1
|
Kotha S, Sahu R, Chandrakant Yadav A, Bejagam KK, Reddy SK, Venkata Rao K. Pathway Selection in Temporal Evolution of Supramolecular Polymers of Ionic π-Systems: Amphiphilic Organic Solvent Dictates the Fate of Water. Chemistry 2024; 30:e202303813. [PMID: 38648278 DOI: 10.1002/chem.202303813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024]
Abstract
Understanding solvent-solute interactions is essential to designing and synthesising soft materials with tailor-made functions. Although the interaction of the solute with the solvent mixture is more complex than the single solvent medium, solvent mixtures are exciting to unfold several unforeseen phenomena in supramolecular chemistry. Here, we report two unforeseen pathways observed during the hierarchical assembly of cationic perylene diimides (cPDIs) in water and amphiphilic organic solvent (AOS) mixtures. When the aqueous supramolecular polymers (SPs) of cPDIs are injected into AOS, initially kinetically trapped short SPs are formed, which gradually transform into thermodynamically stable high aspect ratio SP networks. Using various experimental and theoretical investigations, we found that this temporal evolution follows two distinct pathways depending on the nature of the water-AOS interactions. If the AOS is isopropanol (IPA), water is released from cPDIs into bulk IPA due to strong hydrogen bonding interactions, which further decreases the monomer concentration of cPDIs (Pathway-1). In the case of dioxane AOS, cPDI monomer concentration further increases as water is retained among cPDIs (Pathway-2) due to relatively weak interactions between dioxane and water. Interestingly, these two pathways are accelerated by external stimuli such as heat and mechanical agitation.
Collapse
Affiliation(s)
- Srinu Kotha
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502284, India
| | - Rahul Sahu
- Centre for Computational and Data Science, Indian Institute of Technology Kharagpur, West Bengal, 721302, India
| | - Aditya Chandrakant Yadav
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502284, India
| | - Karteek K Bejagam
- Toyota Research Institute of North America, Ann Arbor, Michigan, 48105, USA
| | - Sandeep K Reddy
- Centre for Computational and Data Science, Indian Institute of Technology Kharagpur, West Bengal, 721302, India
| | - Kotagiri Venkata Rao
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502284, India
| |
Collapse
|
2
|
Takahashi S, Matsumoto T, Hollamby MJ, Miyasaka H, Vacha M, Sotome H, Yagai S. Impact of Ring-Closing on the Photophysical Properties of One-Dimensional π-Conjugated Molecular Aggregate. J Am Chem Soc 2024; 146:2089-2101. [PMID: 38163763 DOI: 10.1021/jacs.3c11407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The self-assembled state of molecules plays a pivotal role in determining how inherent molecular properties transform and give rise to supramolecular functionalities and has long attracted attention. However, understanding the influence of morphologies spanning the nano- to mesoscopic scales of supramolecular assemblies derived from identical intermolecular interactions has been notoriously challenging due to dynamic structural change and monomer exchange of assemblies in solution. In this study, we demonstrate that curved one-dimensional molecular assemblies (supramolecular polymers) of lengths of around 70-200 nm, originating from the same luminescent molecule, exhibit distinct photoluminescent properties when they form closed circular structures (toroids) versus when they possess chain termini in solution (random coils). By exploiting the difference in kinetic stability between the toroids and random coils, we developed a dialysis protocol to selectively purify the former. It was revealed that these terminus-free closed structures manifest higher energy and more efficient luminescence compared with their mixed state with random coils. Time-resolved fluorescence measurements unveiled that random coils, due to their dynamic structural fluctuation in solution, generate local defects throughout the main chain, leading to luminescence from lower energy levels. In mixtures of the two assemblies, luminescence was exclusively observed from such a lower energy level of random coils, a result attributed to energy transfer between the assemblies. This work emphasizes that for identical supramolecular assemblies, only averaged properties have traditionally been considered, but their structures at the nano- to mesoscopic scale are important especially if they have a certain degree of shape persistency even in solution.
Collapse
Affiliation(s)
- Sho Takahashi
- Division of Advanced Science and Engineering, Graduate School of Science and Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Takuma Matsumoto
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 2-12 Meguro-ku, Tokyo 152-8552, Japan
| | - Martin J Hollamby
- Department of Chemistry, School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire ST55BG, U.K
| | - Hiroshi Miyasaka
- Division of Frontier Materials Science and Centre for Advanced Interdisciplinary Research, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Martin Vacha
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 2-12 Meguro-ku, Tokyo 152-8552, Japan
| | - Hikaru Sotome
- Division of Frontier Materials Science and Centre for Advanced Interdisciplinary Research, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Shiki Yagai
- Institute for Advanced Academic Research (IAAR), Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| |
Collapse
|
3
|
Isobe A, Kajitani T, Yagai S. A Coformer Approach for Supramolecular Polymerization at High Concentrations. Angew Chem Int Ed Engl 2023; 62:e202312516. [PMID: 37737030 DOI: 10.1002/anie.202312516] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 09/23/2023]
Abstract
Insolubility of functional molecules caused by polymorphism sometimes poses limitations for their solution-based processing. Such a situation can also occur in the preparation processes of supramolecular polymers formed in a solution. An effective strategy to address this issue is to prepare amorphous solid states by introducing a "coformer" molecule capable of inhibiting the formation of an insoluble polymorph through co-aggregation. Herein, inspired by the coformer approach, we demonstrated a solubility enhancement of a barbiturate π-conjugated compound that can supramolecularly polymerize through six-membered hydrogen-bonded rosettes. Our newly synthesized supramolecular coformer molecule features a sterically demanding methyl group in the π-conjugated unit of the parent molecule. Although the parent molecule exhibits low solubility in nonpolar solvents due to the formation of a crystalline polymorph comprising a tape-like hydrogen-bonded array prior to the supramolecular polymerization, mixing with the coformer compound enhanced the solubility by inhibiting mesoscopic organization of the tapes. The two monomers were then co-polymerized into desired helicoidal supramolecular polymers through the formation of heteromeric rosettes.
Collapse
Affiliation(s)
- Atsushi Isobe
- Division of Advanced Science and Engineering, Graduate School of Science and Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, 263-8522, Chiba, Japan
| | - Takashi Kajitani
- TC College Promotion Office, Open Facility Center, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, 226-8503, Yokohama, Japan
| | - Shiki Yagai
- Institute for Advanced Academic Research (IAAR), Chiba University, 1-33 Yayoi-cho, Inage-ku, 263-8522, Chiba, Japan
| |
Collapse
|
4
|
Kompella SVK, Balasubramanian S. Supramolecular Polymerization of a Pyrene-Substituted Diamide and Its Ensemble of Kinetically Trapped Configurations. Angew Chem Int Ed Engl 2023; 62:e202310727. [PMID: 37725396 DOI: 10.1002/anie.202310727] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/21/2023]
Abstract
The prevalence of kinetically accessible states in supramolecular polymerization pathways has been exploited to control the growth of the polymer and thereby to obtain niche morphologies. Yet, these pathways themselves are not easily amenable for experimental delineation but could potentially be understood through molecular dynamics (MD) simulations. Herein, we report an extensive investigation of the self-assembly of pyrene-substituted diamide (PDA) monomers in solution, conducted using atomistic MD simulations and advanced sampling methods. We characterize such kinetic and thermodynamic states as well as the transition pathways and free energy barriers between them. PDA forms a dimeric segment with the N- to C-termini vectors of the diamide moieties arranged either in parallel or anti-parallel fashion. This characteristic, combined with the molecule's torsional flexibility and pyrene-solvent interactions, presents an ensemble of molecular configurations contributing to the kinetic state in the polymerization pathway. While this ensemble primarily comprises short oligomers containing a mix of anti-parallel and parallel dimeric segments, the thermodynamic state of the assembly is a right-handed polymer featuring parallel ones only. Our work thus offers an approach by which the landscape of any specific supramolecular polymerization can be deconstructed.
Collapse
Affiliation(s)
- Srinath V K Kompella
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, 560064, India
| | - Sundaram Balasubramanian
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, 560064, India
| |
Collapse
|
5
|
Otsuka C, Takahashi S, Isobe A, Saito T, Aizawa T, Tsuchida R, Yamashita S, Harano K, Hanayama H, Shimizu N, Takagi H, Haruki R, Liu L, Hollamby MJ, Ohkubo T, Yagai S. Supramolecular Polymer Polymorphism: Spontaneous Helix-Helicoid Transition through Dislocation of Hydrogen-Bonded π-Rosettes. J Am Chem Soc 2023; 145:22563-22576. [PMID: 37796243 DOI: 10.1021/jacs.3c07556] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Polymorphism, a phenomenon whereby disparate self-assembled products can be formed from identical molecules, has incited interest in the field of supramolecular polymers. Conventionally, the monomers that constitute supramolecular polymers are engineered to facilitate one-dimensional aggregation and, consequently, their polymorphism surfaces primarily when the states of assembly differ significantly. This engenders polymorphs of divergent dimensionalities such as one- and two-dimensional aggregates. Notwithstanding, realizing supramolecular polymer polymorphism, wherein polymorphs maintain one-dimensional aggregation, persists as a daunting challenge. In this work, we expound upon the manifestation of two supramolecular polymer polymorphs formed from a large discotic supramolecular monomer (rosette), which consists of six hydrogen-bonded molecules with an extended π-conjugated core. These polymorphs are generated in mixtures of chloroform and methylcyclohexane, attributable to distinctly different disc stacking arrangements. The face-to-face (minimal displacement) and offset (large displacement) stacking arrangements can be predicated on their distinctive photophysical properties. The face-to-face stacking results in a twisted helix structure. Conversely, the offset stacking induces inherent curvature in the supramolecular fiber, thereby culminating in a hollow helical coil (helicoid). While both polymorphs exhibit bistability in nonpolar solvent compositions, the face-to-face stacking attains stability purely in a kinetic sense within a polar solvent composition and undergoes conversion into offset stacking through a dislocation of stacked rosettes. This occurs without the dissociation and nucleation of monomers, leading to unprecedented helicoidal folding of supramolecular polymers. Our findings augment our understanding of supramolecular polymer polymorphism, but they also highlight a distinctive method for achieving helicoidal folding in supramolecular polymers.
Collapse
Affiliation(s)
- Chie Otsuka
- Division of Advanced Science and Engineering, Graduate School of Science and Engineering, Chiba University, Chiba 263-8522, Japan
| | - Sho Takahashi
- Division of Advanced Science and Engineering, Graduate School of Science and Engineering, Chiba University, Chiba 263-8522, Japan
| | - Atsushi Isobe
- Division of Advanced Science and Engineering, Graduate School of Science and Engineering, Chiba University, Chiba 263-8522, Japan
| | - Takuho Saito
- Division of Advanced Science and Engineering, Graduate School of Science and Engineering, Chiba University, Chiba 263-8522, Japan
| | - Takumi Aizawa
- Division of Advanced Science and Engineering, Graduate School of Science and Engineering, Chiba University, Chiba 263-8522, Japan
| | - Ryoma Tsuchida
- Division of Advanced Science and Engineering, Graduate School of Science and Engineering, Chiba University, Chiba 263-8522, Japan
| | - Shuhei Yamashita
- Division of Advanced Science and Engineering, Graduate School of Science and Engineering, Chiba University, Chiba 263-8522, Japan
| | - Koji Harano
- Center for Basic Research on Materials, National Institute for Materials Science, Tsukuba 305-0044, Japan
| | - Hiroki Hanayama
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, Chiba 263-8522, Japan
| | - Nobutaka Shimizu
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba 305-0801, Japan
| | - Hideaki Takagi
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba 305-0801, Japan
| | - Rie Haruki
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba 305-0801, Japan
| | - Luzhi Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Martin J Hollamby
- Department of Chemistry, School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire ST55BG, U.K
| | - Takahiro Ohkubo
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, Chiba 263-8522, Japan
| | - Shiki Yagai
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, Chiba 263-8522, Japan
- Institute for Advanced Academic Research (IAAR), Chiba University, Chiba 263-8522, Japan
| |
Collapse
|
6
|
Wang F, Liao R, Wang F. Pathway Control of π-Conjugated Supramolecular Polymers by Incorporating Donor-Acceptor Functionality. Angew Chem Int Ed Engl 2023; 62:e202305827. [PMID: 37431813 DOI: 10.1002/anie.202305827] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/28/2023] [Accepted: 07/10/2023] [Indexed: 07/12/2023]
Abstract
Controlling the nanoscale orientation of π-conjugated systems remains challenging due to the complexity of multiple energy landscapes involved in the supramolecular assembly process. In this study, we have developed an effective strategy for programming the pathways of π-conjugated supramolecular polymers, by incorporating both electron-rich methoxy- or methanthiol-benzene as donor unit and electron-poor cyano-vinylenes as acceptor units on the monomeric structure. It leads to the formation of parallel-stacked supramolecular polymers as the metastable species through homomeric donor/acceptor packing, which convert to slip-stacked supramolecular polymers as the thermodynamically stable species facilitated by heteromeric donor-acceptor packing. By further investigating the external seed-induced kinetic-to-thermodynamic transformation behaviors, our findings suggest that the donor-acceptor functionality on the seed structure is crucial for accelerating pathway conversion. This is achieved by eliminating the initial lag phase in the supramolecular polymerization process. Overall, this study provides valuable insights into designing molecular structures that control aggregation pathways of π-conjugated nanostructures.
Collapse
Affiliation(s)
- Fan Wang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Rui Liao
- Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Feng Wang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
7
|
Itabashi H, Tashiro K, Koshikawa S, Datta S, Yagai S. Distinct seed topologies enable comparison of elongation and secondary nucleation pathways in seeded supramolecular polymerization. Chem Commun (Camb) 2023. [PMID: 37161759 DOI: 10.1039/d3cc01587d] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The influence of seed topologies on seeded supramolecular polymerization was examined using helicoidal and toroidal supramolecular polymer seeds. The addition of these seeds to a supersaturated solution of monomers led to distinct nucleation-growth kinetics, which were attributed to the significant difference between the elongation from helicoid termini and secondary nucleation catalyzed by the toroid surface.
Collapse
Affiliation(s)
- Hiroki Itabashi
- Division of Advanced Science and Engineering, Graduate School of Science and Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Keigo Tashiro
- Department of Applied Chemistry, Faculty of Science and Technology, Seikei University, 3-3-1 Kichijoji-kitamachi, Musashino-shi, Tokyo, 180-8633, Japan
| | - Shumpei Koshikawa
- Division of Advanced Science and Engineering, Graduate School of Science and Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Sougata Datta
- Institute for Advanced Academic Research (IAAR), Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan.
| | - Shiki Yagai
- Institute for Advanced Academic Research (IAAR), Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan.
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, Chiba 263-8522, Japan
| |
Collapse
|
8
|
New insights into the excited state of an A-D-A quadrupolar molecule strongly hydrogen bonded to molecules of methanol and hexafluoro isopropanol. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Itabashi H, Datta S, Tsukuda R, Hollamby MJ, Yagai S. Fine-tuning of the size of supramolecular nanotoroids suppresses the subsequent catenation of nano-[2]catenane. Chem Sci 2023; 14:3270-3276. [PMID: 36970099 PMCID: PMC10034040 DOI: 10.1039/d2sc07063d] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
The reduction in the inner diameter of the nanotoroids of a π-conjugated barbiturate monomer results in nano-[2]catenanes in a high yield due to enhanced secondary nucleation and subsequent steric suppression of further catenation.
Collapse
Affiliation(s)
- Hiroki Itabashi
- Division of Advanced Science and Engineering, Graduate School of Science and Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Sougata Datta
- Institute for Advanced Academic Research (IAAR), Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Ryohei Tsukuda
- Division of Advanced Science and Engineering, Graduate School of Science and Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Martin J. Hollamby
- Department of Chemistry, School of Chemical and Physical Sciences, Keele University, Keele, Staffordsgire, ST55BG, UK
| | - Shiki Yagai
- Institute for Advanced Academic Research (IAAR), Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, Chiba 263-8522, Japan
| |
Collapse
|
10
|
Nebalueva AS, Timralieva AA, Sadovnichii RV, Novikov AS, Zhukov MV, Aglikov AS, Muravev AA, Sviridova TV, Boyarskiy VP, Kholkin AL, Skorb EV. Piezo-Responsive Hydrogen-Bonded Frameworks Based on Vanillin-Barbiturate Conjugates. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27175659. [PMID: 36080425 PMCID: PMC9457948 DOI: 10.3390/molecules27175659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/25/2022] [Accepted: 09/01/2022] [Indexed: 11/18/2022]
Abstract
A concept of piezo-responsive hydrogen-bonded π-π-stacked organic frameworks made from Knoevenagel-condensed vanillin–barbiturate conjugates was proposed. Replacement of the substituent at the ether oxygen atom of the vanillin moiety from methyl (compound 3a) to ethyl (compound 3b) changed the appearance of the products from rigid rods to porous structures according to optical microscopy and scanning electron microscopy (SEM), and led to a decrease in the degree of crystallinity of corresponding powders according to X-ray diffractometry (XRD). Quantum chemical calculations of possible dimer models of vanillin–barbiturate conjugates using density functional theory (DFT) revealed that π-π stacking between aryl rings of the vanillin moiety stabilized the dimer to a greater extent than hydrogen bonding between carbonyl oxygen atoms and amide hydrogen atoms. According to piezoresponse force microscopy (PFM), there was a notable decrease in the vertical piezo-coefficient upon transition from rigid rods of compound 3a to irregular-shaped aggregates of compound 3b (average values of d33 coefficient corresponded to 2.74 ± 0.54 pm/V and 0.57 ± 0.11 pm/V), which is comparable to that of lithium niobate (d33 coefficient was 7 pm/V).
Collapse
Affiliation(s)
- Anna S. Nebalueva
- Infochemistry Scientific Center, ITMO University, 191002 St. Petersburg, Russia
| | | | | | | | - Mikhail V. Zhukov
- Infochemistry Scientific Center, ITMO University, 191002 St. Petersburg, Russia
| | | | - Anton A. Muravev
- Infochemistry Scientific Center, ITMO University, 191002 St. Petersburg, Russia
| | | | - Vadim P. Boyarskiy
- Institute of Chemistry, St. Petersburg State University, 198504 St. Petersburg, Russia
| | - Andrei L. Kholkin
- Institute of Natural Sciences and Mathematics, Ural Federal University, 260026 Yekaterinburg, Russia
| | - Ekaterina V. Skorb
- Infochemistry Scientific Center, ITMO University, 191002 St. Petersburg, Russia
- Correspondence:
| |
Collapse
|
11
|
Matern J, Fernández Z, Bäumer N, Fernández G. Expanding the Scope of Metastable Species in Hydrogen Bonding-Directed Supramolecular Polymerization. Angew Chem Int Ed Engl 2022; 61:e202203783. [PMID: 35362184 PMCID: PMC9321731 DOI: 10.1002/anie.202203783] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Indexed: 12/23/2022]
Abstract
We reveal unique hydrogen (H-) bonding patterns and exploit them to control the kinetics, pathways and length of supramolecular polymers (SPs). New bisamide-containing monomers were designed to elucidate the role of competing intra- vs. intermolecular H-bonding interactions on the kinetics of supramolecular polymerization (SP). Remarkably, two polymerization-inactive metastable states were discovered. Contrary to previous examples, the commonly assumed intramolecularly H-bonded monomer does not evolve into intermolecularly H-bonded SPs via ring opening, but rather forms a metastable dimer. In this dimer, all H-bonding sites are saturated, either intra- or intermolecularly, hampering elongation. The dimers exhibit an advantageous preorganization, which upon opening of the intramolecular portion of the H-bonding motif facilitates SP in a consecutive process. The retardation of spontaneous self-assembly as a result of two metastable states enables length control in SP by seed-mediated growth.
Collapse
Affiliation(s)
- Jonas Matern
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| | - Zulema Fernández
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| | - Nils Bäumer
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| | - Gustavo Fernández
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| |
Collapse
|
12
|
Matern J, Fernandez Z, Bäumer N, Fernandez G. Expanding the Scope of Metastable Species in Hydrogen Bonding‐Directed Supramolecular Polymerization. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jonas Matern
- WWU Münster: Westfalische Wilhelms-Universitat Munster Organisch-Chemisches Institut GERMANY
| | - Zulema Fernandez
- WWU Münster: Westfalische Wilhelms-Universitat Munster Organisch-Chemisches Institut GERMANY
| | - Nils Bäumer
- WWU Münster: Westfalische Wilhelms-Universitat Munster Organisch-Chemisches Institut GERMANY
| | - Gustavo Fernandez
- WWU Münster Organisch-Chemisches Institut Correnstraße, 4ß 48149 Münster GERMANY
| |
Collapse
|
13
|
Kawaura M, Aizawa T, Takahashi S, Miyasaka H, Sotome H, Yagai S. Fluorescent supramolecular polymers of barbiturate dyes with thiophene-cored twisted π-systems. Chem Sci 2022; 13:1281-1287. [PMID: 35222911 PMCID: PMC8809409 DOI: 10.1039/d1sc06246h] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/08/2021] [Indexed: 01/01/2023] Open
Abstract
Because supramolecular polymerization of emissive π-conjugated molecules depends strongly on π-π stacking interaction, the formation of well-defined one-dimensional nanostructures often results in a decrease or only a small increase of emission efficiency. This is also true for our barbiturate-based supramolecular polymers wherein hydrogen-bonded rosettes of barbiturates stack quasi-one-dimensionally through π-π stacking interaction. Herein we report supramolecular polymerization-induced emission of two regioisomeric 2,3-diphenylthiophene derivatives functionalized with barbituric acid and tri(dodecyloxy)benzyl wedge units. In CHCl3, both compounds are molecularly dissolved and accordingly poorly emissive due to a torsion-induced non-radiative decay. In methylcyclohexane-rich conditions, these barbiturates self-assemble to form crystalline nanofibers and exhibit strongly enhanced emission through supramolecular polymerization driven by hydrogen-bonding. Our structural analysis suggests that the barbiturates form a tape-like hydrogen-bonding motif, which is rationalized by considering that the twisted geometries of 2,3-diphenylthiophene cores prevend the competing rosettes from stacking into columnar supramolecular polymers. We also found that a small difference in the molecular polarity originating from the substitutional position of the thiophene core influences interchain association of the supramolecular polymers, affording different luminescent soft materials, gel and nanosheet.
Collapse
Affiliation(s)
- Maika Kawaura
- Division of Advanced Science and Engineering, Graduate School of Science and Engineering, Chiba University 1-33 Yayoi-cho, Inage-ku Chiba 263-8522 Japan
| | - Takumi Aizawa
- Division of Advanced Science and Engineering, Graduate School of Science and Engineering, Chiba University 1-33 Yayoi-cho, Inage-ku Chiba 263-8522 Japan
| | - Sho Takahashi
- Division of Advanced Science and Engineering, Graduate School of Science and Engineering, Chiba University 1-33 Yayoi-cho, Inage-ku Chiba 263-8522 Japan
| | - Hiroshi Miyasaka
- Division of Frontier Materials Science, Graduate School of Engineering Science, Osaka University 1-3 Machikaneyama, Toyonaka Osaka 560-8531 Japan
| | - Hikaru Sotome
- Division of Frontier Materials Science, Graduate School of Engineering Science, Osaka University 1-3 Machikaneyama, Toyonaka Osaka 560-8531 Japan
| | - Shiki Yagai
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University 1-33 Yayoi-cho, Inage-ku Chiba 263-8522 Japan
- Institute for Global Prominent Research (IGPR), Chiba University 1-33 Yayoi-cho, Inage-ku Chiba 263-8522 Japan
| |
Collapse
|
14
|
Aizawa T, Kawaura M, Kajitani T, Hengphasatporn K, Shigeta Y, Yagai S. Supramolecular polymerization of thiobarbituric acid naphthalene dye. Chem Commun (Camb) 2022; 58:9365-9368. [DOI: 10.1039/d2cc02984g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
2-Thiobarbituric acid-functionalized naphthalene dye selectively self-assembles into crystalline fibers to show material properties that are different from those of a previously reported oxo-barbituric acid derivative affording curved supramolecular polymers via...
Collapse
|
15
|
Tashiro K, Katayama K, Tamaki K, Pesce L, Shimizu N, Takagi H, Haruki R, Hollamby MJ, Pavan GM, Yagai S. Non-uniform Photoinduced Unfolding of Supramolecular Polymers Leading to Topological Block Nanofibers. Angew Chem Int Ed Engl 2021; 60:26986-26993. [PMID: 34623014 PMCID: PMC9298767 DOI: 10.1002/anie.202110224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/01/2021] [Indexed: 01/01/2023]
Abstract
Synthesis of one-dimensional nanofibers with distinct topological (higher-order structural) domains in the same main chain is one of the challenging topics in modern supramolecular polymer chemistry. Non-uniform structural transformation of supramolecular polymer chains by external stimuli may enable preparation of such nanofibers. To demonstrate feasibility of this post-polymerization strategy, we prepared a photoresponsive helically folded supramolecular polymers from a barbiturate monomer containing an azobenzene-embedded rigid π-conjugated scaffold. In contrast to previous helically folded supramolecular polymers composed of a more flexible azobenzene monomer, UV-light induced unfolding of the newly prepared helically folded supramolecular polymers occurred nonuniformly, affording topological block copolymers consisting of folded and unfolded domains. The formation of such blocky copolymers indicates that the photoinduced unfolding of the helically folded structures initiates from relatively flexible parts such as termini or defects. Spontaneous refolding of the unfolded domains was observed after visible-light irradiation followed by aging to restore fully folded structures.
Collapse
Affiliation(s)
- Keigo Tashiro
- Institute for Global Prominent Research (IGPR)Chiba University1–33 Yayoi-choInage-kuChiba263–8522Japan
| | - Kosuke Katayama
- Division of Advanced Science and EngineeringGraduate School of Science and EngineeringChiba University1–33 Yayoi-choInage-kuChiba263–8522Japan
| | - Kenta Tamaki
- Division of Advanced Science and EngineeringGraduate School of Science and EngineeringChiba University1–33 Yayoi-choInage-kuChiba263–8522Japan
| | - Luca Pesce
- Department of Innovative TechnologiesUniversity of Applied Sciences and Arts of Southern SwitzerlandVia La Santa 16962Lugano-ViganelloSwitzerland
| | - Nobutaka Shimizu
- Photon FactoryInstitute of Materials Structure ScienceHigh Energy Accelerator Research OrganizationTsukuba305–0801Japan
| | - Hideaki Takagi
- Photon FactoryInstitute of Materials Structure ScienceHigh Energy Accelerator Research OrganizationTsukuba305–0801Japan
| | - Rie Haruki
- Photon FactoryInstitute of Materials Structure ScienceHigh Energy Accelerator Research OrganizationTsukuba305–0801Japan
| | - Martin J. Hollamby
- School of Physical and Geographical SciencesKeele UniversityKeeleStaffordshireST55BGUK
| | - Giovanni M. Pavan
- Department of Innovative TechnologiesUniversity of Applied Sciences and Arts of Southern SwitzerlandVia La Santa 16962Lugano-ViganelloSwitzerland
- Department of Applied Science and TechnologyPolitecnico di TorinoCorso Duca degli Abruzzi 2410129TorinoItaly
| | - Shiki Yagai
- Institute for Global Prominent Research (IGPR)Chiba University1–33 Yayoi-choInage-kuChiba263–8522Japan
- Department of Applied Chemistry and BiotechnologyGraduate School of EngineeringChiba University1–33 Yayoi-choInage-kuChiba263–8522Japan
| |
Collapse
|
16
|
Tashiro K, Katayama K, Tamaki K, Pesce L, Shimizu N, Takagi H, Haruki R, Hollamby MJ, Pavan GM, Yagai S. Non‐uniform Photoinduced Unfolding of Supramolecular Polymers Leading to Topological Block Nanofibers. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Keigo Tashiro
- Institute for Global Prominent Research (IGPR) Chiba University 1–33 Yayoi-cho Inage-ku Chiba 263–8522 Japan
| | - Kosuke Katayama
- Division of Advanced Science and Engineering Graduate School of Science and Engineering Chiba University 1–33 Yayoi-cho Inage-ku Chiba 263–8522 Japan
| | - Kenta Tamaki
- Division of Advanced Science and Engineering Graduate School of Science and Engineering Chiba University 1–33 Yayoi-cho Inage-ku Chiba 263–8522 Japan
| | - Luca Pesce
- Department of Innovative Technologies University of Applied Sciences and Arts of Southern Switzerland Via La Santa 1 6962 Lugano-Viganello Switzerland
| | - Nobutaka Shimizu
- Photon Factory Institute of Materials Structure Science High Energy Accelerator Research Organization Tsukuba 305–0801 Japan
| | - Hideaki Takagi
- Photon Factory Institute of Materials Structure Science High Energy Accelerator Research Organization Tsukuba 305–0801 Japan
| | - Rie Haruki
- Photon Factory Institute of Materials Structure Science High Energy Accelerator Research Organization Tsukuba 305–0801 Japan
| | - Martin J. Hollamby
- School of Physical and Geographical Sciences Keele University Keele Staffordshire ST55BG UK
| | - Giovanni M. Pavan
- Department of Innovative Technologies University of Applied Sciences and Arts of Southern Switzerland Via La Santa 1 6962 Lugano-Viganello Switzerland
- Department of Applied Science and Technology Politecnico di Torino Corso Duca degli Abruzzi 24 10129 Torino Italy
| | - Shiki Yagai
- Institute for Global Prominent Research (IGPR) Chiba University 1–33 Yayoi-cho Inage-ku Chiba 263–8522 Japan
- Department of Applied Chemistry and Biotechnology Graduate School of Engineering Chiba University 1–33 Yayoi-cho Inage-ku Chiba 263–8522 Japan
| |
Collapse
|
17
|
Bäumer N, Matern J, Fernández G. Recent progress and future challenges in the supramolecular polymerization of metal-containing monomers. Chem Sci 2021; 12:12248-12265. [PMID: 34603655 PMCID: PMC8480320 DOI: 10.1039/d1sc03388c] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/04/2021] [Indexed: 11/21/2022] Open
Abstract
The self-assembly of discrete molecular entities into functional nanomaterials has become a major research area in the past decades. The library of investigated compounds has diversified significantly, while the field as a whole has matured. The incorporation of metal ions in the molecular design of the (supra-)molecular building blocks greatly expands the potential applications, while also offering a promising approach to control molecular recognition and attractive and/or repulsive intermolecular binding events. Hence, supramolecular polymerization of metal-containing monomers has emerged as a major research focus in the field. In this perspective article, we highlight recent significant advances in supramolecular polymerization of metal-containing monomers and discuss their implications for future research. Additionally, we also outline some major challenges that metallosupramolecular chemists (will) have to face to produce metallosupramolecular polymers (MSPs) with advanced applications and functionalities.
Collapse
Affiliation(s)
- Nils Bäumer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraße 36 48149 Münster Germany
| | - Jonas Matern
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraße 36 48149 Münster Germany
| | - Gustavo Fernández
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraße 36 48149 Münster Germany
| |
Collapse
|
18
|
Tamaki K, Aizawa T, Yagai S. Wavy supramolecular polymers formed by hydrogen-bonded rosettes. Chem Commun (Camb) 2021; 57:4779-4782. [PMID: 33949513 DOI: 10.1039/d1cc01636a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A barbiturate-functionalized supramolecular monomer bearing an ester-linked biphenyl and azobenzene π-conjugated core affords wavy supramolecular polymers. The periodic inversion of curvature is due to the conformational rigidity of the monomer and repulsive interactions between rosettes. Photoisomerization of the azobenzene moiety increases the fragility of the main chain without deteriorating its periodic structure.
Collapse
Affiliation(s)
- Kenta Tamaki
- Division of Advanced Science and Engineering, Graduate School of Science and Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Takumi Aizawa
- Division of Advanced Science and Engineering, Graduate School of Science and Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Shiki Yagai
- Institute for Global Prominent Research (IGPR), Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan. and Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| |
Collapse
|
19
|
Xu F, Pfeifer L, Crespi S, Leung FKC, Stuart MCA, Wezenberg SJ, Feringa BL. From Photoinduced Supramolecular Polymerization to Responsive Organogels. J Am Chem Soc 2021; 143:5990-5997. [PMID: 33830767 PMCID: PMC8154511 DOI: 10.1021/jacs.1c01802] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Indexed: 12/30/2022]
Abstract
Controlling supramolecular polymerization by external stimuli holds great potential toward the development of responsive soft materials and manipulating self-assembly at the nanoscale. Photochemical switching offers the prospect of regulating the structure and properties of systems in a noninvasive and reversible manner with spatial and temporal control. In addition, this approach will enhance our understanding of supramolecular polymerization mechanisms; however, the control of molecular assembly by light remains challenging. Here we present photoresponsive stiff-stilbene-based bis-urea monomers whose trans isomers readily form supramolecular polymers in a wide range of organic solvents, enabling fast light-triggered depolymerization-polymerization and reversible gel formation. Due to the stability of the cis isomers and the high photostationary states (PSS) of the cis-trans isomerization, precise control over supramolecular polymerization and in situ gelation could be achieved with short response times. A detailed study on the temperature-dependent and photoinduced supramolecular polymerization in organic solvents revealed a kinetically controlled nucleation-elongation mechanism. By application of a Volta phase plate to enhance the phase-contrast method in cryo-EM, unprecedented for nonaqueous solutions, uniform nanofibers were observed in organic solvents.
Collapse
Affiliation(s)
- Fan Xu
- Center for System Chemistry,
Stratingh Institute for Chemistry, University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | | | - Stefano Crespi
- Center for System Chemistry,
Stratingh Institute for Chemistry, University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | | | - Marc C. A. Stuart
- Center for System Chemistry,
Stratingh Institute for Chemistry, University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | | | - Ben L. Feringa
- Center for System Chemistry,
Stratingh Institute for Chemistry, University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
20
|
Fukushima T, Tamaki K, Isobe A, Hirose T, Shimizu N, Takagi H, Haruki R, Adachi SI, Hollamby MJ, Yagai S. Diarylethene-Powered Light-Induced Folding of Supramolecular Polymers. J Am Chem Soc 2021; 143:5845-5854. [PMID: 33755463 DOI: 10.1021/jacs.1c00592] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Helical folding of randomly coiled linear polymers is an essential organization process not only for biological polypeptides but also for synthetic functional polymers. Realization of this dynamic process in supramolecular polymers (SPs) is, however, a formidable challenge because of their inherent lability of main chains upon changing an external environment that can drive the folding process (e.g., solvent, concentration, and temperature). We herein report a photoinduced reversible folding/unfolding of rosette-based SPs driven by photoisomerization of a diarylethene (DAE). Temperature-controlled supramolecular polymerization of a barbiturate-functionalized DAE (open isomer) in nonpolar solvent results in the formation of intrinsically curved, but randomly coiled, SPs due to the presence of defects. Irradiation of the randomly coiled SPs with UV light causes efficient ring-closure reaction of the DAE moieties, which induces helical folding of the randomly coiled structures into helicoidal ones, as evidenced by atomic force microscopy and small-angle X-ray scattering. The helical folding is driven by internal structure ordering of the SP fiber that repairs the defects and interloop interaction occurring only for the resulting helicoidal structure. In contrast, direct supramolecular polymerization of the ring-closed DAE monomers by temperature control affords linearly extended ribbon-like SPs lacking intrinsic curvature that are thermodynamically less stable compared to the helicoidal SPs. The finding represents an important concept applicable to other SP systems; that is, postpolymerization (photo)reaction of preorganized kinetic structures can lead to more thermodynamically stable structures that are inaccessible directly through temperature-controlled protocols.
Collapse
Affiliation(s)
- Takuya Fukushima
- Division of Advanced Science and Engineering, Graduate School of Science and Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Kenta Tamaki
- Division of Advanced Science and Engineering, Graduate School of Science and Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Atsushi Isobe
- Division of Advanced Science and Engineering, Graduate School of Science and Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Takashi Hirose
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.,PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Nobutaka Shimizu
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba 305-0801, Japan
| | - Hideaki Takagi
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba 305-0801, Japan
| | - Rie Haruki
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba 305-0801, Japan
| | - Shin-Ichi Adachi
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba 305-0801, Japan
| | - Martin J Hollamby
- School of Chemical and Physical Sciences, Keele University, Keele, U.K
| | - Shiki Yagai
- Institute for Global Prominent Research (IGPR), Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba 263-8522, Japan.,Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| |
Collapse
|
21
|
Mabesoone MJ, Palmans ARA, Meijer EW. Solute-Solvent Interactions in Modern Physical Organic Chemistry: Supramolecular Polymers as a Muse. J Am Chem Soc 2020; 142:19781-19798. [PMID: 33174741 PMCID: PMC7705892 DOI: 10.1021/jacs.0c09293] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Indexed: 12/14/2022]
Abstract
Interactions between solvents and solutes are a cornerstone of physical organic chemistry and have been the subject of investigations over the last century. In recent years, a renewed interest in fundamental aspects of solute-solvent interactions has been sparked in the field of supramolecular chemistry in general and that of supramolecular polymers in particular. Although solvent effects in supramolecular chemistry have been recognized for a long time, the unique opportunities that supramolecular polymers offer to gain insight into solute-solvent interactions have become clear relatively recently. The multiple interactions that hold the supramolecular polymeric structure together are similar in strength to those between solute and solvent. The cooperativity found in ordered supramolecular polymers leads to the possibility of amplifying these solute-solvent effects and will shed light on extremely subtle solvation phenomena. As a result, many exciting effects of solute-solvent interactions in modern physical organic chemistry can be studied using supramolecular polymers. Our aim is to put the recent progress into a historical context and provide avenues toward a more comprehensive understanding of solvents in multicomponent supramolecular systems.
Collapse
Affiliation(s)
- Mathijs
F. J. Mabesoone
- Institute
for Complex Molecular Systems and the Laboratory of Macromolecular
and Organic Chemistry, Eindhoven University
of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Anja R. A. Palmans
- Institute
for Complex Molecular Systems and the Laboratory of Macromolecular
and Organic Chemistry, Eindhoven University
of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - E. W. Meijer
- Institute
for Complex Molecular Systems and the Laboratory of Macromolecular
and Organic Chemistry, Eindhoven University
of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
22
|
Tamaki K, Datta S, Tashiro K, Isobe A, Silly F, Yagai S. Effect of Azobenzene Regioisomerism on Intrinsically Curved Supramolecular Polymers. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000535] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kenta Tamaki
- Division of Advanced Science and Engineering Graduate School of Science and Engineering Chiba University 1-33 Yayoi-cho Inage-ku Chiba 263-8522 Japan
| | - Sougata Datta
- Department of Applied Chemistry and Biotechnology Chiba University 1-33 Yayoi-cho Inage-ku Chiba 263-8522 Japan
| | - Keigo Tashiro
- Institute for Global Prominent Research (IGPR) Chiba University 1-33 Yayoi-cho Inage-ku Chiba 263-8522 Japan
| | - Atsushi Isobe
- Division of Advanced Science and Engineering Graduate School of Science and Engineering Chiba University 1-33 Yayoi-cho Inage-ku Chiba 263-8522 Japan
| | - Fabien Silly
- TITANS SPEC CEA CNRS Université Paris-Saclay CEA Saclay F-91191 Gif sur Yvette France
| | - Shiki Yagai
- Institute for Global Prominent Research (IGPR) Chiba University 1-33 Yayoi-cho Inage-ku Chiba 263-8522 Japan
- Department of Applied Chemistry and Biotechnology Chiba University 1-33 Yayoi-cho Inage-ku Chiba 263-8522 Japan
| |
Collapse
|