1
|
Li C, Zhou W, Liu Z, Gao R, Mi Q, Ning Z, Ren Y. Non-innocent P-centers in nonbenzenoid polycyclic aromatic molecules with tunable structures and properties. Chem Sci 2024:d4sc05857g. [PMID: 39449686 PMCID: PMC11495496 DOI: 10.1039/d4sc05857g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024] Open
Abstract
Implanting heteroatoms into polycyclic aromatic molecules (PAMs) offers a great opportunity to fine-tune their optoelectronic properties. Herein, we report a new type of nonbenzenoid PAM in which the sp2 C atoms are replaced by S and P in the azulene moiety. The synthesis harnessed modular P-chemistry and cyclization chemistry, which afforded the first example of P-azulene-based PAMs with isomeric PN- and PC-type structures. Photophysical and theoretical studies revealed that the P-environments have strong impacts on the structures and properties of the P-PAMs. Different from the electronic structure of azulene with strong π conjugation, the PC derivatives maintained effective σ*-π* hyperconjugation in the frontier molecular orbitals via the P-centers. In particular, the PC derivative with a P(iii)-center showed unexpected room-temperature phosphorescence in solution, which was attributed to the excited-state aromaticity induced structure change at the P-center. Decoration with various aryl groups further modified the photophysical and redox properties in another dimension. Furthermore, bis(triarylamine)-functionalized P-PAMs formed stable radical cations in which the P-environments strongly influenced the mixed-valence state and open-shell characters. As a proof of concept, bis(triarylamine)-functionalized P-PAMs were explored as the hole-transporting layers in perovskite solar cells, and a power conversion efficiency of 14% was achieved. As a new example of nonbenzenoid PAMs with intriguing optoelectronic properties, our P-PAMs are promising building blocks for diverse optoelectronic applications in the future.
Collapse
Affiliation(s)
- Can Li
- School of Physical Science and Technology, ShanghaiTech University Shanghai 201210 China
| | - Wei Zhou
- School of Physical Science and Technology, ShanghaiTech University Shanghai 201210 China
| | - Zhaoxin Liu
- School of Physical Science and Technology, ShanghaiTech University Shanghai 201210 China
| | - Rong Gao
- School of Physical Science and Technology, ShanghaiTech University Shanghai 201210 China
| | - Qixi Mi
- School of Physical Science and Technology, ShanghaiTech University Shanghai 201210 China
| | - Zhijun Ning
- School of Physical Science and Technology, ShanghaiTech University Shanghai 201210 China
| | - Yi Ren
- School of Physical Science and Technology, ShanghaiTech University Shanghai 201210 China
- Shanghai Clinical Research and Trial Center Shanghai 201210 People's Republic of China
| |
Collapse
|
2
|
Andoh K, Murai M, Bouit PA, Hissler M, Yamaguchi S. Dithieno[3,2-b; 2',3'-f]phosphepinium-Based Near-Infrared Fluorophores: p x-π* Conjugation Inherent to Seven-Membered Phosphacycles. Angew Chem Int Ed Engl 2024; 63:e202410204. [PMID: 38935519 DOI: 10.1002/anie.202410204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 06/29/2024]
Abstract
Positively charged phosphorus-containing heterocycles are characteristic core skeletons for functional molecules. While various phosphonium-containing five- or six-membered-ring compounds have been reported, the seven-membered-ring phosphepinium have not been fully studied yet. In this study, dithieno[3,2-b; 2',3'-f]phosphepinium ions containing electron-donating aminophenyl groups were synthesized. An X-ray crystallographic analysis of the resulting donor-acceptor-donor dyes revealed a bent conformation of the central seven-membered ring. These compounds exhibit fluorescence in the near-infrared region with a bathochromic shift of ca. 70 nm compared to a phosphepine oxide congener and a large Stokes shift. High fluorescence quantum yields were obtained even in polar solvents due to the suppression of the nonradiative decay process. A theoretical study revealed that the phosphepinium skeleton is highly electron-accepting owing to the orbital interaction between a px orbital of the phosphonium moiety and a π* orbital of the 1,3,5-hexatriene moiety. Due to the lower-lying px orbital in the phosphonium moiety compared to that of the phosphine oxide and the bent conformation of the seven-membered ring, the phosphepinium ring permits effective px-π* conjugation. A large structural relaxation with a contribution of a quinoidal resonance structure is suggested in the excited state, which should be responsible for the bright emission with a large Stokes shift.
Collapse
Affiliation(s)
- Keita Andoh
- Department of Chemistry, Graduate School of Science, and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
| | - Masahito Murai
- Department of Chemistry, Graduate School of Science, and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
| | | | - Muriel Hissler
- Université Rennes, CNRS, ISCR-UMR 6226, F-35000, Rennes, France
| | - Shigehiro Yamaguchi
- Department of Chemistry, Graduate School of Science, and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo, Chikusa, Nagoya, 464-8601, Japan
| |
Collapse
|
3
|
Zhang FP, Wang RH, Li JF, Chen H, Hari Babu M, Ye M. Intermolecular Carbophosphination of Alkynes with Phosphole Oxides via Ni-Al Bimetal-Catalyzed C-P Bond Activation. Angew Chem Int Ed Engl 2023; 62:e202314701. [PMID: 37846814 DOI: 10.1002/anie.202314701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 10/18/2023]
Abstract
Intermolecular carbophosphination reaction of alkynes or alkenes with unreactive C-P bonds remains an elusive challenge. Herein, we used a Ni-Al bimetallic catalyst to realize an intermolecular carbophosphination reaction of alkynes with 5-membered phosphole oxides, providing a series of 7-membered phosphepines in up to 94 % yield.
Collapse
Affiliation(s)
- Feng-Ping Zhang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Haihe Laboratory of Sustainable Chemical Transformations, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| | - Rong-Hua Wang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Haihe Laboratory of Sustainable Chemical Transformations, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| | - Jiang-Fei Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Haihe Laboratory of Sustainable Chemical Transformations, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| | - Hao Chen
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Haihe Laboratory of Sustainable Chemical Transformations, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| | - Madala Hari Babu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Haihe Laboratory of Sustainable Chemical Transformations, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| | - Mengchun Ye
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Haihe Laboratory of Sustainable Chemical Transformations, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| |
Collapse
|
4
|
Li X, Liu Z, Li C, Gao R, Qi Y, Ren Y. Synthesis and Photophysical Properties of Carbazole-Functionalized Diazaphosphepines via Sequent P-N Chemistry. J Org Chem 2023; 88:13678-13685. [PMID: 37691267 DOI: 10.1021/acs.joc.3c01351] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Chemical structure tunability of organic π-conjugated molecules (OCMs) is highly appealing for fine-tuning the optoelectronic properties. Herein, we report a new series of carbazole-functionalized diazaphosphepines (DPP-CBZs) via one-pot phosphorus-nitrogen (P-N) chemistry. The one-pot synthesis harnessed the mild and selective P-N chemistry that successively installed carbazole moieties and seven-membered heterocycles at one P-center. Single-crystal structure studies revealed the tweezer-like structures for 1PO, 2PO, and 3PO that maintained the intramolecular donor-acceptor interactions between [d]-aryl moieties and carbazole. DPP-CBZs exhibited a more twisted central-diazaphosphepine ring compared with the reference molecules (1-3MO without carbazole group). DPP-CBZs with strong electron-accepting [d]-Ars generally showed lower photoluminescence quantum yields (PLQYs) than those of the reference molecules, which is probably due to the intramolecular charge transfer (ICT) from electron-donating carbazole to electron-withdrawing [d]-Ars. Upon the oxidation of the P-centers, PLQYs of DPP-CBZs increased. Furthermore, photophysical studies and theoretical studies suggested that the carbazole group had a strong impact on the structures of DPP-CBZs. As a proof of concept, we showed that grinding the mixture of 1PO as the electron-donating tweezer and benzene-1,2,4,5-tetracarbonitrile (BzCN) as the electron acceptor induced the formation of the CT complex.
Collapse
Affiliation(s)
- Xinyu Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zhaoxin Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Can Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Rong Gao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yanpeng Qi
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- ShanghaiTech Laboratory for Topological Physics, ShanghaiTech University, Shanghai 201210, China
- Shanghai Key Laboratory of High-resolution Electron Microscop, ShanghaiTech University, Shanghai 201210, China
| | - Yi Ren
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
5
|
Yang Z, Li X, Yang K, Yu N, Gao R, Ren Y. Synthesis and Unexpected Optical Properties of Ionic Phosphorus Heterocycles with P-Regulated Noncovalent Interactions. J Org Chem 2023. [PMID: 36786509 DOI: 10.1021/acs.joc.2c02424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Optoelectronic properties of organic chromophores (OCPs) are to a large extent dictated by the chemical structures. Herein, we synthesized a new series of ionic phosphorus(P)-heteropines via the methylation of the P(III) center. Our studies revealed that methylation is highly dependent on the P(III) environments (NPN, NPC, and CPC), in which adjacent nitrogen atoms greatly withdraw electron density of the P(III) center. The observation of noncovalent interactions between solvent molecules and the molecular backbones of the related P-heterocycle in the single crystal structure implied tunable molecular conformations. Different from the red-shifted absorption and emission spectra of ionic P-OCPs induced by either decreased lowest unoccupied molecular orbital (LUMO) or intramolecular charge transfer (ICT) state in previous studies, current ionic P-heterocycles exhibit blue-shifted absorption and emission spectra compared to the nonionic counterparts. Our experimental and theoretical studies suggest that the unexpected photophysical characters are probably due to the counter-anion induced structure twisting via intermolecular noncovalent interactions between NH-indole and O(OTf), and/or strong intermolecular O···F bonding between O(MI) and F(OTf). Our studies also revealed that the P-environments (NPN, NPC, and CPC) conjunctly impact the photophysical properties of the ionic P-heteropines. Overall, the fact that the P-environment-regulated noncovalent interactions induce the rich structure dynamics and photophysics offers us with a new and effective strategy to fine-tune the optical properties of OCPs.
Collapse
Affiliation(s)
- Zi Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xinyu Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Kai Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Na Yu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Rong Gao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yi Ren
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
6
|
Chen Y, Tseng SM, Chang KH, Chou PT. Energy Counterbalance to Harness Photoinduced Structural Planarization of Dibenzo[b,f]azepines toward Thermal Reversibility. J Am Chem Soc 2022; 144:1748-1757. [DOI: 10.1021/jacs.1c11231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yi Chen
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan, Republic of China
| | - Sheng-Ming Tseng
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan, Republic of China
| | - Kai-Hsin Chang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan, Republic of China
| | - Pi-Tai Chou
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan, Republic of China
| |
Collapse
|
7
|
Guo Z, Wu D, Wang L, Duan Z. BF 3•Et 2O Promoted Dienone-Phenol Type Rearrangement to Synthesize Phosphepine with Aggregation Induced Luminescence (AIE) Effect. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202204012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Chen Y, Chang K, Meng F, Tseng S, Chou P. Broadening the Horizon of the Bell–Evans–Polanyi Principle towards Optically Triggered Structure Planarization. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yi Chen
- Department of Chemistry National (Taiwan) University Taipei 10617 Taiwan, R.O.C
| | - Kai‐Hsin Chang
- Department of Chemistry National (Taiwan) University Taipei 10617 Taiwan, R.O.C
| | - Fan‐Yi Meng
- Department of Chemistry National (Taiwan) University Taipei 10617 Taiwan, R.O.C
| | - Sheng‐Ming Tseng
- Department of Chemistry National (Taiwan) University Taipei 10617 Taiwan, R.O.C
| | - Pi‐Tai Chou
- Department of Chemistry National (Taiwan) University Taipei 10617 Taiwan, R.O.C
| |
Collapse
|
9
|
Chen Y, Chang K, Meng F, Tseng S, Chou P. Broadening the Horizon of the Bell–Evans–Polanyi Principle towards Optically Triggered Structure Planarization. Angew Chem Int Ed Engl 2021; 60:7205-7212. [DOI: 10.1002/anie.202015274] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Yi Chen
- Department of Chemistry National (Taiwan) University Taipei 10617 Taiwan, R.O.C
| | - Kai‐Hsin Chang
- Department of Chemistry National (Taiwan) University Taipei 10617 Taiwan, R.O.C
| | - Fan‐Yi Meng
- Department of Chemistry National (Taiwan) University Taipei 10617 Taiwan, R.O.C
| | - Sheng‐Ming Tseng
- Department of Chemistry National (Taiwan) University Taipei 10617 Taiwan, R.O.C
| | - Pi‐Tai Chou
- Department of Chemistry National (Taiwan) University Taipei 10617 Taiwan, R.O.C
| |
Collapse
|
10
|
Duan Z, Wang L, Ma J, Si E. Recent Advances in Luminescent Annulated Borepins, Silepins, and Phosphepins. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/s-0040-1705946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractThis review summarizes recent research on the molecular design, optical, and electronic properties of annulated borepins, silepins, and phosphepins, with emphasis on their structure–property relationships at the molecular level.1 Introduction2 Borepins3 Silepins4 Phosphepins5 Summary and Outlook
Collapse
|
11
|
Delouche T, Roisnel T, Dorcet V, Hissler M, Bouit P. Mixing Polyaromatic Scaffolds and Main Group Elements: Synthesis, Coordination and Optical Properties of Naphthyl‐Fused Heteropines. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202001097] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
12
|
Tsurusaki A, Shimatani H, Kamikawa K. Gold(I)‐Catalyzed Intramolecular Hydroarylation of
o
‐Ethynylarylphosphonium Salt Leading to the Formation of Seven‐ and Six‐membered Phosphacycles. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Akihiro Tsurusaki
- Department of Chemistry, Graduate School of Science Osaka Prefecture University Sakai Osaka 599-8531 Japan
| | - Hiroki Shimatani
- Department of Chemistry, Graduate School of Science Osaka Prefecture University Sakai Osaka 599-8531 Japan
| | - Ken Kamikawa
- Department of Chemistry, Graduate School of Science Osaka Prefecture University Sakai Osaka 599-8531 Japan
| |
Collapse
|
13
|
Ascherl JDR, Neiß C, Vogel A, Graf J, Rominger F, Oeser T, Hampel F, Görling A, Kivala M. Phosphorus-Containing Dibenzonaphthanthrenes: Electronic Fine Tuning of Polycyclic Aromatic Hydrocarbons through Organophosphorus Chemistry. Chemistry 2020; 26:13157-13162. [PMID: 32558004 PMCID: PMC7693108 DOI: 10.1002/chem.202002872] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Indexed: 02/03/2023]
Abstract
A concise synthetic route towards a new family of phosphorus-containing polycyclic aromatic hydrocarbons starting from the versatile acridophosphine has been established. The structural and optoelectronic properties of these compounds were efficiently modulated through derivatization of the phosphorus center. X-ray crystallographic analysis, UV/Vis spectroscopic, and electrochemical studies supported by DFT calculations identified the considerable potential of these scaffolds for the development of organophosphorus functional materials with tailored properties upon further functionalization.
Collapse
Affiliation(s)
- Johannes D. R. Ascherl
- Institute of Organic ChemistryRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
- Centre for Advanced MaterialsRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 22569120HeidelbergGermany
| | - Christian Neiß
- Department of Chemistry and PharmacyChair of Theoretical ChemistryFriedrich-Alexander-Universität Erlangen-NürnbergEgerlandstrasse 391058ErlangenGermany
| | - Alexander Vogel
- Institute of Organic ChemistryRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
- Centre for Advanced MaterialsRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 22569120HeidelbergGermany
| | - Jürgen Graf
- Institute of Organic ChemistryRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Frank Rominger
- Institute of Organic ChemistryRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Thomas Oeser
- Institute of Organic ChemistryRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Frank Hampel
- Department of Chemistry and PharmacyChair of Organic ChemistryUniversity of Erlangen-NürnbergNikolaus-Fiebiger-Str. 1091058ErlangenGermany
| | - Andreas Görling
- Department of Chemistry and PharmacyChair of Theoretical ChemistryFriedrich-Alexander-Universität Erlangen-NürnbergEgerlandstrasse 391058ErlangenGermany
| | - Milan Kivala
- Institute of Organic ChemistryRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
- Centre for Advanced MaterialsRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 22569120HeidelbergGermany
| |
Collapse
|
14
|
Liu Y, Zhang K, Tian R, Duan Z, Mathey F. 1,1-Addition of α-C 2-Bridged Biphospholes with Alkynes. Org Lett 2020; 22:6972-6976. [PMID: 32846086 DOI: 10.1021/acs.orglett.0c02521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
An unusual chemoselective 1,1-addition of α-C2-bridged biphospholes to terminal alkynes is reported. The developed protocol provides simple access to the unknown 1,3-diphosphepines, which has potential applications in the coordination and catalyst chemistry. Their Pd and Mo complexes were studied by single-crystal X-ray diffraction analysis. This method features excellent chemoselectivity, high step and atom economy, mild reaction conditions, and wide substrate scope.
Collapse
Affiliation(s)
- Yanjie Liu
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Keke Zhang
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Rongqiang Tian
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Zheng Duan
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - François Mathey
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| |
Collapse
|
15
|
Padberg K, Ascherl JDR, Hampel F, Kivala M. Isomeric Dithienophosphepines: The Impact of Ring Fusion on Electronic and Structural Properties. Chemistry 2020; 26:3474-3478. [PMID: 31797440 PMCID: PMC7154744 DOI: 10.1002/chem.201905429] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Indexed: 01/01/2023]
Abstract
The synthesis and extensive experimental (X-ray crystallography, UV/Vis spectroscopy, cyclic voltammetry) and theoretical (DFT calculations) characterization of two isomeric dithieno[b,f]phosphepines (DTPs) are presented herein. The relative orientation of the phosphepine and the thiophene moieties has a decisive impact on the electronic and structural properties of these compounds. Moreover, the thiophene units allow for a facile subsequent functionalization through direct Pd-catalyzed C-H coupling, which renders DTPs highly promising building blocks for organophosphorus functional materials.
Collapse
Affiliation(s)
- Kevin Padberg
- Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nürnberg, Nikolaus-Fiebiger-Strasse 10, 91058, Erlangen, Germany
| | - Johannes D R Ascherl
- Institute of Organic Chemistry & Centre for Advanced Materials, Ruprecht-Karls-University Heidelberg, Im Neuenheimer Feld 270 & 225, 69120, Heidelberg, Germany
| | - Frank Hampel
- Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nürnberg, Nikolaus-Fiebiger-Strasse 10, 91058, Erlangen, Germany
| | - Milan Kivala
- Institute of Organic Chemistry & Centre for Advanced Materials, Ruprecht-Karls-University Heidelberg, Im Neuenheimer Feld 270 & 225, 69120, Heidelberg, Germany
| |
Collapse
|