1
|
Yu Y, Ni W, Hu Q, Li H, Zhang Y, Gao X, Zhou L, Zhang S, Ma S, Zhang Y, Huang H, Li F, Han J. A Dual Fluorescence Turn-On Sensor Array Formed by Poly(para-aryleneethynylene) and Aggregation-Induced Emission Fluorophores for Sensitive Multiplexed Bacterial Recognition. Angew Chem Int Ed Engl 2024; 63:e202318483. [PMID: 38407995 DOI: 10.1002/anie.202318483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/01/2024] [Accepted: 02/26/2024] [Indexed: 02/28/2024]
Abstract
Bacterial infections have emerged as the leading causes of mortality and morbidity worldwide. Herein, we developed a dual-channel fluorescence "turn-on" sensor array, comprising six electrostatic complexes formed from one negatively charged poly(para-aryleneethynylene) (PPE) and six positively charged aggregation-induced emission (AIE) fluorophores. The 6-element array enabled the simultaneous identification of 20 bacteria (OD600=0.005) within 30s (99.0 % accuracy), demonstrating significant advantages over the array constituted by the 7 separate elements that constitute the complexes. Meanwhile, the array realized different mixing ratios and quantitative detection of prevalent bacteria associated with urinary tract infection (UTI). It also excelled in distinguishing six simulated bacteria samples in artificial urine. Remarkably, the limit of detection for E. coli and E. faecalis was notably low, at 0.000295 and 0.000329 (OD600), respectively. Finally, optimized by diverse machine learning algorithms, the designed array achieved 96.7 % accuracy in differentiating UTI clinical samples from healthy individuals using a random forest model, demonstrating the great potential for medical diagnostic applications.
Collapse
Affiliation(s)
- Yang Yu
- State Key Laboratory of Natural Medicines, National R&D Center for Chinese Herbal Medicine Processing Department of Food Quality and Safety, College of Engineering, China, Pharmaceutical University, Nanjing, 211109, China
| | - Weiwei Ni
- State Key Laboratory of Natural Medicines, National R&D Center for Chinese Herbal Medicine Processing Department of Food Quality and Safety, College of Engineering, China, Pharmaceutical University, Nanjing, 211109, China
| | - Qin Hu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Huihai Li
- State Key Laboratory of Natural Medicines, National R&D Center for Chinese Herbal Medicine Processing Department of Food Quality and Safety, College of Engineering, China, Pharmaceutical University, Nanjing, 211109, China
| | - Yi Zhang
- State Key Laboratory of Natural Medicines, National R&D Center for Chinese Herbal Medicine Processing Department of Food Quality and Safety, College of Engineering, China, Pharmaceutical University, Nanjing, 211109, China
| | - Xu Gao
- State Key Laboratory of Natural Medicines, National R&D Center for Chinese Herbal Medicine Processing Department of Food Quality and Safety, College of Engineering, China, Pharmaceutical University, Nanjing, 211109, China
| | - Lingjia Zhou
- State Key Laboratory of Natural Medicines, National R&D Center for Chinese Herbal Medicine Processing Department of Food Quality and Safety, College of Engineering, China, Pharmaceutical University, Nanjing, 211109, China
| | - Shuming Zhang
- State Key Laboratory of Natural Medicines, National R&D Center for Chinese Herbal Medicine Processing Department of Food Quality and Safety, College of Engineering, China, Pharmaceutical University, Nanjing, 211109, China
| | - Shuoyang Ma
- State Key Laboratory of Natural Medicines, National R&D Center for Chinese Herbal Medicine Processing Department of Food Quality and Safety, College of Engineering, China, Pharmaceutical University, Nanjing, 211109, China
| | - Yanliang Zhang
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing Research Center for Infectious Diseases of Integrated Traditional Chinese and Western Medicine, Nanjing, 210006, China
| | - Hui Huang
- State Key Laboratory of Natural Medicines, National R&D Center for Chinese Herbal Medicine Processing Department of Food Quality and Safety, College of Engineering, China, Pharmaceutical University, Nanjing, 211109, China
| | - Fei Li
- State Key Laboratory of Natural Medicines, National R&D Center for Chinese Herbal Medicine Processing Department of Food Quality and Safety, College of Engineering, China, Pharmaceutical University, Nanjing, 211109, China
| | - Jinsong Han
- State Key Laboratory of Natural Medicines, National R&D Center for Chinese Herbal Medicine Processing Department of Food Quality and Safety, College of Engineering, China, Pharmaceutical University, Nanjing, 211109, China
| |
Collapse
|
2
|
Sasaki Y, Lyu X, Kawashima T, Zhang Y, Ohshiro K, Okabe K, Tsuchiya K, Minami T. Nanoarchitectonics of highly dispersed polythiophene on paper for accurate quantitative detection of metal ions. RSC Adv 2024; 14:5159-5166. [PMID: 38332791 PMCID: PMC10851342 DOI: 10.1039/d3ra08429a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 01/23/2024] [Indexed: 02/10/2024] Open
Abstract
π-Conjugated polymers such as polythiophene provide intramolecular wire effects upon analyte capture, which contribute to sensitive detection in chemical sensing. However, inherent aggregation-induced quenching causes difficulty in fluorescent chemical sensing in the solid state. Herein, we propose a solid-state fluorescent chemosensor array device made of a paper substrate (PCSAD) for the qualitative and quantitative detection of metal ions. A polythiophene derivative modified by dipicolylamine moieties (1poly), which shows optical changes upon the addition of target metal ions (i.e., Cu2+, Cd2+, Ni2+, Co2+, Pb2+, Zn2+, and Hg2+), was highly dispersed on the paper substrate using office apparatus. In this regard, morphological observation of the PCSAD after printing of 1poly suggested the contribution of the fiber structures of the paper substrate to the homogeneous dispersion of 1poly ink to suppress aggregation-induced quenching. The optical changes in the PCSAD upon the addition of metal ions was rapidly recorded using a smartphone, which was further applied to imaging analysis and pattern recognition techniques for high-throughput sensing. Indeed, the printed PCSAD embedded with 1poly achieved the accurate detection of metal ions at ppm levels contained in river water. The limit of detection of the PCSAD-based sensing system using a smartphone (48 ppb for Cu2+ ions) is comparable to that of a solution-based sensing system using a stationary spectrophotometer (16 ppb for Cu2+ ions). Therefore, the methodology based on a combination of a paper-based sensor array and a π-conjugated polymer will be a promising approach for solid-state fluorescent chemosensors.
Collapse
Affiliation(s)
- Yui Sasaki
- Institute of Industrial Science, The University of Tokyo 4-6-1 Komaba, Meguro-ku Tokyo 153-8505 Japan
- JST, PRESTO 4-1-8 Honcho Kawaguchi Saitama 332-0012 Japan
| | - Xiaojun Lyu
- Institute of Industrial Science, The University of Tokyo 4-6-1 Komaba, Meguro-ku Tokyo 153-8505 Japan
| | - Takayuki Kawashima
- Institute of Industrial Science, The University of Tokyo 4-6-1 Komaba, Meguro-ku Tokyo 153-8505 Japan
| | - Yijing Zhang
- Institute of Industrial Science, The University of Tokyo 4-6-1 Komaba, Meguro-ku Tokyo 153-8505 Japan
| | - Kohei Ohshiro
- Institute of Industrial Science, The University of Tokyo 4-6-1 Komaba, Meguro-ku Tokyo 153-8505 Japan
| | - Kiyosumi Okabe
- Institute of Industrial Science, The University of Tokyo 4-6-1 Komaba, Meguro-ku Tokyo 153-8505 Japan
| | - Kazuhiko Tsuchiya
- Institute of Industrial Science, The University of Tokyo 4-6-1 Komaba, Meguro-ku Tokyo 153-8505 Japan
| | - Tsuyoshi Minami
- Institute of Industrial Science, The University of Tokyo 4-6-1 Komaba, Meguro-ku Tokyo 153-8505 Japan
| |
Collapse
|
3
|
Sasaki Y, Ohshiro K, Okabe K, Lyu X, Tsuchiya K, Matsumoto A, Takizawa SY, Minami T. Zn(II)-Dipicolylamine-Attached Amphiphilic Polythiophene for Quantitative Pattern Recognition of Oxyanions in Mixtures. Chem Asian J 2023; 18:e202300372. [PMID: 37309739 DOI: 10.1002/asia.202300372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/14/2023]
Abstract
Herein, we propose a novel amphiphilic polythiophene-based chemosensor functionalized with a Zn(II)-dipicolylamine side chain (1poly ⋅ Zn) for the pattern recognition of oxyanions. Optical changes in amphiphilic 1poly ⋅ Zn can be induced by the formation of a random coil from a backbone-planarized structure upon the addition of target oxyanions, which results in blueshifts in the UV-vis absorption spectra and turn-on-type fluorescence responses. Dynamic behavior in a polythiophene wire and/or among wires could be a driving force for obtaining visible color changes, while the molecular wire effect is dominant in obtaining fluorescence sensor responses. Notably, the magnitude of optical changes in 1poly ⋅ Zn has depended on differences in properties of oxyanions, such as their binding affinity, hydrophilicity, and molecular geometry. Thus, various colorimetric and fluorescence response patterns of 1poly ⋅ Zn to oxyanions were obtained, albeit using a single chemosensor. A constructed information-rich dataset was applied to pattern recognition for the simultaneous group categorization of phosphate and carboxylate groups and the prediction of similar structural oxyanions at a different order of concentrations in their mixture solutions.
Collapse
Affiliation(s)
- Yui Sasaki
- Institute of Industrial Science, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, 153-8505, Tokyo, Japan
| | - Kohei Ohshiro
- Institute of Industrial Science, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, 153-8505, Tokyo, Japan
| | - Kiyosumi Okabe
- Institute of Industrial Science, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, 153-8505, Tokyo, Japan
| | - Xiaojun Lyu
- Institute of Industrial Science, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, 153-8505, Tokyo, Japan
| | - Kazuhiko Tsuchiya
- Institute of Industrial Science, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, 153-8505, Tokyo, Japan
| | - Akira Matsumoto
- Institute of Industrial Science, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, 153-8505, Tokyo, Japan
| | - Shin-Ya Takizawa
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, 153-8902, Tokyo, Japan
| | - Tsuyoshi Minami
- Institute of Industrial Science, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, 153-8505, Tokyo, Japan
| |
Collapse
|
4
|
Gao Y, Han Z, Xu YQ, Yin JF. Chemical composition and anti-cholesterol activity of tea (Camellia sinensis) flowers from albino cultivars. Front Nutr 2023; 10:1142971. [PMID: 37051128 PMCID: PMC10083420 DOI: 10.3389/fnut.2023.1142971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/08/2023] [Indexed: 03/29/2023] Open
Abstract
Albino tea cultivars are mutant tea plants with altered metabolisms. Current studies focus on the leaves while little is known about the flowers. To evaluate tea flowers from different albino cultivars, the chemical composition and anti-cholesterol activity of tea flowers from three albino cultivars (i.e., Baiye No.1, Huangjinya, and Yujinxiang) were compared. According to the results, tea flowers from Yujinxiang had more amino acids but less polyphenols than tea flowers from the other two albino cultivars. A reduced content of procyanidins and a high chakasaponins/floratheasaponins ratio were characteristics of tea flowers from Yujinxiang. In vitro anti-cholesterol activity assays revealed that tea flowers from Yujinxiang exhibited stronger activity in decreasing the micellar cholesterol solubility, but not in cholesterol esterase inhibition and bile salt binding. It was noteworthy that there were no specific differences on the chemical composition and anti-cholesterol activity between tea flowers from albino cultivars and from Jiukeng (a non-albino cultivar). These results increase our knowledges on tea flowers from different albino cultivars and help food manufacturers in the cultivar selection of tea flowers for use.
Collapse
Affiliation(s)
- Ying Gao
- Key Laboratory of Tea Biology and Resources Utilization, Tea Research Institute Chinese Academy of Agricultural Sciences, National Engineering Research Center for Tea Processing, Hangzhou, China
| | - Zhen Han
- Agro-Technical Extension Station of Ningbo City, Ningbo, China
| | - Yong-Quan Xu
- Key Laboratory of Tea Biology and Resources Utilization, Tea Research Institute Chinese Academy of Agricultural Sciences, National Engineering Research Center for Tea Processing, Hangzhou, China
- *Correspondence: Yong-Quan Xu,
| | - Jun-Feng Yin
- Key Laboratory of Tea Biology and Resources Utilization, Tea Research Institute Chinese Academy of Agricultural Sciences, National Engineering Research Center for Tea Processing, Hangzhou, China
- Jun-Feng Yin,
| |
Collapse
|
5
|
Al-Qahtani SD, Snari RM, Bayazeed A, Alnoman RB, Hossan A, Alsoliemy A, El-Metwaly NM. Synthesis, characterization and self-assembly of novel fluorescent alkoxy-substituted 1, 4-diarylated 1, 2, 3-triazoles organogelators. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
6
|
Supramolecular optical sensor arrays for on-site analytical devices. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2022. [DOI: 10.1016/j.jphotochemrev.2021.100475] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
7
|
Lyu X, Sasaki Y, Ohshiro K, Tang W, Yuan Y, Minami T. Printed 384-Well Microtiter Plate on Paper for Fluorescent Chemosensor Array in Food Analysis. Chem Asian J 2022; 17:e202200479. [PMID: 35612563 DOI: 10.1002/asia.202200479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/24/2022] [Indexed: 11/06/2022]
Abstract
We propose a printed 384-well microtiter paper-based fluorescent chemosensor array device (384-well microtiter PCAD) to simultaneously categorize and discriminate saccharides and sulfur-containing amino acids for food analysis. The 384-well microtiter PCAD required 1 μL/4 mm 2 of each well can allow high-throughput sensing. The device embedded with self-assembled fluorescence chemosensors displayed a fingerprint-like response pattern for targets, the image of which was rapidly captured by a portable digital camera. Indeed, the paper-based chemosensor array system combined with imaging analysis and pattern recognition techniques successfully not only categorized saccharides and sulfur-containing amino acids but also classified mono- and disaccharide groups. Furthermore, the quantitative detectability of the printed device was revealed by a spike recovery test for fructose and glutathione in a diluted freshly made tomato juice. We believe that the 384-well microtiter PCAD using the imaging analysis system will be a powerful sensor for multi-analytes at several categorized groups in real samples.
Collapse
Affiliation(s)
- Xiaojun Lyu
- The University of Tokyo: Tokyo Daigaku, Institute of Industrial Science, 4-6-1 Komaba, 153-8505, Meguro-ku, JAPAN
| | - Yui Sasaki
- The University of Tokyo: Tokyo Daigaku, Institute of Industrial Science, 4-6-1 Komaba, 153-8505, Meguro-ku, JAPAN
| | - Kohei Ohshiro
- The University of Tokyo: Tokyo Daigaku, Institute of Industrial Science, 4-6-1 Komaba, 153-8505, Meguro-ku, JAPAN
| | - Wei Tang
- The University of Tokyo: Tokyo Daigaku, Institute of Industrial Science, 4-6-1 Komaba, 153-8505, Meguro-ku, JAPAN
| | - Yousi Yuan
- The University of Tokyo: Tokyo Daigaku, Institute of Industrial Science, 4-6-1 Komaba, 153-8505, Meguro-ku, JAPAN
| | - Tsuyoshi Minami
- The University of Tokyo, Institute of Industrial Science, 4-6-1 Komaba, 153-8505, Meguro-ku, JAPAN
| |
Collapse
|
8
|
Hayashi N, Ujihara T, Jin S. Detection of catechins using a fluorescent molecule and its application toward the evaluation of astringent intensity. Analyst 2022; 147:4480-4488. [DOI: 10.1039/d2an00990k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
It is possible to estimate astringent intensities of catechin solutions based on changes in the intensity of fluorescence emission.
Collapse
Affiliation(s)
- Nobuyuki Hayashi
- Institute of Food Research, National Agriculture and Food Research Organization (NARO), 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| | - Tomomi Ujihara
- Institute of Food Research, National Agriculture and Food Research Organization (NARO), 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| | - Shigeki Jin
- Department of Forensic Medicine, Graduate School of Medicine, Hokkaido University, N15 W 7 Kita-ku, Sapporo, Hokkaido 060-8638, Japan
- Center for Cause of Death Investigation, Graduate School of Medicine, Hokkaido University, N15W7 Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| |
Collapse
|
9
|
SASAKI Y, LYU X, YUAN Y, MINAMI T. On-site Chemosensor Arrays for Qualitative and Quantitative Detection with Imaging Analysis. BUNSEKI KAGAKU 2021. [DOI: 10.2116/bunsekikagaku.70.691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Yui SASAKI
- Institute of Industrial Science, The University of Tokyo
| | - Xiaojun LYU
- Institute of Industrial Science, The University of Tokyo
| | - Yousi YUAN
- Institute of Industrial Science, The University of Tokyo
| | | |
Collapse
|
10
|
Sasaki Y, Lyu X, Tang W, Wu H, Minami T. Polythiophene-Based Chemical Sensors: Toward On-Site Supramolecular Analytical Devices. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210265] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yui Sasaki
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Xiaojun Lyu
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Wei Tang
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Hao Wu
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Tsuyoshi Minami
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
11
|
Lyu X, Matsumoto A, Minami T. A polythiophene-based chemosensor array for Japanese rice wine (sake) tasting. Polym J 2021. [DOI: 10.1038/s41428-021-00521-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
12
|
Comparative Analysis of Flavonoid Metabolites in Foxtail Millet ( Setaria italica) with Different Eating Quality. Life (Basel) 2021; 11:life11060578. [PMID: 34207187 PMCID: PMC8235519 DOI: 10.3390/life11060578] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/08/2021] [Accepted: 06/15/2021] [Indexed: 12/17/2022] Open
Abstract
Foxtail millet (Setaria italica) is an important minor cereal crop in China. The yellow color of the de-husked grain is the most direct aspect for evaluating the foxtail millet quality. The yellow pigment mainly includes carotenoids (lutein and zeaxanthin) and flavonoids. To reveal the diversity and specificity of flavonoids in foxtail millet, we chose three high eating quality and two poor eating quality varieties as research materials. A total of 116 flavonoid metabolites were identified based on Ultra Performance Liquid Chromatography-Electrospray Ionization-Tandem Mass Spectrometry (UPLC-ESI-MS/MS) system. The tested varieties contained similar levels of flavonoid metabolites, but with each variety accumulating its unique flavonoid metabolites. A total of 33 flavonoid metabolites were identified as significantly discrepant between high eating quality and poor eating quality varieties, which were mainly in the flavonoid biosynthesis pathway and one of its branches, the flavone and flavonol biosynthesis pathway. These results showed the diversified components of flavonoids accumulated in foxtail millets and laid the foundation for further research on flavonoids and the breeding for high-quality foxtail millet varieties.
Collapse
|
13
|
A minimized fluorescent chemosensor array utilizing carboxylate-attached polythiophenes on a chip for metal ions detection. Front Chem Sci Eng 2021. [DOI: 10.1007/s11705-021-2037-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
Zhang Z, Hamedpour V, Lyu X, Sasaki Y, Minami T. A Printed Paper-Based Anion Sensor Array for Multi-Analyte Classification: On-Site Quantification of Glyphosate. Chempluschem 2021; 86:798-802. [PMID: 33788401 DOI: 10.1002/cplu.202100041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/12/2021] [Indexed: 12/20/2022]
Abstract
We report a paper-based chemosensor array device (PCSAD) for the quantitative detection of oxyanions including the herbicide glyphosate (GlyP) in aqueous media. The mechanism of the oxyanion detection relies on a coordination-binding-based sensor array. In this study, the competitive coordination binding among Zn2+ , four catechol dyes, and seven oxyanions caused noticeable colour changes. The colour changes were employed for qualitative and quantitative analyses using an in-house automated image-processing algorithm with pattern recognition for digital images. A linear discrimination analysis discerned similarly structured oxyanions with 100 % accuracy. The regression analysis allowed the accurate quantification of GlyP in the herbicide products with a limit of detection of 16 mg/L, which is lower than the health advisory value for children (20 mg/L) stipulated by the environmental protection agency (EPA). PCSAD is a powerful sensor device for the on-site quantification of aqueous anions for environmental assessment.
Collapse
Affiliation(s)
- Zhoujie Zhang
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, 153-8505, Meguro-ku, Tokyo, Japan
| | - Vahid Hamedpour
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, 153-8505, Meguro-ku, Tokyo, Japan
| | - Xiaojun Lyu
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, 153-8505, Meguro-ku, Tokyo, Japan
| | - Yui Sasaki
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, 153-8505, Meguro-ku, Tokyo, Japan
| | - Tsuyoshi Minami
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, 153-8505, Meguro-ku, Tokyo, Japan
| |
Collapse
|
15
|
|