1
|
Tejashree GL, Dave A, Kumbhakarna N, Chowdhury A, Namboothiri INN. 1,3-Bishomocubane: a kinetic rock, a thermodynamic powerhouse and a compelling chiral synthetic scaffold. Chem Commun (Camb) 2024; 60:14142-14154. [PMID: 39404493 DOI: 10.1039/d4cc04290e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Over the last several decades, saturated polycyclic cage compounds have remained a point of interest for organic chemists because of their unique characteristics and reactivity. For the first time, a detailed analysis of the synthesis, properties and transformations of 1,3-bishomocubanes, which fall under the rare category of chiral cage compounds, is provided in this article. This review which also includes the authors' work in this area over the last decade is expected to serve as a valuable resource for chemists interested in the fascinating chemistry and properties of polycyclic cage compounds.
Collapse
Affiliation(s)
- Gangavara L Tejashree
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400 076, India.
| | - Amrish Dave
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400 076, India.
| | - Neeraj Kumbhakarna
- Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai 400 076, India
| | - Arindrajit Chowdhury
- Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai 400 076, India
| | | |
Collapse
|
2
|
Lal S, Rao Cheekatla S, Suresh A, Ayyagari N, Mallick L, Pallikonda G, Desai P, Ahirwar P, Chowdhury A, Kumbhakarna N, Namboothiri INN. Synthesis, Characterization and Energetic Properties of Hydroxymethyl-Bishomocubanone Derivatives. Chemistry 2024; 30:e202401265. [PMID: 38863386 DOI: 10.1002/chem.202401265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/31/2024] [Accepted: 06/11/2024] [Indexed: 06/13/2024]
Abstract
The present work reports synthesis, characterization and theoretical insights on novel hydroxymethyl-bishomocubanone derivatives. Twelve new bishomocubanes (BHCs) were synthesized and fully characterized by various spectroscopic techniques and single crystal X-ray analysis. The densities of the title compounds were in the range of 1.30-1.59 g/cm3. Density-functional theory (DFT) based calculations at B3LYP/6-311++G(d,p) level of theory were performed on ten selected BHC based cage compounds. Propulsive and ballistic properties of newly synthesized hydroxymethyl-bishomocubanone derivatives in solid and liquid propulsion systems were calculated, and the results suggested that these compounds are superior to conventional fuel RP1 and binder HTPB. The detonation parameters revealed that these compounds are not explosive in nature and safe to use as solid propellants. Furthermore, kinetic and thermal stabilities of the title compounds were determined by HOMO-LUMO energy gap, ESP maps, impact sensitivity (h50) and bond dissociation energies (BDEs) followed by thermogravimetric analysis (TGA) and differential thermal analysis (DTA). Three compounds, a dinitroazide (Isp,vac=310.98 s), a dinitrate (Isp,vac=309.51 s), and a dinitronitrate (Isp,vac=309.20s) were found to be excellent candidates for volume limited applications.
Collapse
Affiliation(s)
- Sohan Lal
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Subba Rao Cheekatla
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Alati Suresh
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Narasimham Ayyagari
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Lovely Mallick
- Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Gangaram Pallikonda
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Poonam Desai
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Parmanand Ahirwar
- Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Arindrajit Chowdhury
- Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Neeraj Kumbhakarna
- Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | | |
Collapse
|
3
|
Smyrnov OK, Melnykov KP, Pashenko OY, Volochnyuk DM, Ryabukhin SV. Stellane at the Forefront: Derivatization and Reactivity Studies of a Promising Saturated Bioisostere of ortho-Substituted Benzenes. Org Lett 2024. [PMID: 38804566 DOI: 10.1021/acs.orglett.4c01645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
This work highlights stellane's cage stability and derivatization opportunities. A diverse range of building blocks were synthesized using modern synthesis protocols to demonstrate stellane's reactivity and chemical tolerance across different reaction systems, proving its promise as a bioisosteric scaffold. It can be utilized in scaffold-based molecular design and is superior in terms of topological precision compared to existing ortho isosteres, as well as monosubstituted benzene mimetics, holding the potential to become a robust platform for future medicinal chemistry studies.
Collapse
Affiliation(s)
- Oleh K Smyrnov
- Enamine Ltd., 78 Winston Churchill Street, 02094 Kyiv, Ukraine
- Taras Shevchenko National University of Kyiv, 60 Volodymyrska Street, 01601 Kyiv, Ukraine
| | - Kostiantyn P Melnykov
- Enamine Ltd., 78 Winston Churchill Street, 02094 Kyiv, Ukraine
- Taras Shevchenko National University of Kyiv, 60 Volodymyrska Street, 01601 Kyiv, Ukraine
| | - Olexandr Ye Pashenko
- Enamine Ltd., 78 Winston Churchill Street, 02094 Kyiv, Ukraine
- Taras Shevchenko National University of Kyiv, 60 Volodymyrska Street, 01601 Kyiv, Ukraine
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, 5 Akademik Kuhar Street, 02660 Kyiv, Ukraine
| | - Dmytro M Volochnyuk
- Enamine Ltd., 78 Winston Churchill Street, 02094 Kyiv, Ukraine
- Taras Shevchenko National University of Kyiv, 60 Volodymyrska Street, 01601 Kyiv, Ukraine
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, 5 Akademik Kuhar Street, 02660 Kyiv, Ukraine
| | - Serhiy V Ryabukhin
- Enamine Ltd., 78 Winston Churchill Street, 02094 Kyiv, Ukraine
- Taras Shevchenko National University of Kyiv, 60 Volodymyrska Street, 01601 Kyiv, Ukraine
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, 5 Akademik Kuhar Street, 02660 Kyiv, Ukraine
| |
Collapse
|
4
|
Kong D, Fahrenhorst-Jones T, Kuo A, Simmons JL, Tan L, Burns JM, Pierens GK, Li R, West NP, Boyle GM, Smith MT, Savage GP, Williams CM. seco-1-Azacubane-2-carboxylic Acid: Derivative Scope and Comparative Biological Evaluation. J Org Chem 2024; 89:798-803. [PMID: 38131648 DOI: 10.1021/acs.joc.3c02333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The unusual and sterically constrained amino acid, seco-1-azacubane-2-carboxylic acid, was incorporated into a range of bioactive chemical templates, including enalaprilat, perindoprilat, endomorphin-2 and isoniazid, and subjected to biological testing. The endomorphin-2 derivative displayed increased activity at the δ opioid receptor, but a loss in activity was observed in the other cases, although human normal cell line evaluation suggests limited cytotoxic effects.
Collapse
Affiliation(s)
- Dehui Kong
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4072, Queensland, Australia
| | - Tyler Fahrenhorst-Jones
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4072, Queensland, Australia
| | - Andy Kuo
- School of Biomedical Sciences, University of Queensland, Brisbane, 4072, Queensland, Australia
| | - Jacinta L Simmons
- QIMR Berghofer Medical Research Institute, Brisbane, 4029, Queensland, Australia
| | - Lendl Tan
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4072, Queensland, Australia
| | - Jed M Burns
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4072, Queensland, Australia
| | - Gregory K Pierens
- Centre for Advanced Imaging, University of Queensland, Brisbane, 4072, Queensland, Australia
| | - Rui Li
- School of Biomedical Sciences, University of Queensland, Brisbane, 4072, Queensland, Australia
| | - Nicholas P West
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4072, Queensland, Australia
| | - Glen M Boyle
- QIMR Berghofer Medical Research Institute, Brisbane, 4029, Queensland, Australia
| | - Maree T Smith
- School of Biomedical Sciences, University of Queensland, Brisbane, 4072, Queensland, Australia
| | - G Paul Savage
- CSIRO Manufacturing, Ian Wark Laboratory, Melbourne, 3168, Victoria, Australia
| | - Craig M Williams
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4072, Queensland, Australia
| |
Collapse
|
5
|
Mandler MD, Mignone J, Jurica EA, Palkowitz MD, Aulakh D, Cauley AN, Farley CA, Zhang S, Traeger SC, Sarjeant A, Paiva A, Perez HL, Ellsworth BA, Regueiro-Ren A. Synthesis of Bicyclo[1.1.0]butanes from Iodo-Bicyclo[1.1.1]pentanes. Org Lett 2023; 25:7947-7952. [PMID: 37284784 DOI: 10.1021/acs.orglett.3c01417] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We describe a two-step process for the synthesis of substituted bicyclo[1.1.0]butanes. A photo-Hunsdiecker reaction generates iodo-bicyclo[1.1.1]pentanes under metal-free conditions at room temperature. These intermediates react with nitrogen and sulfur nucleophiles to afford substituted bicyclo[1.1.0]butane products.
Collapse
Affiliation(s)
- Michael D Mandler
- Bristol Myers Squibb, Research & Early Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - James Mignone
- Bristol Myers Squibb, Research & Early Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Elizabeth A Jurica
- Bristol Myers Squibb, Research & Early Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Maximilian D Palkowitz
- Bristol Myers Squibb, Research & Early Development, 100 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Darpandeep Aulakh
- Bristol Myers Squibb, Chemical & Synthetic Development, 1 Squibb Drive, New Brunswick, New Jersey 08901, United States
| | - Anthony N Cauley
- Bristol Myers Squibb, Research & Early Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Christopher A Farley
- Bristol Myers Squibb, Research & Early Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Shasha Zhang
- Bristol Myers Squibb, Chemical & Synthetic Development, 1 Squibb Drive, New Brunswick, New Jersey 08901, United States
| | - Sarah C Traeger
- Bristol Myers Squibb, Research & Early Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Amy Sarjeant
- Bristol Myers Squibb, Chemical & Synthetic Development, 1 Squibb Drive, New Brunswick, New Jersey 08901, United States
| | - Anthony Paiva
- Bristol Myers Squibb, Research & Early Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Heidi L Perez
- Bristol Myers Squibb, Research & Early Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Bruce A Ellsworth
- Bristol Myers Squibb, Research & Early Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Alicia Regueiro-Ren
- Bristol Myers Squibb, Research & Early Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| |
Collapse
|
6
|
Bartonek A, Klapötke TM, Krumm B. Sensitive 1,4-Disubstituted Nitro-Containing Cubanes: Structures and Properties. J Org Chem 2023; 88:12884-12890. [PMID: 37616479 DOI: 10.1021/acs.joc.3c00384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
The cubane cage system is characteristic and well known for its high strain energy, qualifying it as a promising precursor for energetic materials. 1,4-Disubstituted cubanes are the easiest accessible derivatives. A further developed laboratory-scale procedure for cubane-1,4-dicarboxylic acid dimethyl ester is presented. From this central precursor, the bis-trinitroethyl and bis-nitromethyl esters as well as the bis-methylcarbamate and bis-methylnitrocarbamate were synthesized and characterized by multinuclear NMR spectroscopy and X-ray crystallography. In addition, their physical and energetic properties were determined and studied.
Collapse
Affiliation(s)
- Andreas Bartonek
- Department of Chemistry, Ludwig-Maximilian University of Munich, Butenandtstr. 5-13(D), D-81377 Munich, Germany
| | - Thomas M Klapötke
- Department of Chemistry, Ludwig-Maximilian University of Munich, Butenandtstr. 5-13(D), D-81377 Munich, Germany
| | - Burkhard Krumm
- Department of Chemistry, Ludwig-Maximilian University of Munich, Butenandtstr. 5-13(D), D-81377 Munich, Germany
| |
Collapse
|
7
|
Smith E, Jones KD, O'Brien L, Argent SP, Salome C, Lefebvre Q, Valery A, Böcü M, Newton GN, Lam HW. Silver(I)-Catalyzed Synthesis of Cuneanes from Cubanes and their Investigation as Isosteres. J Am Chem Soc 2023. [PMID: 37478562 PMCID: PMC10401713 DOI: 10.1021/jacs.3c03207] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
Bridged or caged polycyclic hydrocarbons have rigid structures that project substituents into precise regions of 3D space, making them attractive as linking groups in materials science and as building blocks for medicinal chemistry. The efficient synthesis of new or underexplored classes of such compounds is, therefore, an important objective. Herein, we describe the silver(I)-catalyzed rearrangement of 1,4-disubstituted cubanes to cuneanes, which are strained hydrocarbons that have not received much attention since they were first described in 1970. The synthesis of 2,6-disubstituted or 1,3-disubstituted cuneanes can be achieved with high regioselectivities, with the regioselectivity being dependent on the electronic character of the cubane substituents. A preliminary assessment of cuneanes as scaffolds for medicinal chemistry suggests cuneanes could serve as isosteric replacements of trans-1,4-disubstituted cyclohexanes and 1,3-disubstituted benzenes. An analogue of the anticancer drug sonidegib was synthesized, in which the 1,2,3-trisubstituted benzene was replaced with a 1,3-disubstituted cuneane.
Collapse
Affiliation(s)
- Elliot Smith
- The GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Jubilee Campus, Triumph Road, Nottingham, NG7 2TU, United Kingdom
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Kieran D Jones
- The GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Jubilee Campus, Triumph Road, Nottingham, NG7 2TU, United Kingdom
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Luke O'Brien
- The GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Jubilee Campus, Triumph Road, Nottingham, NG7 2TU, United Kingdom
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Stephen P Argent
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | | | | | | | - Mina Böcü
- SpiroChem AG, 4058 Basel, Switzerland
| | - Graham N Newton
- The GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Jubilee Campus, Triumph Road, Nottingham, NG7 2TU, United Kingdom
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Hon Wai Lam
- The GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Jubilee Campus, Triumph Road, Nottingham, NG7 2TU, United Kingdom
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
8
|
Hao W, Wu M, Tian X, Hu Z, Zhang H, Huang F, Li S, Chen YL. Preparation of bicyclo[1.1.1]pentane-derived nucleoside analogues. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2023; 42:959-966. [PMID: 37270794 DOI: 10.1080/15257770.2023.2218446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/03/2023] [Accepted: 05/22/2023] [Indexed: 06/06/2023]
Abstract
Nucleoside analogues are prevalent in drug design and call for more diversified structures. Bicyclo[1.1.1]pentane (BCP) structure has recently found wide applications in drug discovery. However, incorporation of BCP fragment into nucleoside analogues is hitherto unknown. Thus, from readily available BCP-containing building blocks, six new compounds, including pyrimidine nucleoside analogues, purine nucleoside analogues, and C-nucleoside analogues were prepared in 1-4 steps, generally with good yields.
Collapse
Affiliation(s)
- Wanli Hao
- Anhui University, Hefei, P. R. China
| | | | - Xiaoran Tian
- Nature Pharmaceutical (Anhui) Co., Ltd, Anqing, P. R. China
| | - Zhigang Hu
- Nature Pharmaceutical (Anhui) Co., Ltd, Anqing, P. R. China
| | - Hui Zhang
- Anhui University, Hefei, P. R. China
| | | | - Shikuo Li
- Anhui University, Hefei, P. R. China
| | - Yue-Lei Chen
- Nature Pharmaceutical (Anhui) Co., Ltd, Anqing, P. R. China
| |
Collapse
|
9
|
Fahrenhorst-Jones T, Marshall DL, Burns JM, Pierens GK, Hormann RE, Fisher AM, Bernhardt PV, Blanksby SJ, Savage GP, Eaton PE, Williams CM. 1-Azahomocubane. Chem Sci 2023; 14:2821-2825. [PMID: 36937576 PMCID: PMC10016339 DOI: 10.1039/d3sc00001j] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 02/02/2023] [Indexed: 02/24/2023] Open
Abstract
Highly strained cage hydrocarbons have long stood as fundamental molecules to explore the limits of chemical stability and reactivity, probe physical properties, and more recently as bioactive molecules and in materials discovery. Interestingly, the nitrogenous congeners have attracted much less attention. Previously absent from the literature, azahomocubanes, offer an opportunity to investigate the effects of a nitrogen atom when incorporated into a highly constrained polycyclic environment. Herein disclosed is the synthesis of 1-azahomocubane, accompanied by comprehensive structural characterization, physical property analysis and chemical reactivity. These data support the conclusion that nitrogen is remarkably well tolerated in a highly strained environment.
Collapse
Affiliation(s)
- Tyler Fahrenhorst-Jones
- School of Chemistry and Molecular Biosciences, University of Queensland Brisbane 4072 Queensland Australia
| | - David L Marshall
- Central Analytical Research Facility and School of Chemistry and Physics, Queensland University of Technology Brisbane 4000 Queensland Australia
| | - Jed M Burns
- School of Chemistry and Molecular Biosciences, University of Queensland Brisbane 4072 Queensland Australia
| | - Gregory K Pierens
- Centre for Advanced Imaging, University of Queensland Brisbane 4072 Queensland Australia
| | - Robert E Hormann
- Department of Chemistry, University of Chicago Chicago Illinois 60637 USA
| | - Allison M Fisher
- Department of Chemistry, University of Chicago Chicago Illinois 60637 USA
| | - Paul V Bernhardt
- School of Chemistry and Molecular Biosciences, University of Queensland Brisbane 4072 Queensland Australia
| | - Stephen J Blanksby
- Central Analytical Research Facility and School of Chemistry and Physics, Queensland University of Technology Brisbane 4000 Queensland Australia
| | - G Paul Savage
- CSIRO Manufacturing, Ian Wark Laboratory Melbourne 3168 Victoria Australia
| | - Philip E Eaton
- Department of Chemistry, University of Chicago Chicago Illinois 60637 USA
| | - Craig M Williams
- School of Chemistry and Molecular Biosciences, University of Queensland Brisbane 4072 Queensland Australia
| |
Collapse
|
10
|
Lal S, Bhattacharjee A, Chowdhury A, Kumbhakarna N, Namboothiri INN. Approaches to 1,4-Disubstituted Cubane Derivatives as Energetic Materials: Design, Theoretical Studies and Synthesis. Chem Asian J 2022; 17:e202200489. [PMID: 35767352 DOI: 10.1002/asia.202200489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/26/2022] [Indexed: 11/10/2022]
Abstract
Novel 1,4-disubstituted cubane derivatives have been designed and selected ones have been successfully synthesized and characterized by various analytical and spectroscopic techniques, including single-crystal X-ray analysis. A detailed computational study at B3LYP/6-311++G(d,p) level of theory revealed that all newly designed 1,4-disubstituted cubane derivatives possess higher densities, higher density-specific impulse and superior ballistic properties when compared to conventional fuels, for example, RP-1. These compounds also exhibit acceptable kinetic and thermodynamic stabilities which were evaluated in terms of their HOMO-LUMO energy gap and bond dissociation energies, respectively, and are superior to TEX and many other compounds containing explosophoric groups. These results provide novel insights into the possible application of cubane-based energetic materials.
Collapse
Affiliation(s)
- Sohan Lal
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Argha Bhattacharjee
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Arindrajit Chowdhury
- Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Neeraj Kumbhakarna
- Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | | |
Collapse
|
11
|
Matsunaga T, Kanazawa J, Ichikawa T, Harada M, Nishiyama Y, Duong NT, Matsumoto T, Miyamoto K, Uchiyama M. α‐Cyclodextrin Encapsulation of Bicyclo[1.1.1]pentane Derivatives: A Storable Feedstock for Preparation of [1.1.1]Propellane. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tadafumi Matsunaga
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Junichiro Kanazawa
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Tomohiro Ichikawa
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Mei Harada
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Yusuke Nishiyama
- RIKEN-JEOL Collaboration Center and SPring-8 Center RIKEN, Tsurumi Yokohama Kanagawa 230-0045 Japan
- JEOL RESONANCE Inc. 3-1-2 Musashino, Akishima Tokyo 196-8558 Japan
| | - Nghia Tuan Duong
- RIKEN-JEOL Collaboration Center and SPring-8 Center RIKEN, Tsurumi Yokohama Kanagawa 230-0045 Japan
| | - Takashi Matsumoto
- Rigaku Corporation 3-9-12 Matsubara-cho, Akishima Tokyo 196-8666 Japan
| | - Kazunori Miyamoto
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
- Cluster for Pioneering Research (CPR) RIKEN 2-1 Hirosawa, Wako-shi Saitama 351-0198 Japan
- Research Initiative for Supra-Materials (RISM) Shinshu University 3-15-1 Tokida, Ueda Nagano 386-8567 Japan
| |
Collapse
|
12
|
Matsunaga T, Kanazawa J, Ichikawa T, Harada M, Nishiyama Y, Duong NT, Matsumoto T, Miyamoto K, Uchiyama M. α-Cyclodextrin Encapsulation of Bicyclo[1.1.1]pentane Derivatives: A Storable Feedstock for Preparation of [1.1.1]Propellane. Angew Chem Int Ed Engl 2021; 60:2578-2582. [PMID: 33205884 DOI: 10.1002/anie.202014997] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Indexed: 12/15/2022]
Abstract
The bicyclo[1.1.1]pentane (BCP) scaffold is useful in medicinal chemistry, and many protocols are available for synthesizing BCP derivatives from [1.1.1]propellane. Here, we report (1) the α-cyclodextrin (α-CD) encapsulation of BCP derivatives, affording a stable, readily storable material from which BCPs can be easily and quantitatively recovered and (2) new and simple protocols for deiodination reaction of 1,3-diiodo BCP to afford [1.1.1]propellane in protic/aprotic/polar/non-polar solvents. The combination of these methodologies enables simple, on-demand preparation of [1.1.1]propellane in various solvents under mild conditions from α-CD capsules containing 1,3-diiodo BCP.
Collapse
Affiliation(s)
- Tadafumi Matsunaga
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Junichiro Kanazawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tomohiro Ichikawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Mei Harada
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yusuke Nishiyama
- RIKEN-JEOL Collaboration Center and SPring-8 Center, RIKEN, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan.,JEOL RESONANCE Inc., 3-1-2 Musashino, Akishima, Tokyo, 196-8558, Japan
| | - Nghia Tuan Duong
- RIKEN-JEOL Collaboration Center and SPring-8 Center, RIKEN, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Takashi Matsumoto
- Rigaku Corporation, 3-9-12 Matsubara-cho, Akishima, Tokyo, 196-8666, Japan
| | - Kazunori Miyamoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Cluster for Pioneering Research (CPR), RIKEN, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan.,Research Initiative for Supra-Materials (RISM), Shinshu University, 3-15-1 Tokida, Ueda, Nagano, 386-8567, Japan
| |
Collapse
|
13
|
Li J, Lopez SA. Multiconfigurational Calculations and Nonadiabatic Molecular Dynamics Explain Tricyclooctadiene Photochemical Chemoselectivity. J Phys Chem A 2020; 124:7623-7632. [PMID: 32866386 DOI: 10.1021/acs.jpca.0c05280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Sunlight is a renewable energy source that can be stored in chemical bonds using photochemical reactions. The synthesis of exotic and strained molecules is especially attractive with photochemical techniques because of the associated efficient and mild reaction conditions. We have understood the photophysics and subsequent photochemistry of a possible cubane precursor, tricyclo[4,2,0,02,5]octa-3,7-diene with complete active space self-consistent field (CASSCF) calculations with an (8,7) active space and the ANO-S-VDZP basis set to. The CASSCF energies were corrected with a second-order perturbative correction CASPT2(8,7)/ANO-S-VDZP. The S0 → S1 vertical excitation energy of 1 is 6.25 eV, which is a π → π* excitation. The minimum energy path from the S1 Franck-Condon point leads to a 4π-disrotatory electrocyclic ring-opening reaction to afford bicyclo[4,2,0]octa-2,4,7-triene. The 2D potential energy surface scan located a rhomboidal S1/S0 minimum energy crossing point connecting 1 and cubane, suggesting that a cycloaddition is theoretically possible. We used the fewest switches surface hopping to study the photodynamics of this cycloaddition: 85% of 1722 trajectories relaxed to eight products; the major products are bicyclo[4,2,0]octa-2,4,7-triene (30%) and cycloocta-1,3,5,7-tetraene (32%). Only 0.4% of trajectories undergo a [2 + 2] cycloaddition to form cubane.
Collapse
Affiliation(s)
- Jingbai Li
- Department of Chemistry & Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Steven A Lopez
- Department of Chemistry & Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| |
Collapse
|