1
|
Erbe A, Tesch MF, Rüdiger O, Kaiser B, DeBeer S, Rabe M. Operando studies of Mn oxide based electrocatalysts for the oxygen evolution reaction. Phys Chem Chem Phys 2023; 25:26958-26971. [PMID: 37585177 DOI: 10.1039/d3cp02384b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Inspired by photosystem II (PS II), Mn oxide based electrocatalysts have been repeatedly investigated as catalysts for the electrochemical oxygen evolution reaction (OER), the anodic reaction in water electrolysis. However, a comparison of the conditions in biological OER catalysed by the water splitting complex CaMn4Ox with the requirements for an electrocatalyst for industrially relevant applications reveals fundamental differences. Thus, a systematic development of artificial Mn-based OER catalysts requires both a fundamental understanding of the catalytic mechanisms as well as an evaluation of the practicality of the system for industrial scale applications. Experimentally, both aspects can be approached using in situ and operando methods including spectroscopy. This paper highlights some of the major challenges common to different operando investigation methods and recent insights gained with them. To this end, vibrational spectroscopy, especially Raman spectroscopy, absorption techniques in the bandgap region and operando X-ray spectroelectrochemistry (SEC), both in the hard and soft X-ray regime are particularly focused on here. Technical challenges specific to each method are discussed first, followed by challenges that are specific to Mn oxide based systems. Finally, recent in situ and operando studies are reviewed. This analysis shows that despite the technical and Mn specific challenges, three specific key features are common to most of the studied systems with significant OER activity: structural disorder, Mn oxidation states between III and IV, and the appearance of layered birnessite phases in the active regime.
Collapse
Affiliation(s)
- Andreas Erbe
- Department of Materials Science and Engineering, NTNU, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Marc Frederic Tesch
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany.
| | - Olaf Rüdiger
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany.
| | - Bernhard Kaiser
- Surface Science Laboratory, Department of Materials- and Earth Sciences, Technical University Darmstadt, Otto-Berndt-Str. 3, 64287 Darmstadt, Germany
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany.
| | - Martin Rabe
- Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Str. 1, 40237 Düsseldorf, Germany.
| |
Collapse
|
2
|
Chatenet M, Pollet BG, Dekel DR, Dionigi F, Deseure J, Millet P, Braatz RD, Bazant MZ, Eikerling M, Staffell I, Balcombe P, Shao-Horn Y, Schäfer H. Water electrolysis: from textbook knowledge to the latest scientific strategies and industrial developments. Chem Soc Rev 2022; 51:4583-4762. [PMID: 35575644 PMCID: PMC9332215 DOI: 10.1039/d0cs01079k] [Citation(s) in RCA: 287] [Impact Index Per Article: 95.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Indexed: 12/23/2022]
Abstract
Replacing fossil fuels with energy sources and carriers that are sustainable, environmentally benign, and affordable is amongst the most pressing challenges for future socio-economic development. To that goal, hydrogen is presumed to be the most promising energy carrier. Electrocatalytic water splitting, if driven by green electricity, would provide hydrogen with minimal CO2 footprint. The viability of water electrolysis still hinges on the availability of durable earth-abundant electrocatalyst materials and the overall process efficiency. This review spans from the fundamentals of electrocatalytically initiated water splitting to the very latest scientific findings from university and institutional research, also covering specifications and special features of the current industrial processes and those processes currently being tested in large-scale applications. Recently developed strategies are described for the optimisation and discovery of active and durable materials for electrodes that ever-increasingly harness first-principles calculations and machine learning. In addition, a technoeconomic analysis of water electrolysis is included that allows an assessment of the extent to which a large-scale implementation of water splitting can help to combat climate change. This review article is intended to cross-pollinate and strengthen efforts from fundamental understanding to technical implementation and to improve the 'junctions' between the field's physical chemists, materials scientists and engineers, as well as stimulate much-needed exchange among these groups on challenges encountered in the different domains.
Collapse
Affiliation(s)
- Marian Chatenet
- University Grenoble Alpes, University Savoie Mont Blanc, CNRS, Grenoble INP (Institute of Engineering and Management University Grenoble Alpes), LEPMI, 38000 Grenoble, France
| | - Bruno G Pollet
- Hydrogen Energy and Sonochemistry Research group, Department of Energy and Process Engineering, Faculty of Engineering, Norwegian University of Science and Technology (NTNU) NO-7491, Trondheim, Norway
- Green Hydrogen Lab, Institute for Hydrogen Research (IHR), Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G9A 5H7, Canada
| | - Dario R Dekel
- The Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
- The Nancy & Stephen Grand Technion Energy Program (GTEP), Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Fabio Dionigi
- Department of Chemistry, Chemical Engineering Division, Technical University Berlin, 10623, Berlin, Germany
| | - Jonathan Deseure
- University Grenoble Alpes, University Savoie Mont Blanc, CNRS, Grenoble INP (Institute of Engineering and Management University Grenoble Alpes), LEPMI, 38000 Grenoble, France
| | - Pierre Millet
- Paris-Saclay University, ICMMO (UMR 8182), 91400 Orsay, France
- Elogen, 8 avenue du Parana, 91940 Les Ulis, France
| | - Richard D Braatz
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Martin Z Bazant
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Michael Eikerling
- Chair of Theory and Computation of Energy Materials, Division of Materials Science and Engineering, RWTH Aachen University, Intzestraße 5, 52072 Aachen, Germany
- Institute of Energy and Climate Research, IEK-13: Modelling and Simulation of Materials in Energy Technology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Iain Staffell
- Centre for Environmental Policy, Imperial College London, London, UK
| | - Paul Balcombe
- Division of Chemical Engineering and Renewable Energy, School of Engineering and Material Science, Queen Mary University of London, London, UK
| | - Yang Shao-Horn
- Research Laboratory of Electronics and Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Helmut Schäfer
- Institute of Chemistry of New Materials, The Electrochemical Energy and Catalysis Group, University of Osnabrück, Barbarastrasse 7, 49076 Osnabrück, Germany.
| |
Collapse
|
3
|
Becker S, Behrens M. Oxygen evolving reactions catalyzed by different manganese oxides: the role of oxidation state and specific surface area. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES 2022. [DOI: 10.1515/znb-2022-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
A set of the four manganese oxide powders α-MnO2 (hollandite), δ-MnO2 (birnessite), Mn2O3 (bixbyite), and Mn3O4 (hausmannite) have been synthesized in a phase-pure form and tested as catalysts in three different oxygen evolution reactions (OER): electrochemical OER in KOH (1 mol L−1), chemical OER using aqueous cerium ammonium nitrate, and H2O2 decomposition. The trends in electrochemical (hollandite >> bixbyite > birnessite > hausmannite) and chemical OER (hollandite > birnessite > bixbyite > hausmannite) are different, which can be explained by differences in electric conductivity. H2O2 decomposition and chemical OER, on the other hand, showed the same trend and even a linear correlation of their initial OER rates. A linear correlation between the catalytic performance and the manganese oxidation state of the catalysts was observed. Another trend was observed related to the specific surface area, highlighting the importance of these properties for the OER. Altogether, hollandite was found to be the best performing catalyst in this study due to a combination of the high manganese oxidation state and a large specific surface area. Likely, due to a sufficient electrical conductivity, this intrinsically high OER performance is also found to some extent in electrocatalysis for this specific example.
Collapse
Affiliation(s)
- Stefanie Becker
- Universität Duisburg-Essen, Fakultät für Chemie , Universitätsstraße 7 , 45114 Essen , Germany
| | - Malte Behrens
- Universität Duisburg-Essen, Fakultät für Chemie , Universitätsstraße 7 , 45114 Essen , Germany
- Christian-Albrechts-Universität zu Kiel, Institut für Anorganische Chemie , May-Eyth-Straße 2 , 24118 Kiel , Germany
| |
Collapse
|
4
|
Morales DM, Jambrec D, Kazakova MA, Braun M, Sikdar N, Koul A, Brix AC, Seisel S, Andronescu C, Schuhmann W. Electrocatalytic Conversion of Glycerol to Oxalate on Ni Oxide Nanoparticles-Modified Oxidized Multiwalled Carbon Nanotubes. ACS Catal 2022. [DOI: 10.1021/acscatal.1c04150] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Dulce M. Morales
- Analytical Chemistry − Center of Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Daliborka Jambrec
- Analytical Chemistry − Center of Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Mariya A. Kazakova
- Boreskov Institute of Catalysis, SB RAS, Lavrentieva 5, 630090 Novosibirsk, Russia
| | - Michael Braun
- Chemical Technology III, Faculty of Chemistry and CENIDE Center for Nanointegration, University of Duisburg-Essen, Carl-Benz-Straße 199, 47057 Duisburg, Germany
| | - Nivedita Sikdar
- Analytical Chemistry − Center of Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Adarsh Koul
- Analytical Chemistry − Center of Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Ann Cathrin Brix
- Analytical Chemistry − Center of Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Sabine Seisel
- Analytical Chemistry − Center of Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Corina Andronescu
- Chemical Technology III, Faculty of Chemistry and CENIDE Center for Nanointegration, University of Duisburg-Essen, Carl-Benz-Straße 199, 47057 Duisburg, Germany
| | - Wolfgang Schuhmann
- Analytical Chemistry − Center of Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| |
Collapse
|
5
|
Rabe A, Büker J, Salamon S, Koul A, Hagemann U, Landers J, Friedel Ortega K, Peng B, Muhler M, Wende H, Schuhmann W, Behrens M. The Roles of Composition and Mesostructure of Cobalt-Based Spinel Catalysts in Oxygen Evolution Reactions. Chemistry 2021; 27:17038-17048. [PMID: 34596277 PMCID: PMC9298119 DOI: 10.1002/chem.202102400] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Indexed: 11/10/2022]
Abstract
By using the crystalline precursor decomposition approach and direct co-precipitation the composition and mesostructure of cobalt-based spinels can be controlled. A systematic substitution of cobalt with redox-active iron and redox-inactive magnesium and aluminum in a cobalt spinel with anisotropic particle morphology with a preferred 111 surface termination is presented, resulting in a substitution series including Co3 O4 , MgCo2 O4 , Co2 FeO4 , Co2 AlO4 and CoFe2 O4 . The role of redox pairs in the spinels is investigated in chemical water oxidation by using ceric ammonium nitrate (CAN test), electrochemical oxygen evolution reaction (OER) and H2 O2 decomposition. Studying the effect of dominant surface termination, isotropic Co3 O4 and CoFe2 O4 catalysts with more or less spherical particles are compared to their anisotropic analogues. For CAN-test and OER, Co3+ plays the major role for high activity. In H2 O2 decomposition, Co2+ reveals itself to be of major importance. Redox active cations in the structure enhance the catalytic activity in all reactions. A benefit of a predominant 111 surface termination depends on the cobalt oxidation state in the as-prepared catalysts and the investigated reaction.
Collapse
Affiliation(s)
- Anna Rabe
- Faculty of Chemistry, University of Duisburg-Essen and Center for Nanointegration Duisburg-Essen (CENIDE), Universitätsstr. 7, 45141, Essen, Germany
| | - Julia Büker
- Laboratory of Industrial Chemistry Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| | - Soma Salamon
- Faculty of Physics and CENIDE, University of Duisburg-Essen, Lotharstraße 1, 45057, Duisburg, Germany
| | - Adarsh Koul
- Analytical Chemistry-Center for Electrochemical Sciences (CES) Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| | - Ulrich Hagemann
- Interdisciplinary Center for Analytics on the Nanoscale (ICAN), University of Duisburg-Essen, Carl-Benz-Straße 199, 47057, Duisburg, Germany.,Center for Nanointegration Duisburg-Essen (CENIDE), Carl-Benz-Straße 199, 47057, Duisburg, Germany
| | - Joachim Landers
- Faculty of Physics and CENIDE, University of Duisburg-Essen, Lotharstraße 1, 45057, Duisburg, Germany
| | - Klaus Friedel Ortega
- Institute for Inorganic Chemistry, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Str. 2, 24118, Kiel, Germany
| | - Baoxiang Peng
- Laboratory of Industrial Chemistry Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| | - Martin Muhler
- Laboratory of Industrial Chemistry Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| | - Heiko Wende
- Faculty of Physics and CENIDE, University of Duisburg-Essen, Lotharstraße 1, 45057, Duisburg, Germany
| | - Wolfgang Schuhmann
- Analytical Chemistry-Center for Electrochemical Sciences (CES) Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| | - Malte Behrens
- Faculty of Chemistry, University of Duisburg-Essen and Center for Nanointegration Duisburg-Essen (CENIDE), Universitätsstr. 7, 45141, Essen, Germany.,Center for Nanointegration Duisburg-Essen (CENIDE), Carl-Benz-Straße 199, 47057, Duisburg, Germany.,Institute for Inorganic Chemistry, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Str. 2, 24118, Kiel, Germany
| |
Collapse
|
6
|
Aufa MH, Watzele SA, Hou S, Haid RW, Kluge RM, Bandarenka AS, Garlyyev B. Fast and accurate determination of the electroactive surface area of MnOx. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
7
|
Ahmad S, Nawaz T, Ullah A, Ahmed M, Khan MO, Saher S, Qamar A, Sikandar MA. Thermal optimization of manganese dioxide nanorods with enhanced ORR activity for alkaline membrane fuel cell. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202000032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Shahbaz Ahmad
- U.S.‐Pakistan Center for Advanced Studies in Energy University of Engineering and Technology Peshawar Khyber Pakhtunkhwa Pakistan
| | - Tahir Nawaz
- U.S.‐Pakistan Center for Advanced Studies in Energy National University of Sciences and Technology Islamabad Pakistan
| | - Abid Ullah
- U.S.‐Pakistan Center for Advanced Studies in Energy University of Engineering and Technology Peshawar Khyber Pakhtunkhwa Pakistan
| | - Mushtaq Ahmed
- U.S.‐Pakistan Center for Advanced Studies in Energy University of Engineering and Technology Peshawar Khyber Pakhtunkhwa Pakistan
| | - M. Owais Khan
- Department Of Mechanical Engineering University of Engineering and Technology Peshawar Khyber Pakhtunkhwa Pakistan
| | - Saim Saher
- Ariston Energy Solutions Peshawar Pakistan
- Advanced Materials Laboratory (AML) Peshawar Pakistan
| | - Affaq Qamar
- U.S.‐Pakistan Center for Advanced Studies in Energy University of Engineering and Technology Peshawar Khyber Pakhtunkhwa Pakistan
| | - Muhammad Ali Sikandar
- Department of Civil Engineering CECOS University of IT & Emerging Sciences Peshawar Pakistan
| |
Collapse
|
8
|
Heese‐Gärtlein J, Rabe A, Behrens M. Challenges in the Application of Manganese Oxide Powders as OER Electrocatalysts: Synthesis, Characterization, Activity and Stability of Nine Different Mn
x
O
y
Compounds. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202000180] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Justus Heese‐Gärtlein
- University of Duisburg-Essen Faculty of Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE) Universitätsstr. 7 45141 Essen Germany
| | - Anna Rabe
- University of Duisburg-Essen Faculty of Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE) Universitätsstr. 7 45141 Essen Germany
| | - Malte Behrens
- University of Duisburg-Essen Faculty of Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE) Universitätsstr. 7 45141 Essen Germany
- Ertl Center for Electrochemistry and Catalysis Gwangju Institute of Science (GIST) 123 Cheomdan-gwagiro (Oryang-dong), Buk-gu Gwangju 500-712 South Korea
| |
Collapse
|
9
|
Heese‐Gärtlein J, Morales DM, Rabe A, Bredow T, Schuhmann W, Behrens M. Factors Governing the Activity of α-MnO 2 Catalysts in the Oxygen Evolution Reaction: Conductivity versus Exposed Surface Area of Cryptomelane. Chemistry 2020; 26:12256-12267. [PMID: 32159252 PMCID: PMC7540518 DOI: 10.1002/chem.201905090] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Indexed: 12/20/2022]
Abstract
Cryptomelane (α-(K)MnO2 ) powders were synthesized by different methods leading to only slight differences in their bulk crystal structure and chemical composition, while the BET surface area and the crystallite size differed significantly. Their performance in the oxygen evolution reaction (OER) covered a wide range and their sequence of increasing activity differed when electrocatalysis in alkaline electrolyte and chemical water oxidation using Ce4+ were compared. The decisive factors that explain this difference were identified in the catalysts' microstructure. Chemical water oxidation activity is substantially governed by the exposed surface area, while the electrocatalytic activity is determined largely by the electric conductivity, which was found to correlate with the particle morphology in terms of needle length and aspect ratio in this sample series. This correlation is rather explained by an improved conductivity due to longer needles than by structure sensitivity as was supported by reference experiments using H2 O2 decomposition and carbon black as additive. The most active catalyst R-cryptomelane reached a current density of 10 mA cm-2 at a potential 1.73 V without, and at 1.71 V in the presence of carbon black. The improvement was significantly higher for the catalyst with lower initial activity. However, the materials showed a disappointing catalytic stability during alkaline electrochemical OER, whereas the crystal structure was found to be stable at working conditions.
Collapse
Affiliation(s)
- Justus Heese‐Gärtlein
- Faculty of Chemistry andCenter for Nanointegration Duisburg-Essen (CENIDE)University of Duisburg-EssenUniversitätsstr. 745114EssenGermany
| | - Dulce M. Morales
- Analytical Chemistry—Center for Electrochemical Sciences (CES), Faculty of Chemistry and BiochemistryRuhr University BochumUniversitätsstr. 15044780BochumGermany
| | - Anna Rabe
- Faculty of Chemistry andCenter for Nanointegration Duisburg-Essen (CENIDE)University of Duisburg-EssenUniversitätsstr. 745114EssenGermany
| | - Thomas Bredow
- Mulliken Center for Theoretical ChemistryInstitut für Physikalische und Theoretische ChemieUniversity of BonnBeringstr. 453115BonnGermany
| | - Wolfgang Schuhmann
- Analytical Chemistry—Center for Electrochemical Sciences (CES), Faculty of Chemistry and BiochemistryRuhr University BochumUniversitätsstr. 15044780BochumGermany
| | - Malte Behrens
- Faculty of Chemistry andCenter for Nanointegration Duisburg-Essen (CENIDE)University of Duisburg-EssenUniversitätsstr. 745114EssenGermany
- Ertl Center for Electrochemistry and CatalysisGwangju Institute of Science (GIST)123 Cheomdan-gwagiro (Oryang-dong), Buk-guGwangju500-712South Korea
| |
Collapse
|