, Dunhagi 3, 107, Reykjavík, Iceland
| | - Krishna K Damodaran
- Department of Chemistry, Science Institute, University of Iceland, Dunhagi 3, 107, Reykjavík, Iceland
| |
Collapse
|
2
|
Ma ZZ, Wang Z, Li QH, Wang YY, Gu ZG, Zhang J. Electro-Induced Phase Transformation of a Conductive Metal-Organic Framework Film for Nonlinear Optical Switching. NANO LETTERS 2024; 24:4186-4193. [PMID: 38545933 DOI: 10.1021/acs.nanolett.4c00194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Achieving metal-organic frameworks (MOFs) with nonlinear optical (NLO) switching is profoundly important. Herein, the conductive MOFs Cu-TCNQ phase I (Ph-I) and phase II (Ph-II) films were prepared using the liquid-phase-epitaxial layer-by-layer spin-coating method and steam heating method, respectively. Electronic experiments showed that the Ph-II film could be changed into the Ph-I film under an applied electric field. The third-order NLO results revealed that the Ph-I film had a third-order nonlinear reverse saturation absorption (RSA) response and the Ph-II film displayed a third-order nonlinear saturation absorption (SA) response. With increases in the heating time and applied voltage, the third-order NLO response realized the reversible transition between SA and RSA. The theoretical calculations indicated that Ph-I possessed more interlayer charge transfer, resulting in a third-order nonlinear RSA response that was stronger than that of Ph-II. This work applies phase-transformed MOFs to third-order NLO switching and provides new insights into the nonlinear photoelectric applications of MOFs.
Collapse
Affiliation(s)
- Zhi-Zhou Ma
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zirui Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
| | - Qiao-Hong Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan-Yue Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| | - Zhi-Gang Gu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
| |
Collapse
|
3
|
Li QL, Zhao M, Hao RJ, Wei J, Wang XX, Yang C, Zhao M, Tan YH, Tang YZ. High-Temperature Phase Transition with Switchable Dielectric Behavior and Significant Photoluminescence Changes in a Zero-Dimensional Hybrid SbBr 6 Perovskite. Inorg Chem 2024; 63:3411-3417. [PMID: 38311915 DOI: 10.1021/acs.inorgchem.3c04050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
In the past decade, metal halide materials have been favored by many researchers because of their excellent physical and chemical properties under thermal, electrical, and light stimuli, such as ferroelectricity, dielectric, nonlinearity, fluorescence, and semiconductors, greatly promoting their application in optoelectronic devices. In this study, we successfully constructed an unleaded organic-inorganic hybrid perovskite crystal: [Cl-C6H4-(CH2)2NH3]3SbBr6 (1), which underwent a high-temperature reversible phase transition near Tp = 368 K. The phase transition behavior of 1 was characterized by differential scanning calorimetry, accompanied by a thermal hysteresis of 6 K. In addition, variable-temperature Raman spectroscopy analysis and PXRD further verified the sensitivity of 1 to temperature and the phase transition from low symmetry to high symmetry. Temperature-dependent dielectric testing shows that 1 can be a sensitive switching dielectric constant switching material. Remarkably, 1 exhibits strong photoluminescence emission with a wavelength of 478 nm and a narrow band gap of 2.7 eV in semiconductors. As the temperature increases and decreases, fluorescence undergoes significant changes, especially near Tc, which further confirms the reversible phase transition of 1. All of these findings provide new avenues for designing and assembling new phase change materials with high Tp and photoluminescence properties.
Collapse
Affiliation(s)
- Qiao-Lin Li
- School of Chemistry and Chemical Engineering, Jiangxi University of Technology, Ganzhou, Jiangxi Province 341000, China
| | - Meng Zhao
- School of Chemistry and Chemical Engineering, Jiangxi University of Technology, Ganzhou, Jiangxi Province 341000, China
| | - Rong-Jie Hao
- School of Chemistry and Chemical Engineering, Jiangxi University of Technology, Ganzhou, Jiangxi Province 341000, China
| | - Jing Wei
- School of Chemistry and Chemical Engineering, Jiangxi University of Technology, Ganzhou, Jiangxi Province 341000, China
| | - Xi-Xi Wang
- School of Chemistry and Chemical Engineering, Jiangxi University of Technology, Ganzhou, Jiangxi Province 341000, China
| | - Chun Yang
- School of Chemistry and Chemical Engineering, Jiangxi University of Technology, Ganzhou, Jiangxi Province 341000, China
| | - Man Zhao
- School of Chemistry and Chemical Engineering, Jiangxi University of Technology, Ganzhou, Jiangxi Province 341000, China
| | - Yu-Hui Tan
- School of Chemistry and Chemical Engineering, Jiangxi University of Technology, Ganzhou, Jiangxi Province 341000, China
| | - Yun-Zhi Tang
- School of Chemistry and Chemical Engineering, Jiangxi University of Technology, Ganzhou, Jiangxi Province 341000, China
| |
Collapse
|
4
|
Iqbal MZ, Zakir A, Shaheen M, Khizar A, Yusuf K, Iqbal MJ, Ahmad Z, Sharif S. Elucidating the redox activity of cobalt-1,2,3,4-cyclopentane-tetracarboxylic acid and 1,2,4,5-benzene-tetracarboxylic acid-based metal-organic frameworks for a hybrid supercapacitor. RSC Adv 2024; 14:1655-1664. [PMID: 38187454 PMCID: PMC10767483 DOI: 10.1039/d3ra05820d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/14/2023] [Indexed: 01/09/2024] Open
Abstract
The development of electrode materials with extraordinary energy densities or high power densities has experienced a spectacular upsurge because of significant advances in energy storage technology. In recent years, the family of metal-organic frameworks (MOFs) has become an essential contender for electrode materials. Herein, two cobalt-based MOFs are synthesized with distinct linkers named 1,2,4,5-benzene-tetra-carboxylic acid (BTCA) and 1,2,3,4-cyclopentane-tetracarboxylic acid (CPTC). Investigations have been rigorously conducted to fully understand the effect of linkers on the electrochemical properties of Co-based MOFs. The best sample among the MOFs was used with activated carbon to create a battery-supercapacitor hybrid device. Due to its noteworthy results, specific capacity (100.3 C g-1), energy density (23 W h kg-1), power density (3400 W kg-1) and with the lowest ESR value of 0.4 Ω as well as its 95.4% capacity retention, the fabricated hybrid device was discovered to be very appealing for applications demanding energy storage. An approach for evaluating battery-supercapacitors was employed by quantifying the capacitive and diffusive contributions using Dunn's model to reflect the bulk and surface processes occurring during charge storage. This study fills the gap between supercapacitors and batteries, as well as providing a roadmap for creating a new generation of energy storage technologies with improved features.
Collapse
Affiliation(s)
- Muhammad Zahir Iqbal
- Renewable Energy Research Laboratory, Faculty of Engineering Sciences, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology Topi 23640 Khyber Pakhtunkhwa Pakistan
| | - Ayesha Zakir
- Renewable Energy Research Laboratory, Faculty of Engineering Sciences, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology Topi 23640 Khyber Pakhtunkhwa Pakistan
| | - Misbah Shaheen
- Renewable Energy Research Laboratory, Faculty of Engineering Sciences, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology Topi 23640 Khyber Pakhtunkhwa Pakistan
| | - Asma Khizar
- Renewable Energy Research Laboratory, Faculty of Engineering Sciences, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology Topi 23640 Khyber Pakhtunkhwa Pakistan
| | - Kareem Yusuf
- Department of Chemistry, College of Science, King Saud University Riyadh 11451 Saudi Arabia
| | - Muhammad Javaid Iqbal
- Centre of Excellence in Solid State Physics, University of the Punjab Quaid-e-Azam Campus Lahore-54590 Pakistan
| | - Zubair Ahmad
- School of Chemical Engineering, Yeungnam University 280 Daehak-ro Gyeongsan Gyeongbuk 38541 Republic of Korea
| | - Shahzad Sharif
- Department of Chemistry, Materials Chemistry Laboratory, Govt. College University 54000 Lahore Pakistan
| |
Collapse
|
5
|
Qin T, Shi Z, Zhang W, Dong X, An N, Sakiyama H, Muddassir M, Srivastava D, Kumar A. 2D Isostructural Ln(III)-based Coordination Polymer derived from Imidazole Carboxylic Acid: synthesis, structure and magnetic behavior. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
6
|
Lu J, Ren L, Li C, Liu H. Three-dimensional hierarchical flower-like bimetallic–organic materials in situ grown on carbon cloth and doped with sulfur as an air cathode in a microbial fuel cell. NEW J CHEM 2023. [DOI: 10.1039/d2nj05476k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Herein, the output power density produced by Zn/Co-S-3DHFLM as the cathode catalyst of an MFC was higher than that of Co-3DHFLM.
Collapse
Affiliation(s)
- Jinrong Lu
- Chemical Science and Engineering College, North Minzu University, Yinchuan, 750021, P. R. China
| | - Linde Ren
- Chemical Science and Engineering College, North Minzu University, Yinchuan, 750021, P. R. China
| | - Cheng Li
- Chemical Science and Engineering College, North Minzu University, Yinchuan, 750021, P. R. China
| | - Hua Liu
- Chemical Science and Engineering College, North Minzu University, Yinchuan, 750021, P. R. China
| |
Collapse
|
7
|
Wang N, Yan RP, Xiong YS, Mi Y, Hu FL, Ge Y, Young DJ, Lang JP. Coordination Polymer-Mediated Molecular Surgery for Precise Interconversion of Dicyclobutane Compounds. Inorg Chem 2022; 61:21016-21023. [PMID: 36493467 DOI: 10.1021/acs.inorgchem.2c03521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A Cd(II)-based coordination polymer {[Cd2(5-F-1,3-bpeb)2(FBA)4]·H2O}n (CP1) was obtained from Cd(II) salt, 5-fluoro-1,3-bis[2-(4-pyridyl)ethenyl]benzene (5-F-1,3-bpeb), and p-fluorobenzoic acid (HFBA). Within the one-dimensional chain structure of CP1, a pair of 5-F-1,3-bpeb was arranged in a face-to-face style. Upon UV irradiation and heat treatment, multiple cyclobutane isomers, including specific monocyclobutanes (1 with an endo-cyclobutane ring in CP1-1 and 1' with an exo-cyclobutane ring in CP1-1') and dicyclobutanes (endo,endo-dicyclobutane 2α in CP1-2α, exo,endo-dicyclobutane 2β in CP1-2β, and exo,exo-dicyclobutane 2γ in CP1-2γ) were stereoselectively produced. These isomers could be interconverted inside the CP via cutting/coupling specific bonds, which may be regarded as a type of molecular surgery. The precision of cutting/coupling relied on the thermal stability of the cyclobutanes and the alignment of the reactive alkene centers. The conversion processes were tracked through nuclear magnetic resonance, in situ powder X-ray diffraction, and IR spectroscopy. This approach can be considered as skeletal editing to construct complex organic compounds directly from one precursor.
Collapse
Affiliation(s)
- Ning Wang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, P. R. China
| | - Rui-Peng Yan
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, P. R. China
| | - Yu-Si Xiong
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, P. R. China
| | - Yan Mi
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, P. R. China
| | - Fei-Long Hu
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, P. R. China
| | - Yu Ge
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - David James Young
- College of Engineering, IT and Environment, Charles Darwin University, Darwin, Northern Territory 0909, Australia
| | - Jian-Ping Lang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
8
|
Fan W, Cheng Y, Wang B, Wang L, Zhou Q, Liu Y, Wang C, Zheng L, Cao Q. Metal-Organic Framework with Near-Infrared Luminescence for "Switch-on" Determination of Kaempferol and Quercetin by the Antenna Effect. Inorg Chem 2022; 61:17185-17195. [PMID: 36263654 DOI: 10.1021/acs.inorgchem.2c02723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The establishment of a reliable and sensitive method for the detection of flavonoids, such as kaempferol (Kae) and quercetin (Que), is important and challenging in food chemistry and pharmacology because numerous structural analogues may interfere with the detection. Until now, designing an efficient switch-on fluorescence sensing strategy for Kae and Que was still in the unachievable stage. In this work, a switch-on near-infrared (NIR) luminescence sensing assay for Kae and Que was fabricated based on a metal-organic framework (MOF) called IQBA-Yb for the first time. The fluorescence enhancing mechanism was that analytes served as additional "antenna" of Yb3+, leading to the efficient switch-on NIR emission under excitation at 467 nm. Meanwhile, the combination results of experiment and theoretical calculation revealed that there existed hydrogen bonds between Kae, Que, and the MOF skeleton, further promoting the energy transfer between the analyte and Yb3+ and facilitating fluorescence enhancement response. The developed probe possessed excellent sensing capability for Kae and Que, accompanied by a wide linear range (0.04-70, 0.06-90 μM), low detection limit (0.01, 0.06 μM), and short response time (20 min, 6 min), which was used to determine the Kae and Que contents in Green Lake and eatable Que samples with satisfactory results.
Collapse
Affiliation(s)
- Wenwen Fan
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Yi Cheng
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Baoru Wang
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Longjie Wang
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Qian Zhou
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Yanxiong Liu
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Chunqiong Wang
- Yunnan Tobacco Quality Supervision and Test Station, Kunming 650106, P. R. China
| | - Liyan Zheng
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Qiu'e Cao
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| |
Collapse
|
9
|
Fluorescent Zn(II)-Based Metal-Organic Framework: Interaction with Organic Solvents and CO 2 and Methane Capture. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123845. [PMID: 35744975 PMCID: PMC9228242 DOI: 10.3390/molecules27123845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/27/2022] [Accepted: 06/02/2022] [Indexed: 12/03/2022]
Abstract
Adsorption of carbon dioxide (CO2), as well as many other kinds of small molecules, is of importance for industrial and sensing applications. Metal-organic framework (MOF)-based adsorbents are spotlighted for such applications. An essential for MOF adsorbent application is a simple and easy fabrication process, preferably from a cheap, sustainable, and environmentally friendly ligand. Herein, we fabricated a novel structural, thermally stable MOF with fluorescence properties, namely Zn [5-oxo-2,3-dihydro-5H-[1,3]-thiazolo [3,2-a]pyridine-3,7-dicarboxylic acid (TPDCA)] • dimethylformamide (DMF) •0.25 H2O (coded as QUF-001 MOF), in solvothermal conditions by using zinc nitrate as a source of metal ion and TPDCA as a ligand easy accessible from citric acid and cysteine. Single crystal X-ray diffraction analysis and microscopic examination revealed the two-dimensional character of the formed MOF. Upon treatment of QUF-001 with organic solvents (such as methanol, isopropanol, chloroform, dimethylformamide, tetrahydrofuran, hexane), interactions were observed and changes in fluorescence maxima as well as in the powder diffraction patterns were noticed, indicating the inclusion and intercalation of the solvents into the interlamellar space of the crystal structure of QUF-001. Furthermore, CO2 and CH4 molecule sorption properties for QUF-001 reached up to 1.6 mmol/g and 8.1 mmol/g, respectively, at 298 K and a pressure of 50 bars.
Collapse
|
10
|
Yao ZQ, Wang K, Liu R, Yuan YJ, Pang JJ, Li QW, Shao TY, Li ZG, Feng R, Zou B, Li W, Xu J, Bu XH. Dynamic Full-Color Tuning of Organic Chromophore in a Multi-Stimuli-Responsive 2D Flexible MOF. Angew Chem Int Ed Engl 2022; 61:e202202073. [PMID: 35191149 DOI: 10.1002/anie.202202073] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Indexed: 12/12/2022]
Abstract
Developing universal stimuli-responsive materials capable of emitting a broad spectrum of colors is highly desirable. Herein, we deliberately grafted a conformation-adaptable organic chromophore into the established coordination space of a flexible metal-organic framework (MOF). In terms of the coupled structural transformations and the space confinement, the chromophore in the MOF matrix underwent well-regulated conformational changes under physical and chemical stimuli, simultaneously displaying thermo-, piezo-, and solvato-fluoro-chromism with color tunability over the visible range. Owing to the resilient nature and the reduced dimensionality of the selected coordination space, all three color modulations behaved in a sensitive and self-reversible manner, each following a linear correlation of the emission maximum with stimulus. Single-crystal X-ray diffraction of the variable-temperature structures and solvent-inclusion crystals elucidated the intricate color varying mechanisms.
Collapse
Affiliation(s)
- Zhao-Quan Yao
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350, China
| | - Kai Wang
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China
| | - Rui Liu
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350, China
| | - Yi-Jia Yuan
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Jing-Jing Pang
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350, China
| | - Quan Wen Li
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350, China
| | - Tian Yin Shao
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China
| | - Zhi Gang Li
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350, China
| | - Rui Feng
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Bo Zou
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China
| | - Wei Li
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350, China
| | - Jian Xu
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350, China
| | - Xian-He Bu
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350, China.,State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
11
|
Yao Z, Wang K, Liu R, Yuan Y, Pang J, Li QW, Shao TY, Li ZG, Feng R, Zou B, Li W, Xu J, Bu X. Dynamic Full‐Color Tuning of Organic Chromophore in a Multi‐Stimuli‐Responsive 2D Flexible MOF. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Zhao‐Quan Yao
- School of Materials Science and Engineering National Institute for Advanced Materials TKL of Metal and Molecule-Based Material Chemistry Nankai University Tianjin 300350 China
| | - Kai Wang
- State Key Laboratory of Superhard Materials, College of Physics Jilin University Changchun 130012 China
| | - Rui Liu
- School of Materials Science and Engineering National Institute for Advanced Materials TKL of Metal and Molecule-Based Material Chemistry Nankai University Tianjin 300350 China
| | - Yi‐Jia Yuan
- State Key Laboratory of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Jing‐Jing Pang
- School of Materials Science and Engineering National Institute for Advanced Materials TKL of Metal and Molecule-Based Material Chemistry Nankai University Tianjin 300350 China
| | - Quan Wen Li
- School of Materials Science and Engineering National Institute for Advanced Materials TKL of Metal and Molecule-Based Material Chemistry Nankai University Tianjin 300350 China
| | - Tian Yin Shao
- State Key Laboratory of Superhard Materials, College of Physics Jilin University Changchun 130012 China
| | - Zhi Gang Li
- School of Materials Science and Engineering National Institute for Advanced Materials TKL of Metal and Molecule-Based Material Chemistry Nankai University Tianjin 300350 China
| | - Rui Feng
- State Key Laboratory of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Bo Zou
- State Key Laboratory of Superhard Materials, College of Physics Jilin University Changchun 130012 China
| | - Wei Li
- School of Materials Science and Engineering National Institute for Advanced Materials TKL of Metal and Molecule-Based Material Chemistry Nankai University Tianjin 300350 China
| | - Jian Xu
- School of Materials Science and Engineering National Institute for Advanced Materials TKL of Metal and Molecule-Based Material Chemistry Nankai University Tianjin 300350 China
| | - Xian‐He Bu
- School of Materials Science and Engineering National Institute for Advanced Materials TKL of Metal and Molecule-Based Material Chemistry Nankai University Tianjin 300350 China
- State Key Laboratory of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
12
|
Tai XS, Wang LH, Xia YP. The crystal structure of poly[μ2-aqua- aqua-(μ3-(E)-2-(4-((2-carbamothioylhydrazineylidene)methyl)phenoxy)acetato-κ3
O:S:S)sodium(I)], C10H14N3O5SNa. Z KRIST-NEW CRYST ST 2022. [DOI: 10.1515/ncrs-2022-0006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Abstract
C10H14N3O5SNa, triclinic,
P
1
‾
$P\overline{1}$
(no. 2), a = 6.7015(5) Å, b = 7.5656(5) Å, c = 14.1332(8) Å, β = 93.159(5)°, V = 654.71(8) Å3, Z = 2, R
gt
(F) = 0.0357, wR
ref
(F
2) = 0.0872, T = 273 K.
Collapse
Affiliation(s)
- Xi-Shi Tai
- College of Chemistry and Chemical Engineering, Weifang University , Weifang , Shandong 261061 , P. R. China
| | - Li-Hua Wang
- College of Chemistry and Chemical Engineering, Weifang University , Weifang , Shandong 261061 , P. R. China
| | - Yu-Pei Xia
- College of Chemistry and Chemical Engineering, Weifang University , Weifang , Shandong 261061 , P. R. China
| |
Collapse
|
13
|
Fan W, Cheng Y, Zhao H, Yang S, Wang L, Zheng L, Cao Q, Fan W, Cheng Y, Zhao H, Yang S, Wang L, Zheng L, Cao Q. A turn-on NIR fluorescence sensor for gossypol based on Yb-based metal-organic framework. Talanta 2022; 238:123030. [PMID: 34801893 DOI: 10.1016/j.talanta.2021.123030] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/29/2021] [Accepted: 10/31/2021] [Indexed: 10/19/2022]
Abstract
The development of analytical method for selective and sensitive detection of gossypol (Gsp), an extraction from the cotton plants, is important but still challenging in food safety and medical field. Herein, we reported a turn-on near infrared (NIR) fluorescence detection strategy for Gsp based on a metal-organic framework (MOF), QBA-Yb, which was prepared from 4,4'-(quinolone-5, 8-diyl) benzoate with Yb(NO3)3·5H2O by solvothermal synthesis. The Gsp acted as another "antenna" to sensitize the luminescence of Yb3+, leading to the turn-on NIR emission upon 467 nm excitation. As Gsp concentration increased, the NIR emission at 973 nm enhanced gradually, thus enabling highly sensitive Gsp detection in a turn-on way. The experiment and theoretical calculation results revealed the presence of strong hydrogen bonds between Gsp molecules and the MOF skeleton. The developed QBA-Yb probe showed excellent characteristics for detection of Gsp molecules, accompanied by wide linear range (5-160 μg/mL), low detection limit (0.65 μg/mL) and short response time (within 10 min). We have further demonstrated that the QBA-Yb probe was successfully applied for the determination of Gsp in real samples of cottonseeds.
Collapse
Affiliation(s)
- Wenwen Fan
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education Functional Molecules Analysis and Biotransformation, Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, No. 2 North Cuihu Road, Kunming, 650091, PR China
| | - Yi Cheng
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education Functional Molecules Analysis and Biotransformation, Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, No. 2 North Cuihu Road, Kunming, 650091, PR China
| | - Haili Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education Functional Molecules Analysis and Biotransformation, Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, No. 2 North Cuihu Road, Kunming, 650091, PR China
| | - Shaoxiong Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education Functional Molecules Analysis and Biotransformation, Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, No. 2 North Cuihu Road, Kunming, 650091, PR China
| | - Longjie Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education Functional Molecules Analysis and Biotransformation, Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, No. 2 North Cuihu Road, Kunming, 650091, PR China
| | - Liyan Zheng
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education Functional Molecules Analysis and Biotransformation, Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, No. 2 North Cuihu Road, Kunming, 650091, PR China.
| | - Qiu'e Cao
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education Functional Molecules Analysis and Biotransformation, Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, No. 2 North Cuihu Road, Kunming, 650091, PR China.
| | - W Fan
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education Functional Molecules Analysis and Biotransformation, Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, No. 2 North Cuihu Road, Kunming, 650091, PR China
| | - Y Cheng
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education Functional Molecules Analysis and Biotransformation, Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, No. 2 North Cuihu Road, Kunming, 650091, PR China
| | - H Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education Functional Molecules Analysis and Biotransformation, Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, No. 2 North Cuihu Road, Kunming, 650091, PR China
| | - S Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education Functional Molecules Analysis and Biotransformation, Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, No. 2 North Cuihu Road, Kunming, 650091, PR China
| | - L Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education Functional Molecules Analysis and Biotransformation, Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, No. 2 North Cuihu Road, Kunming, 650091, PR China
| | - L Zheng
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education Functional Molecules Analysis and Biotransformation, Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, No. 2 North Cuihu Road, Kunming, 650091, PR China
| | - Q Cao
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education Functional Molecules Analysis and Biotransformation, Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, No. 2 North Cuihu Road, Kunming, 650091, PR China
| |
Collapse
|
14
|
Fernandez-Bartolome E, Martinez-Martinez A, Resines-Urien E, Piñeiro-Lopez L, Costa JS. Reversible single-crystal-to-single-crystal transformations in coordination compounds induced by external stimuli. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214281] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
15
|
You LX, Cao SY, Guo Y, Wang SJ, Xiong G, Dragutan I, Dragutan V, Ding F, Sun YG. Structural insights into new luminescent 2D lanthanide coordination polymers using an N, N′-disubstituted benzimidazole zwitterion. Influence of the ligand. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
16
|
Metal-Organic Framework-Based Stimuli-Responsive Polymers. JOURNAL OF COMPOSITES SCIENCE 2021. [DOI: 10.3390/jcs5040101] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Metal-organic framework (MOF) based stimuli-responsive polymers (coordination polymers) exhibit reversible phase-transition behavior and demonstrate attractive properties that are capable of altering physical and/or chemical properties upon exposure to external stimuli, including pH, temperature, ions, etc., in a dynamic fashion. Thus, their conformational change can be imitated by the adsorption/desorption of target analytes (guest molecules), temperature or pressure changes, and electromagnetic field manipulation. MOF-based stimuli responsive polymers have received great attention due to their advanced optical properties and variety of applications. Herein, we summarized some recent progress on MOF-based stimuli-responsive polymers (SRPs) classified by physical and chemical responsiveness, including temperature, pressure, electricity, pH, metal ions, gases, alcohol and multi-targets.
Collapse
|
17
|
Vervoorts P, Keupp J, Schneemann A, Hobday CL, Daisenberger D, Fischer RA, Schmid R, Kieslich G. Configurational Entropy Driven High-Pressure Behaviour of a Flexible Metal-Organic Framework (MOF). Angew Chem Int Ed Engl 2021; 60:787-793. [PMID: 32926541 PMCID: PMC7839482 DOI: 10.1002/anie.202011004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Indexed: 12/27/2022]
Abstract
Flexible metal-organic frameworks (MOFs) show large structural flexibility as a function of temperature or (gas)pressure variation, a fascinating property of high technological and scientific relevance. The targeted design of flexible MOFs demands control over the macroscopic thermodynamics as determined by microscopic chemical interactions and remains an open challenge. Herein we apply high-pressure powder X-ray diffraction and molecular dynamics simulations to gain insight into the microscopic chemical factors that determine the high-pressure macroscopic thermodynamics of two flexible pillared-layer MOFs. For the first time we identify configurational entropy that originates from side-chain modifications of the linker as the key factor determining the thermodynamics in a flexible MOF. The study shows that configurational entropy is an important yet largely overlooked parameter, providing an intriguing perspective of how to chemically access the underlying free energy landscape in MOFs.
Collapse
Affiliation(s)
- Pia Vervoorts
- Department of ChemistryTechnical University of MunichLichtenbergstr. 485748GarchingGermany
| | - Julian Keupp
- Computational Materials ChemistryRuhr University BochumUniversitätsstrasse 15044801BochumGermany
| | - Andreas Schneemann
- Inorganic Chemistry ITechnical University DresdenBergstr. 6601069DresdenGermany
| | - Claire L. Hobday
- Centre for Science at Extreme Conditions and EaStCHEM School of ChemistryThe University of EdinburghKings' Buildings West Mains RoadEdinburghEH9 3FDUK
| | - Dominik Daisenberger
- Diamond Light SourceHarwell Science and Innovation CampusDidcotOX11 ODEOxfordshireUK
| | - Roland A. Fischer
- Department of ChemistryTechnical University of MunichLichtenbergstr. 485748GarchingGermany
| | - Rochus Schmid
- Computational Materials ChemistryRuhr University BochumUniversitätsstrasse 15044801BochumGermany
| | - Gregor Kieslich
- Department of ChemistryTechnical University of MunichLichtenbergstr. 485748GarchingGermany
| |
Collapse
|
18
|
Li Z, Fraile J, Viñas C, Teixidor F, Planas JG. Post-synthetic modification of a highly flexible 3D soft porous metal–organic framework by incorporating conducting polypyrrole: enhanced MOF stability and capacitance as an electrode material. Chem Commun (Camb) 2021; 57:2523-2526. [DOI: 10.1039/d0cc07393h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Porous, stable and functional MOF polymer hybrids can be prepared by the in situ polymerization of otherwise unstable soft crystals.
Collapse
Affiliation(s)
- Zhen Li
- Institut de Ciència de Materials de Barcelona
- ICMAB-CSIC
- Campus de la UAB
- Bellaterra 08193
- Spain
| | - Julio Fraile
- Institut de Ciència de Materials de Barcelona
- ICMAB-CSIC
- Campus de la UAB
- Bellaterra 08193
- Spain
| | - Clara Viñas
- Institut de Ciència de Materials de Barcelona
- ICMAB-CSIC
- Campus de la UAB
- Bellaterra 08193
- Spain
| | - Francesc Teixidor
- Institut de Ciència de Materials de Barcelona
- ICMAB-CSIC
- Campus de la UAB
- Bellaterra 08193
- Spain
| | - José G. Planas
- Institut de Ciència de Materials de Barcelona
- ICMAB-CSIC
- Campus de la UAB
- Bellaterra 08193
- Spain
| |
Collapse
|
19
|
Sivakumar A, Dhas SSJ, Almansour AI, Kumar RS, Arumugam N, Dhas SAMB. Switchable phase transition between crystalline and amorphous states of CuSO 4·5H 2O by dynamic shock waves. CrystEngComm 2021. [DOI: 10.1039/d1ce01118a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In this communication, we report the switchable phase transition occurring between the crystalline and amorphous states of CuSO4·5H2O, influenced by dynamic shock waves, and the results have been evaluated by XRD and Raman techniques.
Collapse
Affiliation(s)
- A. Sivakumar
- Shock Wave Research Laboratory, Department of Physics, Abdul Kalam Research Center, Sacred Heart College, Tirupattur, Tamil Nadu, 635 601, India
| | - S. Sahaya Jude Dhas
- Department of Physics, Kings Engineering College, Sriperumbudur, Chennai, Tamilnadu, 602 117, India
| | - Abdulrahman I. Almansour
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Raju Suresh Kumar
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Natarajan Arumugam
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - S. A. Martin Britto Dhas
- Shock Wave Research Laboratory, Department of Physics, Abdul Kalam Research Center, Sacred Heart College, Tirupattur, Tamil Nadu, 635 601, India
| |
Collapse
|
20
|
Vervoorts P, Keupp J, Schneemann A, Hobday CL, Daisenberger D, Fischer RA, Schmid R, Kieslich G. Configurational Entropy Driven High‐Pressure Behaviour of a Flexible Metal–Organic Framework (MOF). Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202011004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Pia Vervoorts
- Department of Chemistry Technical University of Munich Lichtenbergstr. 4 85748 Garching Germany
| | - Julian Keupp
- Computational Materials Chemistry Ruhr University Bochum Universitätsstrasse 150 44801 Bochum Germany
| | - Andreas Schneemann
- Inorganic Chemistry I Technical University Dresden Bergstr. 66 01069 Dresden Germany
| | - Claire L. Hobday
- Centre for Science at Extreme Conditions and EaStCHEM School of Chemistry The University of Edinburgh Kings' Buildings West Mains Road Edinburgh EH9 3FD UK
| | - Dominik Daisenberger
- Diamond Light Source Harwell Science and Innovation Campus Didcot OX11 ODE Oxfordshire UK
| | - Roland A. Fischer
- Department of Chemistry Technical University of Munich Lichtenbergstr. 4 85748 Garching Germany
| | - Rochus Schmid
- Computational Materials Chemistry Ruhr University Bochum Universitätsstrasse 150 44801 Bochum Germany
| | - Gregor Kieslich
- Department of Chemistry Technical University of Munich Lichtenbergstr. 4 85748 Garching Germany
| |
Collapse
|
21
|
Zhang Z, Sun H, Du L, Xie M, Zhou J, Zhao Q. Metal ions Directed Self‐assembly based on Mixed Ligands: From 2D hcb Net to 3D cds Framework. Z Anorg Allg Chem 2020. [DOI: 10.1002/zaac.202000290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Zhen Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource Education Ministry School of Chemical Science and Technology Yunnan University Kunming
| | - Han‐Xu Sun
- Key Laboratory of Medicinal Chemistry for Natural Resource Education Ministry School of Chemical Science and Technology Yunnan University Kunming
| | - Lin Du
- Key Laboratory of Medicinal Chemistry for Natural Resource Education Ministry School of Chemical Science and Technology Yunnan University Kunming
| | - Ming‐Jin Xie
- Key Laboratory of Medicinal Chemistry for Natural Resource Education Ministry School of Chemical Science and Technology Yunnan University Kunming
| | - Jie Zhou
- Key Laboratory of Medicinal Chemistry for Natural Resource Education Ministry School of Chemical Science and Technology Yunnan University Kunming
| | - Qi‐Hua Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource Education Ministry School of Chemical Science and Technology Yunnan University Kunming
| |
Collapse
|
22
|
Sutradhar M, Roy Barman T, Alegria ECBA, Lapa HM, Guedes da Silva MFC, Pombeiro AJL. Cd( ii) coordination compounds as heterogeneous catalysts for microwave-assisted peroxidative oxidation of toluene and 1-phenylethanol. NEW J CHEM 2020. [DOI: 10.1039/d0nj01408g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cd(ii) compounds as catalysts towards microwave assisted peroxidative oxidation (with tert-butylhydroperoxide, TBHP) of toluene and 1-phenylethanol under heterogeneous conditions are explored.
Collapse
Affiliation(s)
- Manas Sutradhar
- Centro de Química Estrutural
- Instituto Superior Técnico
- Universidade de Lisboa
- 1049-001 Lisboa
- Portugal
| | - Tannistha Roy Barman
- Centro de Química Estrutural
- Instituto Superior Técnico
- Universidade de Lisboa
- 1049-001 Lisboa
- Portugal
| | | | - Hugo M. Lapa
- Centro de Química Estrutural
- Instituto Superior Técnico
- Universidade de Lisboa
- 1049-001 Lisboa
- Portugal
| | | | - Armando J. L. Pombeiro
- Centro de Química Estrutural
- Instituto Superior Técnico
- Universidade de Lisboa
- 1049-001 Lisboa
- Portugal
| |
Collapse
|
23
|
Dubskikh VA, Lysova AA, Samsonenko DG, Dybtsev DN, Fedin VP. Topological polymorphism and temperature-driven topotactic transitions of metal–organic coordination polymers. CrystEngComm 2020. [DOI: 10.1039/d0ce01045f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A facile crystal-to-crystal solid-state phase transition between a low-temperature phase and a high temperature phase changes the MOF topology and involves a significant rearrangement of bulky organic ligands.
Collapse
Affiliation(s)
- Vadim A. Dubskikh
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences
- Novosibirsk
- Russia
| | - Anna A. Lysova
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences
- Novosibirsk
- Russia
- Novosibirsk State University
- Novosibirsk
| | - Denis G. Samsonenko
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences
- Novosibirsk
- Russia
- Novosibirsk State University
- Novosibirsk
| | - Danil N. Dybtsev
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences
- Novosibirsk
- Russia
- Novosibirsk State University
- Novosibirsk
| | - Vladimir P. Fedin
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences
- Novosibirsk
- Russia
- Novosibirsk State University
- Novosibirsk
| |
Collapse
|