1
|
Bajpai S, Behera RN. Computational investigation of the perylene-TCNQ complex: effects of chalcogen and fluorine substitutions. J Mol Model 2025; 31:59. [PMID: 39841280 DOI: 10.1007/s00894-025-06283-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 01/08/2025] [Indexed: 01/23/2025]
Abstract
CONTEXT Donor-acceptor (D-A) complexes, formed between two or more molecules held together by intermolecular forces, show interesting tunable properties and found applications in diverse fields, including semiconductors, catalysis, and sensors. In this study, we investigated the D-A complexes formed between perylene and 7,7,8,8-tetracyanoquinodimethane (TCNQ) and their chalcogen (S, Se) and fluorine derivatives. It was observed that interaction energies due to complex formation increase while the HOMO-LUMO gaps decrease with chalcogen substitutions. A redshift in the electronic absorption spectra of the complexes was observed with chalcogen substitutions. The substitution of fluorine further enhanced these changes without altering the trend. These changes were found to be more for substitution with selenium compared to that of sulfur. METHODS The ωB97X-D/6-311+G(2df,p) level of theory was used to optimize the individual geometries, complexes, and for the frequency calculation. Atoms-in-molecule and reduced density gradient analyses were employed for the interaction study. Time-dependent density functional theory with the same level was used to analyze the electronic excitation for complexes.
Collapse
Affiliation(s)
- Shubham Bajpai
- Department of Chemistry, Birla Institute of Technology and Science, Pilani - K. K. Birla Goa Campus, Zuarinagar, 403726, Goa, India
| | - Raghu Nath Behera
- Department of Chemistry, Birla Institute of Technology and Science, Pilani - K. K. Birla Goa Campus, Zuarinagar, 403726, Goa, India.
| |
Collapse
|
2
|
Wang C, Zhong W, Sun X, Guo J, Chen Y, Zhao Y, Han J, Zhao Y. NIR-Activable Charge Transfer Agents for Synergistic Photoimmunotherapy. Angew Chem Int Ed Engl 2025; 64:e202416828. [PMID: 39319629 DOI: 10.1002/anie.202416828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 09/26/2024]
Abstract
The combination of photothermal therapy (PTT) and photodynamic therapy (PDT) has become an attractive tumor treatment modality, yet the facile design of photoimmunotheranostic agents with efficient near infrared (NIR) light-absorbing and immune-activating capabilities remains a tremendous challenge. Herein, we developed a NIR-activable organic charge transfer complex (CTC), with perylene (PER) as the electron donor and 4,5,9,10-tetrabromoisochromeno [6,5,4-def]isochromene-1,3,6,8-tetraone (Br4NDI) as the electron acceptor. Through further supramolecular assembly, the PER-Br4NDI nanoparticle (PBND NP) for spatiotemporally controlled photoimmunotherapy was constructed. The PBND NP exhibits superb NIR absorption, robust intermolecular charge transfer, and enhanced intersystem crossing. Upon NIR photoirradiation, the PBND NP effectively exerts photothermal and photodynamic effects with a remarkable photothermal conversion efficiency of 63.5 % and a high reactive oxygen species generation capability, which not only directly ablates primary tumors, but also dramatically suppresses distant tumor growth via promoted immunogenic cell death. Moreover, programmed cell death protein 1 antibody acts synergistically to block immune evasion and ultimately enhances cancer treatment efficacy. This work therefore sheds light on the design of organic CTCs for synergistic photoimmunotherapy.
Collapse
Affiliation(s)
- Chu Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Wenbin Zhong
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Xiaohuan Sun
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Jingjing Guo
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Yun Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Yue Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Jie Han
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| |
Collapse
|
3
|
Liu SS, Wei X, Zheng Y, Liu S, Xu DH, Li L, Cui G, Liu XY. Conformational and Solvent Effects on the Photoinduced Electron Transfer Dynamics of a Zinc Phthalocyanine-Benzoperylenetriimide Conjugate: A Nonadiabatic Dynamics Simulation. Chemphyschem 2025; 26:e202400631. [PMID: 39385521 DOI: 10.1002/cphc.202400631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/18/2024] [Accepted: 10/05/2024] [Indexed: 10/12/2024]
Abstract
Herein, we employed a combination of static electronic structure calculations and nonadiabatic dynamics simulations at linear-response time dependent density functional theory (LR-TDDFT) level with the optimally tuned range-separated hybrid (OT-RSH) functional to explore the ultrafast photoinduced dynamics of a zinc phthalocyanine-benzoperylenetriimide (ZnPc-BPTI) conjugate. Due to the flexibility of the linker, we identified two major conformations: the stacked conformation (ZnPc-BPTI-1) and the extended conformation (ZnPc-BPTI-2). Since the charge transfer states are much lower than the lowest local excitation in ZnPc-BPTI-1, which is contrary to ZnPc-BPTI-2, the ultrafast electron transfer (~3.6 ps) is only observed in the nonadiabatic simulations of ZnPc-BPTI-1 upon local excitation around the absorption maximum of ZnPc. However, when considering the solvent effects in benzonitrile: the lowest S1 states are both charge transfer states from ZnPc to BPTI for different conformers. Subsequent nonadiabatic dynamics simulations indicate that both conformers experience ultrafast electron transfer in benzonitrile with two time constants of 90 [100] fs and 1.40 [1.43] ps. Our present work not only agrees well with previous experimental study, but also points out the important role of conformational changes and solvent effects in regulating the photodynamics of organic donor-acceptor conjugates.
Collapse
Affiliation(s)
- Sha-Sha Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, 610068, China E-mail: xiangyang⋅
| | - Xin Wei
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, 610068, China E-mail: xiangyang⋅
| | - Yan Zheng
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, 610068, China E-mail: xiangyang⋅
| | - Shuai Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, 610068, China E-mail: xiangyang⋅
| | - Dong-Hui Xu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, 610068, China E-mail: xiangyang⋅
| | - Laicai Li
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, 610068, China E-mail: xiangyang⋅
| | - Ganglong Cui
- College of Chemistry, Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, Beijing Normal University, Beijing, 100875, China
| | - Xiang-Yang Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, 610068, China E-mail: xiangyang⋅
| |
Collapse
|
4
|
Wang T, Zhang Z, Hao A, Xing P. Engineering perfluoroarenes for enhanced molecular barrier effect and chirality transfer in solutions. Chem Sci 2025:d4sc07859d. [PMID: 39845871 PMCID: PMC11750069 DOI: 10.1039/d4sc07859d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/10/2025] [Indexed: 01/24/2025] Open
Abstract
Noncovalent forces have a significant impact on photophysical properties, and the flexible employment of weak forces facilitates the design of novel luminescent materials with a variety of applications. The arene-perfluoroarene (AP) force, as one type of π-hole/π interaction, shows unique directionality, involving an electron-deficient π-hole interacting with a π-electron-rich region, facilitating precise orientation and stabilization in supramolecular structures. Here we present an amination engineering protocol to build a perfluoroarene library based on an octafluoronaphthalene skeleton with various steric and electronic properties. In diluted solution-based assemblies, the perfluoroarenes perform as efficient molecular barriers to perylene building units, lighting up the luminescence. Enhanced steric effects, hydrophobicity and appended aromatic pendants are pivotal structural factors to boost the molecular barrier effect. Highly affinitive AP coassemblies transfer chirality from perfluoroarenes to achiral perylene moieties, inducing the appearance of chiral microstructures with tailored circularly polarized luminescence. Application as luminescent ink for enhanced water-resistance in displays and anti-counterfeiting is successfully realized. This work greatly extends the potential of molecular engineering in noncovalently bonded luminescent materials, and clearly reveals structure-property correlations.
Collapse
Affiliation(s)
- Tianhao Wang
- School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 PR China
| | - Zeyuan Zhang
- School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 PR China
| | - Aiyou Hao
- School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 PR China
| | - Pengyao Xing
- School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 PR China
| |
Collapse
|
5
|
Attwood M, Li Y, Nevjestic I, Diggle P, Collauto A, Betala M, White AJP, Oxborrow M. Probing the Design Rules for Optimizing Electron Spin Relaxation in Densely Packed Triplet Media for Quantum Applications. ACS MATERIALS LETTERS 2025; 7:286-294. [PMID: 39790740 PMCID: PMC11707738 DOI: 10.1021/acsmaterialslett.4c01465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/15/2024] [Accepted: 12/16/2024] [Indexed: 01/12/2025]
Abstract
Quantum technologies using electron spins have the advantage of employing chemical qubit media with tunable properties. The principal objective of material engineers is to enhance photoexcited spin yields and quantum spin relaxation. In this study, we demonstrate a facile synthetic approach to control spin properties in charge-transfer cocrystals consisting of 1,2,4,5-tetracyanobenzene (TCNB) and acetylated anthracene. We find that the extent and position of acetylation control the degree of charge-transfer and the optical band gap by modifying crystal packing and electronic structure. We further reveal that while the spin polarization of the triplet state is slightly reduced compared to prototypical Anthracene:TCNB, the phase memory (T m) and, for 9-acetylanthracene:TCNB spin-lattice relaxation (T 1) time, could be enhanced up to 2.4 times. Our findings are discussed in the context of quantum microwave amplifiers, known as masers, and show that acetylation could be a powerful tool for improving organic materials for quantum sensing applications.
Collapse
Affiliation(s)
- Max Attwood
- Department
of Materials and London Centre for Nanotechnology, Imperial College London, South Kensington Campus, Exhibition Road, SW7 2AZ London, United Kingdom
| | - Yingxu Li
- Department
of Materials and London Centre for Nanotechnology, Imperial College London, South Kensington Campus, Exhibition Road, SW7 2AZ London, United Kingdom
| | - Irena Nevjestic
- Department
of Materials and London Centre for Nanotechnology, Imperial College London, South Kensington Campus, Exhibition Road, SW7 2AZ London, United Kingdom
| | - Phil Diggle
- Department
of Materials and London Centre for Nanotechnology, Imperial College London, South Kensington Campus, Exhibition Road, SW7 2AZ London, United Kingdom
| | - Alberto Collauto
- Department
of Chemistry and Centre for Pulse EPR spectroscopy, Imperial College
London, Molecular Sciences Research Hub, W12 0BZ London, United Kingdom
| | - Muskaan Betala
- Department
of Materials and London Centre for Nanotechnology, Imperial College London, South Kensington Campus, Exhibition Road, SW7 2AZ London, United Kingdom
| | - Andrew J. P. White
- Department
of Chemistry and Centre for Pulse EPR spectroscopy, Imperial College
London, Molecular Sciences Research Hub, W12 0BZ London, United Kingdom
| | - Mark Oxborrow
- Department
of Materials and London Centre for Nanotechnology, Imperial College London, South Kensington Campus, Exhibition Road, SW7 2AZ London, United Kingdom
| |
Collapse
|
6
|
Arsenyeva KV, Klimashevskaya AV, Maleeva AV, Arsenyev MV, Chegerev MG, Starikova AA, Yakushev IA, Cherkasov AV, Piskunov AV. Bridge-Dependent Donor-Metal-Acceptor-Metal-Donor (D-M-A-M-D) Systems: From Charge Transfer to Electron Transfer in Dioxolene-Ge-Diimine Complexes. Chempluschem 2025; 90:e202400504. [PMID: 39269199 DOI: 10.1002/cplu.202400504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/15/2024]
Abstract
Synthesis and structural characterization of a family of germanium-dioxolene complexes with ditopic N-donor ligands (L1-L5) (L1=1,2-bis(pyridin-2-ylmethylene)hydrazine L2=1,6-bis-(pyridin-2-yl)-2,5-diaza-1,5-hexadiene, L3=N,N-bis(pyridin-2-ylmethylene)-1,4-benzenediamine, L4=N,N-bis(pyridin-2-ylmethylene)-(biphenyl)-4,4-diamine, L5=2,2'-azopyridine) is reported. The reaction of germanium bis-catecholate with bridging ligands L1 - L4, differing by the nature of the linker between pyridine sites gives rise to dinuclear digermanium complexes (36Cat2Ge)2L1-4 (36Cat=dianion of 3,6-di-tert-butylcatechol) 1-4 of DMAMD type (donor-metal-acceptor-metal-donor) with a charge transfer in the UV-Vis region. In opposite, the interaction of the 36Cat2Ge with 2,2'-azopyridine (L5) results in the two-electron transfer from the donor 36Cat2- ligands to the azopyridine bridge forming stable open-shell complex 5 [(36SQ)(36CatGe)]2(L5)2- (36SQ=radical-anionic semiquinonate ligand). Molecular structures of compounds 3 and 5 were determined by single crystal X-ray diffraction analysis. Electronic structures of complexes 1-5 were studied by means of DFT calculations.
Collapse
Affiliation(s)
- Kseniya V Arsenyeva
- Institute of Organometallic Chemistry of, Russian Academy of Sciences, Tropinina str, 49, 603950, Nizhny Novgorod, Russian Federation
| | - Anastasiya V Klimashevskaya
- Institute of Organometallic Chemistry of, Russian Academy of Sciences, Tropinina str, 49, 603950, Nizhny Novgorod, Russian Federation
| | - Arina V Maleeva
- Institute of Organometallic Chemistry of, Russian Academy of Sciences, Tropinina str, 49, 603950, Nizhny Novgorod, Russian Federation
| | - Maxim V Arsenyev
- Institute of Organometallic Chemistry of, Russian Academy of Sciences, Tropinina str, 49, 603950, Nizhny Novgorod, Russian Federation
| | - Maxim G Chegerev
- Institute of Physical and Organic Chemistry at, Southern Federal University, Stachka Avenue 194/2, 344090, Rostov-on-Don, Russian Federation
| | - Alyona A Starikova
- Institute of Physical and Organic Chemistry at, Southern Federal University, Stachka Avenue 194/2, 344090, Rostov-on-Don, Russian Federation
| | - Ilya A Yakushev
- Institute of General and Inorganic Chemistry of Russian Academy of Sciences Institution, Leninsky pr., 31, 119991, Moscow, Russian Federation
| | - Anton V Cherkasov
- Institute of Organometallic Chemistry of, Russian Academy of Sciences, Tropinina str, 49, 603950, Nizhny Novgorod, Russian Federation
| | - Alexandr V Piskunov
- Institute of Organometallic Chemistry of, Russian Academy of Sciences, Tropinina str, 49, 603950, Nizhny Novgorod, Russian Federation
| |
Collapse
|
7
|
Lin J, Kilani M, Baharfar M, Wang R, Mao G. Understanding the nanoscale phenomena of nucleation and crystal growth in electrodeposition. NANOSCALE 2024; 16:19564-19588. [PMID: 39380552 DOI: 10.1039/d4nr02389g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Electrodeposition is used at the industrial scale to make coatings, membranes, and composites. With better understanding of the nanoscale phenomena associated with the early stage of the process, electrodeposition has potential to be adopted by manufacturers of energy storage devices, advanced electrode materials, fuel cells, carbon dioxide capturing technologies, and advanced sensing electronics. The ability to conduct precise electrochemical measurements using cyclic voltammetry, chronoamperometry, and chronopotentiometry in addition to control of precursor composition and concentration makes electrocrystallization an attractive method to investigate nucleation and early-stage crystal growth. In this article, we review recent findings of nucleation and crystal growth behaviors at the nanoscale, paying close attention to those that deviate from the classical theories in various electrodeposition systems. The review affirms electrodeposition as a valuable method both for gaining new insights into nucleation and crystallization on surfaces and as a low-cost scalable technology for the manufacturing of advanced materials and devices.
Collapse
Affiliation(s)
- Jiancheng Lin
- School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales, 2052, Australia.
| | - Mohamed Kilani
- School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales, 2052, Australia.
| | - Mahroo Baharfar
- School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales, 2052, Australia.
| | - Ren Wang
- School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales, 2052, Australia.
| | - Guangzhao Mao
- School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales, 2052, Australia.
- School of Engineering, Institute for Materials and Processes, The University of Edinburgh, Robert Stevenson Road, Edinburgh, EH9 3FB, UK
| |
Collapse
|
8
|
Baharfar M, Hillier AC, Mao G. Charge-Transfer Complexes: Fundamentals and Advances in Catalysis, Sensing, and Optoelectronic Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406083. [PMID: 39046077 DOI: 10.1002/adma.202406083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/26/2024] [Indexed: 07/25/2024]
Abstract
Supramolecular assemblies, formed through electronic charge transfer between two or more entities, represent a rich class of compounds dubbed as charge-transfer complexes (CTCs). Their distinctive formation pathway, rooted in charge-transfer processes at the interface of CTC-forming components, results in the delocalization of electronic charge along molecular stacks, rendering CTCs intrinsic molecular conductors. Since the discovery of CTCs, intensive research has explored their unique properties including magnetism, conductivity, and superconductivity. Their more recently recognized semiconducting functionality has inspired recent developments in applications requiring organic semiconductors. In this context, CTCs offer a tuneable energy gap, unique charge-transport properties, tailorable physicochemical interactions, photoresponsiveness, and the potential for scalable manufacturing. Here, an updated viewpoint on CTCs is provided, presenting them as emerging organic semiconductors. To this end, their electronic and chemical properties alongside their synthesis methods are reviewed. The unique properties of CTCs that benefit various related applications in the realms of organic optoelectronics, catalysts, and gas sensors are discussed. Insights for future developments and existing limitations are described.
Collapse
Affiliation(s)
- Mahroo Baharfar
- School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales, 2052, Australia
| | - Andrew C Hillier
- Division of Materials Sciences and Engineering, Ames Laboratory, U.S. DOE and Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Guangzhao Mao
- School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales, 2052, Australia
| |
Collapse
|
9
|
Gilioli S, Giovanardi R, Ferrari C, Montecchi M, Gemelli A, Severini A, Roncaglia F, Carella A, Rossella F, Vanossi D, Marchetti A, Carmieli R, Pasquali L, Fontanesi C. Charge-Transfer Complexes: Halogen-Doped Anthracene as a Case of Study. Chemistry 2024; 30:e202400519. [PMID: 38651246 DOI: 10.1002/chem.202400519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/06/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
Charge transfer (CT) crystals exhibit unique electronic and magnetic properties with interesting applications. We present a rational and easy guide which allows to foresee the effective charge transfer co-crystal production and that is based on the comparison of the frontier molecular orbital (MO) energies of a donor and acceptor couple. For the sake of comparison, theoretical calculations have been carried out by using the cheap and fast PM6 semiempirical Hamiltonian and pure HF/cc-pVTZ level of the theory. The results are then compared with experimental results obtained both by chemical (bromine and iodine were used as the acceptor) and electrochemical doping (exploiting an original experimental set-up by this laboratory: the electrochemical transistor). Infra-red vibrational experimental results and theoretically calculated spectra are compared to assess both the effective donor-acceptor (D/A) charge-transfer and transport mechanism (giant IRAV polaron signature). XPS spectra have been collected (carbon (1 s) and iodine (3d5/2)) signals, yielding further evidence of the effective formation of the CT anthracene:iodine complex.
Collapse
Affiliation(s)
- Simone Gilioli
- Department of Engineering "Enzo Ferrari", DIEF, University of Modena and Reggio Emilia, via Vivarelli 10, 41125, Modena, Italy
| | - Roberto Giovanardi
- Department of Engineering "Enzo Ferrari", DIEF, University of Modena and Reggio Emilia, via Vivarelli 10, 41125, Modena, Italy
| | - Camilla Ferrari
- Department of Engineering "Enzo Ferrari", DIEF, University of Modena and Reggio Emilia, via Vivarelli 10, 41125, Modena, Italy
| | - Monica Montecchi
- Department of Engineering "Enzo Ferrari", DIEF, University of Modena and Reggio Emilia, via Vivarelli 10, 41125, Modena, Italy
| | - Andrea Gemelli
- Department of Chemical and Geological Science, DSCG, University of Modena and Reggio Emilia, via Campi 183, 41125, Modena, Italy
| | - Andrea Severini
- Department of Chemical and Geological Science, DSCG, University of Modena and Reggio Emilia, via Campi 183, 41125, Modena, Italy
| | - Fabrizio Roncaglia
- Department of Chemical and Geological Science, DSCG, University of Modena and Reggio Emilia, via Campi 183, 41125, Modena, Italy
| | - Alberta Carella
- Department of Physics, FIM, University of Modena and Reggio Emilia, via Campi 213, 41125, Modena, ITALY
| | - Francesco Rossella
- Department of Physics, FIM, University of Modena and Reggio Emilia, via Campi 213, 41125, Modena, ITALY
| | - Davide Vanossi
- Department of Chemical and Geological Science, DSCG, University of Modena and Reggio Emilia, via Campi 183, 41125, Modena, Italy
| | - Andrea Marchetti
- Department of Chemical and Geological Science, DSCG, University of Modena and Reggio Emilia, via Campi 183, 41125, Modena, Italy
| | - Raanan Carmieli
- Department of Chemical Research Support, Weizmann Institute of Science, 234 Herzl street, 761001, Rehovot, Israel
| | - Luca Pasquali
- Department of Engineering "Enzo Ferrari", DIEF, University of Modena and Reggio Emilia, via Vivarelli 10, 41125, Modena, Italy
- CNR -, Istituto Officina dei Materiali (IOM), Strada Statale 14, km. 163.5 in AREA Science Park, Basovizza, 34149, Trieste, Italy
- Department of Physics, University of, Johannesburg, P.O. Box 524, Auckland Park, 2006, South Africa
| | - Claudio Fontanesi
- Department of Engineering "Enzo Ferrari", DIEF, University of Modena and Reggio Emilia, via Vivarelli 10, 41125, Modena, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Via G. Giusti 9, 50121, Firenze, ITALY
| |
Collapse
|
10
|
Mathur C, Gupta R, Bansal RK. Organic Donor-Acceptor Complexes As Potential Semiconducting Materials. Chemistry 2024; 30:e202304139. [PMID: 38265160 DOI: 10.1002/chem.202304139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 01/25/2024]
Abstract
In this review article, the synthesis, characterization and physico-chemical properties of the organic donor-acceptor complexes are highlighted and a special emphasis has been placed on developing them as semiconducting materials. The electron-rich molecules, i. e., donors have been broadly grouped in three categories, namely polycyclic aromatic hydrocarbons, nitrogen heterocycles and sulphur containing aromatic donors. The reactions of these classes of the donors with the acceptors, namely tetracyanoquinodimethane (TCNQ), tetracyanoethylene (TCNE), tetracyanobenzene (TCNB), benzoquinone, pyromellitic dianhydride and pyromellitic diimides, fullerenes, phenazine, benzothiadiazole, naphthalimide, DMAD, maleic anhydride, viologens and naphthalene diimide are described. The potential applications of the resulting DA complexes for physico-electronic purposes are also included. The theoretical investigation of many of these products with a view to rationalise their observed physico-chemical properties is also discussed.
Collapse
Affiliation(s)
- Chandani Mathur
- Department of Chemistry, IIS (deemed to be University), Jaipur, Rajasthan, 302020
| | - Raakhi Gupta
- Department of Chemistry, IIS (deemed to be University), Jaipur, Rajasthan, 302020
| | - Raj K Bansal
- Department of Chemistry, IIS (deemed to be University), Jaipur, Rajasthan, 302020
| |
Collapse
|
11
|
Barman S, Pal A, Mukherjee A, Paul S, Datta A, Ghosh S. Supramolecular Organic Ferroelectric Materials from Donor-Acceptor Systems. Chemistry 2024; 30:e202303120. [PMID: 37941296 DOI: 10.1002/chem.202303120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/04/2023] [Accepted: 11/06/2023] [Indexed: 11/10/2023]
Abstract
Organic ferroelectric (FE) materials, though known for more than a century, are yet to reach close to the benchmark of inorganic or hybrid materials in terms of the magnitude of polarization. Amongst the different classes of organic systems, donor (D)-acceptor (A) charge-transfer (CT) complexes are recognized as promising for ferroelectricity owing to their neutral-to-ionic phase transition at low temperature. This review presents an overview of different supramolecular D-A systems that have been explored for FE phase transitions. The discussion begins with a general introduction of ferroelectricity and its different associated parameters. Then it moves on to show early examples of CT cocrystals that have shown FE properties at sub-ambient temperature. Subsequently, recent developments in the field of room temperature (RT) ferroelectricity, exhibited by H-bond-stabilized lock-arm supramolecular-ordering (LASO) in D-A co-crystals or other FE CT-crystals devoid of neutral-ionic phase transition are discussed. Then the discussion moves on to emerging reports on other D-A soft materials such as gel and foldable polymers; finally it shows very recent developments in ferroelectricity in supramolecular assemblies of single-component dipolar or ambipolar π-systems, exhibiting intra-molecular charge transfer. The effects of structural nuances such as H-bonding, balanced charge transfer and chirality on the observed ferroelectricity is described with the available examples. Finally, piezoelectricity in recently reported ambipolar ADA-type systems are discussed to highlight the future potential of these soft materials in micropower energy harvesting.
Collapse
Affiliation(s)
- Shubhankar Barman
- School of Applied and Interdisciplinary Sciences, Indian Association for Cultivation of Science, 2 A and 2B Raja S. C. Mullick Road, 700032, Kolkata, India
| | - Aritri Pal
- School of Applied and Interdisciplinary Sciences, Indian Association for Cultivation of Science, 2 A and 2B Raja S. C. Mullick Road, 700032, Kolkata, India
| | - Anurag Mukherjee
- School of Applied and Interdisciplinary Sciences, Indian Association for Cultivation of Science, 2 A and 2B Raja S. C. Mullick Road, 700032, Kolkata, India
| | - Swadesh Paul
- School of Applied and Interdisciplinary Sciences, Indian Association for Cultivation of Science, 2 A and 2B Raja S. C. Mullick Road, 700032, Kolkata, India
| | - Anuja Datta
- School of Applied and Interdisciplinary Sciences, Indian Association for Cultivation of Science, 2 A and 2B Raja S. C. Mullick Road, 700032, Kolkata, India
- Technical Research Center, Indian Association for Cultivation of Science, 2 A and 2B Raja S. C. Mullick Road, 700032, Kolkata, India
| | - Suhrit Ghosh
- School of Applied and Interdisciplinary Sciences, Indian Association for Cultivation of Science, 2 A and 2B Raja S. C. Mullick Road, 700032, Kolkata, India
- Technical Research Center, Indian Association for Cultivation of Science, 2 A and 2B Raja S. C. Mullick Road, 700032, Kolkata, India
| |
Collapse
|
12
|
Huang Y, Ning L, Zhang X, Zhou Q, Gong Q, Zhang Q. Stimuli-fluorochromic smart organic materials. Chem Soc Rev 2024; 53:1090-1166. [PMID: 38193263 DOI: 10.1039/d2cs00976e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Smart materials based on stimuli-fluorochromic π-conjugated solids (SFCSs) have aroused significant interest due to their versatile and exciting properties, leading to advanced applications. In this review, we highlight the recent developments in SFCS-based smart materials, expanding beyond organometallic compounds and light-responsive organic luminescent materials, with a discussion on the design strategies, exciting properties and stimuli-fluorochromic mechanisms along with their potential applications in the exciting fields of encryption, sensors, data storage, display, green printing, etc. The review comprehensively covers single-component and multi-component SFCSs as well as their stimuli-fluorochromic behaviors under external stimuli. We also provide insights into current achievements, limitations, and major challenges as well as future opportunities, aiming to inspire further investigation in this field in the near future. We expect this review to inspire more innovative research on SFCSs and their advanced applications so as to promote further development of smart materials and devices.
Collapse
Affiliation(s)
- Yinjuan Huang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Lijian Ning
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Xiaomin Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Qian Zhou
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Qiuyu Gong
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Qichun Zhang
- Department Materials Science and Engineering, Department of Chemistry & Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China.
| |
Collapse
|
13
|
Kinoshita Y, Oka K, Nakajima H, Tohnai N. Control of Relative Positions of Electron-Donor and Electron-Acceptor Molecules in Charge-Transfer Complexes for Luminescent Property Modulation. Chemistry 2024; 30:e202302965. [PMID: 37874268 DOI: 10.1002/chem.202302965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/25/2023]
Abstract
Charge-transfer complexes can exhibit various physical properties that depend on the relative positions of electron-donor and electron-acceptor molecules. Several studies have investigated the relationship between the relative positions of electron-donor and electron-acceptor molecules and their luminescence properties. However, elucidating the correlation between the relative positions and detailed luminescence processes without changing the molecular structures has not been explored. Herein, we report control of the relative position based on charge-assisted hydrogen bonds between sulfo and amino groups and on alkylamines' steric factors, and report concomitant modulation of the luminescent properties. Six charge-transfer complexes were prepared from anthracene-2,6-disulfonic acid and 1,2,4,5-tetracyanobenzene as electron-donor and electron-acceptor molecules, and various alkylamines. Different alkylamines' steric factors drastically and precisely changed the relative positions of the electron-donor and electron-acceptor molecules without changing their molecular structures. Consequently, the six crystals exhibited maximum emission wavelengths from 543 to 624 nm and different luminescence processes.
Collapse
Affiliation(s)
- Yo Kinoshita
- Department of Applied Chemistry Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kouki Oka
- Department of Applied Chemistry Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Center for Future Innovation (CFi) Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hiromi Nakajima
- Department of Applied Chemistry Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Norimitsu Tohnai
- Department of Applied Chemistry Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
14
|
Ghasemabadi PG, Tabasi ZA, Salari P, Zhao Y, Bodwell GJ. Long-range Through-space Charge Transfer in a pH-responsive Mixed Cyclophane of Pyridine and Teropyrene. Chemistry 2023; 29:e202302404. [PMID: 37682562 DOI: 10.1002/chem.202302404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/08/2023] [Indexed: 09/09/2023]
Abstract
A large, strained (SE=44.2 kcal/mol) and conformationally flexible mixed cyclophane of pyridine and teropyrene was synthesized using two intramolecular Wurtz coupling reactions and an unprecedented Scholl reaction between the unreactive 2 positions of the pyrene systems in a triply bridged pyrenophane. Protonation of the pyridine unit results in a greatly enhanced preference for nesting in the cavity of the highly bent teropyrene system (θcalc =162.6°) and emergence of a charge transfer absorption band (λmax =592 nm) due to a long range (5.0-5.5 Å), through-space intramolecular transition between the teropyrene and pyridinium units, which does not exist in the neutral cyclophane.
Collapse
Affiliation(s)
- Parisa Ghods Ghasemabadi
- Chemistry Department, Memorial University of Newfoundland, 45 Arctic Avenue, St. John's, NL A1C 5S7, Canada
| | - Zahra A Tabasi
- Chemistry Department, Memorial University of Newfoundland, 45 Arctic Avenue, St. John's, NL A1C 5S7, Canada
| | - Parinaz Salari
- Chemistry Department, Memorial University of Newfoundland, 45 Arctic Avenue, St. John's, NL A1C 5S7, Canada
| | - Yuming Zhao
- Chemistry Department, Memorial University of Newfoundland, 45 Arctic Avenue, St. John's, NL A1C 5S7, Canada
| | - Graham J Bodwell
- Chemistry Department, Memorial University of Newfoundland, 45 Arctic Avenue, St. John's, NL A1C 5S7, Canada
| |
Collapse
|
15
|
Liu XY, Chen WK, Fang WH, Cui G. Nonadiabatic Dynamics Simulations for Photoinduced Processes in Molecules and Semiconductors: Methodologies and Applications. J Chem Theory Comput 2023. [PMID: 37984502 DOI: 10.1021/acs.jctc.3c00960] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Nonadiabatic dynamics (NAMD) simulations have become powerful tools for elucidating complicated photoinduced processes in various systems from molecules to semiconductor materials. In this review, we present an overview of our recent research on photophysics of molecular systems and periodic semiconductor materials with the aid of ab initio NAMD simulation methods implemented in the generalized trajectory surface-hopping (GTSH) package. Both theoretical backgrounds and applications of the developed NAMD methods are presented in detail. For molecular systems, the linear-response time-dependent density functional theory (LR-TDDFT) method is primarily used to model electronic structures in NAMD simulations owing to its balanced efficiency and accuracy. Moreover, the efficient algorithms for calculating nonadiabatic coupling terms (NACTs) and spin-orbit couplings (SOCs) have been coded into the package to increase the simulation efficiency. In combination with various analysis techniques, we can explore the mechanistic details of the photoinduced dynamics of a range of molecular systems, including charge separation and energy transfer processes in organic donor-acceptor structures, ultrafast intersystem crossing (ISC) processes in transition metal complexes (TMCs), and exciton dynamics in molecular aggregates. For semiconductor materials, we developed the NAMD methods for simulating the photoinduced carrier dynamics within the framework of the Kohn-Sham density functional theory (KS-DFT), in which SOC effects are explicitly accounted for using the two-component, noncollinear DFT method. Using this method, we have investigated the photoinduced carrier dynamics at the interface of a variety of van der Waals (vdW) heterojunctions, such as two-dimensional transition metal dichalcogenides (TMDs), carbon nanotubes (CNTs), and perovskites-related systems. Recently, we extended the LR-TDDFT-based NAMD method for semiconductor materials, allowing us to study the excitonic effects in the photoinduced energy transfer process. These results demonstrate that the NAMD simulations are powerful tools for exploring the photodynamics of molecular systems and semiconductor materials. In future studies, the NAMD simulation methods can be employed to elucidate experimental phenomena and reveal microscopic details as well as rationally design novel photofunctional materials with desired properties.
Collapse
Affiliation(s)
- Xiang-Yang Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, P. R. China
| | - Wen-Kai Chen
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
- Hefei National Laboratory, Hefei 230088, P. R. China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
- Hefei National Laboratory, Hefei 230088, P. R. China
| |
Collapse
|
16
|
Liu S, Liu SS, Tang XM, Liu XY, Yang JJ, Cui G, Li L. Solvent effects on the photoinduced charge separation dynamics of directly linked zinc phthalocyanine-perylenediimide dyads: a nonadiabatic dynamics simulation with an optimally tuned screened range-separated hybrid functional. Phys Chem Chem Phys 2023; 25:28452-28464. [PMID: 37846460 DOI: 10.1039/d3cp03517d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Herein, we have employed a combination of the optimally tuned screened range-separated hybrid (OT-SRSH) functional, the polarizable continuum model (PCM), and nonadiabatic dynamics (NAMD) simulations to investigate the photoinduced dynamics of directly linked donor-acceptor dyads formed using zinc phthalocyanine (ZnPc) and perylenediimide (PDI), in which ZnPc is the donor while PDI is the acceptor. Our simulations aim to analyze the behavior of these dyads upon local excitation of the ZnPc moiety in the gas phase and in benzonitrile. Our findings indicate that the presence of a solvent can significantly influence the excited state dynamics of ZnPc-PDI dyads. Specifically, the polar solvent benzonitrile effectively lowers the vertical excitation energies of the charge transfer (CT) state from ZnPc to PDI. As a result, the energetic order of the locally excited (LE) states of ZnPc and the CT states is reversed compared to the gas phase. Consequently, the photoinduced electron transfer (PET) dynamics from ZnPc to PDI, which is absent in the gas phase, takes place in benzonitrile with a time constant of 10.4 ps. Importantly, our present work not only qualitatively agrees with experimental results but also provides in-depth insights into the underlying mechanisms responsible for the photoinduced dynamics of ZnPc-PDI. Moreover, this study emphasizes the importance of appropriately considering solvent effects in NAMD simulation of organic donor-acceptor systems, taking into account the distinct excited state dynamics observed in the gas phase and benzonitrile. Furthermore, the combination of the OT-SRSH functional, the PCM solvent model, and nonadiabatic dynamics simulations shows promise as a strategy for investigating the complex excited state dynamics of organic donor-acceptor systems in solvents. These findings will be valuable for the future design of novel organic donor-acceptor structures with improved performance.
Collapse
Affiliation(s)
- Shuai Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China.
| | - Sha-Sha Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China.
| | - Xiao-Mei Tang
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China.
| | - Xiang-Yang Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China.
| | - Jia-Jia Yang
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China.
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
- Hefei National Laboratory, Hefei 230088, China
| | - Laicai Li
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China.
| |
Collapse
|
17
|
Liao Q, Li Q, Li Z. The Key Role of Molecular Packing in Luminescence Property: From Adjacent Molecules to Molecular Aggregates. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2306617. [PMID: 37739004 DOI: 10.1002/adma.202306617] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/11/2023] [Indexed: 09/24/2023]
Abstract
The luminescence materials act as the key components in many functional devices, as well as the detection and imaging systems, which can be permeated in each aspect of modern life, and attract more and more attention for the creative technology and applications. In addition to the diverse properties of organic luminogens, the multiple molecular packing at aggregated states frequently offers new and/or exciting performance. However, there still lacks comprehensive analysis of molecular packing in these organic materials, resulting in an increased gap between molecular design and practical applications. In this review, from the basic knowledge of organic compounds as single molecules, to the discernable property of excimer, charge transfer (CT) complex or self-assembly systems by adjacent molecules, and finally to the opto-electronic performance of molecular aggregates, the relevant factors to molecular packing and practical applications are discussed.
Collapse
Affiliation(s)
- Qiuyan Liao
- Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, TaiKang Center for Life and Medical Sciences, Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Qianqian Li
- Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, TaiKang Center for Life and Medical Sciences, Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Zhen Li
- Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, TaiKang Center for Life and Medical Sciences, Department of Chemistry, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
18
|
Wang F, Liao R, Wang F. Pathway Control of π-Conjugated Supramolecular Polymers by Incorporating Donor-Acceptor Functionality. Angew Chem Int Ed Engl 2023; 62:e202305827. [PMID: 37431813 DOI: 10.1002/anie.202305827] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/28/2023] [Accepted: 07/10/2023] [Indexed: 07/12/2023]
Abstract
Controlling the nanoscale orientation of π-conjugated systems remains challenging due to the complexity of multiple energy landscapes involved in the supramolecular assembly process. In this study, we have developed an effective strategy for programming the pathways of π-conjugated supramolecular polymers, by incorporating both electron-rich methoxy- or methanthiol-benzene as donor unit and electron-poor cyano-vinylenes as acceptor units on the monomeric structure. It leads to the formation of parallel-stacked supramolecular polymers as the metastable species through homomeric donor/acceptor packing, which convert to slip-stacked supramolecular polymers as the thermodynamically stable species facilitated by heteromeric donor-acceptor packing. By further investigating the external seed-induced kinetic-to-thermodynamic transformation behaviors, our findings suggest that the donor-acceptor functionality on the seed structure is crucial for accelerating pathway conversion. This is achieved by eliminating the initial lag phase in the supramolecular polymerization process. Overall, this study provides valuable insights into designing molecular structures that control aggregation pathways of π-conjugated nanostructures.
Collapse
Affiliation(s)
- Fan Wang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Rui Liao
- Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Feng Wang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
19
|
Kilani M, Ahmed M, Mayyas M, Wang Y, Kalantar-Zadeh K, Mao G. Toward Precision Deposition of Conductive Charge-Transfer Complex Crystals Using Nanoelectrochemistry. SMALL METHODS 2023; 7:e2201198. [PMID: 36856170 DOI: 10.1002/smtd.202201198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/12/2022] [Indexed: 06/18/2023]
Abstract
The lack of understanding for precise synthesis and assembly of nano-entities remains a major challenge for nanofabrication. Electrocrystallization of a charge-transfer complex (CTC), tetrathiafulvalene bromide (TTF)Br, is studied on micro/nanoelectrodes for precision deposition of functional materials. The study reveals new insights into the entire CTC electrocrystallization process from the initial nanocluster nucleation to the final elongated crystals with hollow ends grown from the working electrode to the neighboring receiving electrode. On microelectrodes, the number of nucleation sites is reduced to one by lowering the applied overpotential or precursor concentration. Certain current-time transients exhibit significant induction periods prior to stable nucleus growth. The induction regime contains small fluctuating current spikes consistent with stochastic formation of precritical nanoclusters with lifetimes of 0.1-30 s and sizes of 20-160 nm. Electrochemical analyses further reveal rate, size distribution, and formation/dissipation dynamics of the nanoclusters. Crystal growth of (TTF)Br is further studied on triangular nanoelectrode patterns with thickness of 5-500 nm, which shows a mass-transfer-controlled process applicable for precision deposition of functional (TTF)Br crystals. This study, for the first time, establishes CTC nanoelectrochemistry as a platform technology for precise deposition of conductive crystal assemblies spanning the source and drain electrode for sensing applications.
Collapse
Affiliation(s)
- Mohamed Kilani
- School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales, 2052, Australia
| | - Mostak Ahmed
- School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales, 2052, Australia
| | - Mohannad Mayyas
- School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales, 2052, Australia
| | - Yifang Wang
- School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales, 2052, Australia
| | - Kourosh Kalantar-Zadeh
- School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales, 2052, Australia
| | - Guangzhao Mao
- School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales, 2052, Australia
| |
Collapse
|
20
|
Chen Y, Zhuo M, Wen X, Chen W, Zhang K, Li M. Organic Photothermal Cocrystals: Rational Design, Controlled Synthesis, and Advanced Application. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206830. [PMID: 36707495 PMCID: PMC10104673 DOI: 10.1002/advs.202206830] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/22/2022] [Indexed: 05/22/2023]
Abstract
Organic photothermal cocrystals, integrating the advantages of intrinsic organic cocrystals and the fascinating photothermal conversion ability, hold attracted considerable interest in both basic science and practical applications, involving photoacoustic imaging, seawater desalination, and photothermal therapy, and so on. However, these organic photothermal cocrystals currently suffer individual cases discovered step by step, as well as the deep and systemic investigation in the corresponding photothermal conversion mechanisms is rarely carried out, suggesting a huge challenge for their further developments. Therefore, it is urgently necessary to investigate and explore the rational design and synthesis of high-performance organic photothermal cocrystals for future applications. This review first and systematically summarizes the organic photothermal cocrystal in terms of molecular classification, the photothermal conversion mechanism, and their corresponding applications. The timely interpretation of the cocrystal photothermal effect will provide broad prospects for the purposeful fabrication of excellent organic photothermal cocrystals toward great efficiency, low cost, and multifunctionality.
Collapse
Affiliation(s)
- Ye‐Tao Chen
- College of Chemistry and Chemical Engineering and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong ProvinceShantou University515063ShantouChina
| | - Ming‐Peng Zhuo
- National Engineering Laboratory for Modern SilkCollege of Textile and Clothing EngineeringSoochow UniversitySuzhou215123China
| | - Xinyi Wen
- College of Chemistry and Chemical Engineering and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong ProvinceShantou University515063ShantouChina
| | - Wenbin Chen
- College of Chemistry and Chemical Engineering and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong ProvinceShantou University515063ShantouChina
| | - Ke‐Qin Zhang
- National Engineering Laboratory for Modern SilkCollege of Textile and Clothing EngineeringSoochow UniversitySuzhou215123China
| | - Ming‐De Li
- College of Chemistry and Chemical Engineering and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong ProvinceShantou University515063ShantouChina
- Chemistry and Chemical Engineering Guangdong LaboratoryShantou UniversityShantou515031China
| |
Collapse
|
21
|
Barrett BJ, Katz HE, Bragg AE. Permittivity Threshold and Thermodynamics of Integer Charge-Transfer Complexation for an Organic Donor-Acceptor Pair. J Phys Chem B 2023; 127:2792-2800. [PMID: 36926897 DOI: 10.1021/acs.jpcb.3c00218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Molecular charge doping involves the formation of donor-acceptor charge-transfer complexes (CTCs) through integer or partial electron transfer; understanding how local chemical environment impacts complexation is important for controlling the properties of organic materials. We present steady-state and temperature-dependent spectroscopic investigations of the p-dopant 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ) complexed with the electron donor and hole transport material N,N'-diphenyl-N,N'-di-p-tolylbenzene-1,4-diamine (MPDA). Equilibrium formation constants (KCT) were determined for donor-acceptor pairs dissolved in a series of solvents covering a range of values of permittivity. A threshold for highly favorable complex formation was observed to occur at ϵ ∼ 8-9, with large (>104) and small (<103) values of KCT obtained in solvents of higher and lower permittivity, respectively, but with chloroform (ϵ = 4.81) exhibiting an anomalously high formation constant. Temperature-dependent formation constants were determined in order to evaluate the thermodynamics of complex formation. In 1,2-dichloroethane (ϵ = 10.36) and chlorobenzene (ϵ = 5.62), complex formation is both enthalpically and entropically favorable, with higher enthalpic and entropic stabilization in the solvent with higher permittivity. Complexation in chloroform is exothermic and entropically disfavored, indicating that specific, inner-shell solvent-solute interactions stabilize the charge-separated complex and result in a net increase in local solution structure. Our results provide insight into how modification to the chemical environment may be utilized to support stable integer charge transfer for molecular doping applications and requiring only modest changes in local permittivity.
Collapse
Affiliation(s)
- Brandon J Barrett
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, United States
| | - Howard E Katz
- Department of Material Science & Engineering, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, United States
| | - Arthur E Bragg
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, United States
| |
Collapse
|
22
|
Ramesh K, Saravanabhavan M, Muhammad S, Edison D, Ho MS, Sekar M, Al-Sehemi AG. Synthesis, physico-chemical characterization and quantum chemical studies of 2, 3-dimethyl quinoxalinium-5-sulphosalicylate crystal. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
23
|
Procainamide Charge Transfer Complexes with Chloranilic Acid and 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone: Experimental and Theoretical Study. Processes (Basel) 2023. [DOI: 10.3390/pr11030711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
The formation of charge transfer (CT) complexes between bioactive molecules and/or organic molecules is an important aspect in order to understand ‘molecule-receptor’ interactions. Here, we have synthesized two new CT complexes, procainamide-chloranilic acid (PA-ChA) and procainamide-2,3-dichloro-5,6-dicyano-1,4-benzoquinone (PA-DDQ), from electron donor procainamide (PA), electron acceptor chloranilic acid (ChA), and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ). The structures of these two CT complexes were elucidated/characterized using FTIR, NMR, and many other spectroscopic methods. A stability study of each complex was conducted for the first time using various spectroscopic parameters (e.g., formation constant, molar extinction coefficient, ionization potential oscillator strength, dipole moment, and standard free energy). The formation of CT complexes in solution was confirmed by spectrophotometric determination. The molecular composition of each complex was determined using the spectrophotometric titration method and gave a 1:1 (donor:acceptor) ratio. In addition, the formation constant was determined using the Benesi–Hildebrand equation. To understand the noncovalent interactions of the complexes, density functional theory (DFT) calculations were performed using the ωB97XD/6-311++G(2d,p) level of theory. The DFT-computed interaction energies (ΔIEs) and the Gibbs free energies (ΔGs) were in the same order as observed experimentally. The DFT-calculated results strongly support our experimental results.
Collapse
|
24
|
Chen J, Yang C, Ma S, Liu Z, Xiang W, Zhang J. Polarization-induced nanohelixes of organic cocrystals from asymmetric components with dopant-induced chirality inversion. Chem Sci 2023; 14:2091-2096. [PMID: 36845927 PMCID: PMC9945330 DOI: 10.1039/d2sc05942h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
Supramolecular chirality is essential for the development of functional materials. In this study, we report the synthesis of twisted nanobelts based on charge-transfer (CT) complexes using self-assembly cocrystallization starting from asymmetric components. An asymmetric donor, DBCz, and a typical acceptor, tetracyanoquinodimethane, were used to construct a chiral crystal architecture. An asymmetric alignment of the donor molecules induced polar ±(102) facets that, accompanied with free-standing growth, resulted in a twisting along the b-axis due to the electrostatic repulsive interactions. Meanwhile, the alternately oriented ±(001) side-facets were responsible for the propensity of the helixes to be right-handed. Addition of a dopant significantly enhanced the twisting probability by reducing the surface tension and adhesion influence, even switching the chirality preference of the helixes. In addition, we could further extend the synthetic route to other CT systems for formation of other chiral micro/nanostructures. Our study offers a novel design approach for chiral organic micro/nanostructures for applications in optically active systems, micro/nano-mechanical systems and biosensing.
Collapse
Affiliation(s)
- Jinqiu Chen
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Canglei Yang
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Shuang Ma
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Zhiqi Liu
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Wenxin Xiang
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Jing Zhang
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications 9 Wenyuan Road Nanjing 210023 China
| |
Collapse
|
25
|
Zhang J, Chen J, Yang B, Ma S, Yin L, Liu Z, Xiang W, Liu H, Zhao J, Sheng P. Energy Level, Crystal Morphology and Fluorescence Emission Tuning in Cocrystals via Molecular-Level Engineering. Chemistry 2023; 29:e202202915. [PMID: 36404599 DOI: 10.1002/chem.202202915] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/08/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022]
Abstract
Organic donor-acceptor complexes as new organic semiconductor class have attracted wide attention, due to their potential applications in functional optoelectronics. Herein, we present two new charge transfer cocrystals of di-cyanodiazafluorene -perylene (DCPE) and di-cyanodiazaflfluorene-pyrene (DCPY) through a rational cocrystal-engineering strategy. Although they are both 1 : 1 mixed stacking cocrystals with similar chemical structures, the DCPE cocrystal possesses a non-centrosymmetric space group and narrower band gap compared to DCPY cocrystal, because of the non-covalent bonding variation. The electrostatic potential accumulated in the lateral facets leads to highly twisted DCPE nanobelts, and the small band gap causes near infrared fluorescence. Meanwhile, the DCPY crystals with centrosymmetric space groups and weaker intermolecular interactions exhibited an untwisted morphology and red emission. This study will be helpful for the design and understanding of functional cocrystal materials that can be used in flexible micro/nano-mechanics, mechanical energy, and optical devices.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Jinqiu Chen
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Bo Yang
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Shuang Ma
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Lina Yin
- College of Chemistry and Materials Science, Jinan University, 601 Huang-Pu Avenue West, Guangzhou, 510632, P. R. China
| | - Zhiqi Liu
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Wenxin Xiang
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Hongguang Liu
- College of Chemistry and Materials Science, Jinan University, 601 Huang-Pu Avenue West, Guangzhou, 510632, P. R. China.,School of Applied Physics and Materials, Wuyi University, Jiangmen, 529020, P. R. China
| | - Jianfen Zhao
- Key Laboratory of Flexible Electronics (KLOFE) &, Institute of Advanced Materials (IAM) @School of Flexible Electronics (SIFE), Jiangsu National Synergetic Innovation Center for, Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, P. R. China
| | - Peng Sheng
- Material Laboratory of State Grid Corporation of China, State Key Laboratory of Advanced Transmission Technology, Global Energy Interconnection Research Institute, Beijing, 102211, P. R. China
| |
Collapse
|
26
|
Zhu Y, Jiang Q, Zhang J, Ma Y. Recent Progress of Organic Semiconductor Materials in Spintronics. Chem Asian J 2023; 18:e202201125. [PMID: 36510771 DOI: 10.1002/asia.202201125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/12/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
Spintronics, a new discipline focusing on the spin-dependent transport process of electrons, has been developing rapidly. Spin valves are the most significant carriers of spintronics utilizing the spin freedom of electrons. It is expected to pierce "Moore's Law" and become the core component in processors of the next generation. Organic semiconductors advance in their adjustable band gap, weak spin-orbit coupling and hyperfine interaction, excellent film-forming property, having enormous promise for spin valves. Here, the principle of spin valves is introduced, and the history and progress in organic spin injection and transport materials are summarized. Then we analyze the influence of spinterface on device performance and introduce reliable methods of constructing organic spin valves. Finally, the challenges for spin valves are discussed, and the future is proposed. We aim to draw the attention of researchers to organic spin valves and promote further research in spintronics through this paper.
Collapse
Affiliation(s)
- Yanuo Zhu
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, 381 Wushan Road, Guangzhou, Guangdong, 510640, P. R. China
| | - Qinglin Jiang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, 381 Wushan Road, Guangzhou, Guangdong, 510640, P. R. China
| | - Jiang Zhang
- Department of Physics, South China University of Technology 381 Wushan Road, Guangzhou, Guangdong, 510640, P. R. China
| | - Yuguang Ma
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, 381 Wushan Road, Guangzhou, Guangdong, 510640, P. R. China
| |
Collapse
|
27
|
Dumur F. The Future of Visible Light Photoinitiators of Polymerization for Photocrosslinking Applications. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
28
|
Das R, Linseis M, Schupp SM, Gogesch FS, Schmidt-Mende L, Winter RF. Organic binary charge-transfer compounds of 2,2' : 6',2'' : 6'',6-trioxotriphenylamine and a pyrene-annulated azaacene as donors. RSC Adv 2023; 13:3652-3660. [PMID: 36756575 PMCID: PMC9890512 DOI: 10.1039/d2ra07322f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/18/2023] [Indexed: 01/31/2023] Open
Abstract
Three binary charge-transfer (CT) compounds resulting from the donor 2,2' : 6',2'' : 6'',6-trioxotriphenylamine (TOTA) and the acceptors F4TCNQ and F4BQ and of a pyrene-annulated azaacene (PAA) with the acceptor F4TCNQ are reported. The identity of these CT compounds are confirmed by single-crystal X-ray diffraction as well as by IR, UV-vis-NIR and EPR spectroscopy. X-ray diffraction analysis reveals a 1 : 1 stoichiometry for TOTA·F4TCNQ, a 2 : 1 donor : acceptor ratio in (TOTA)2·F4BQ, and a rare 4 : 1 stoichiometry in (PAA)4·F4TCNQ, respectively. Metrical parameters of the donor (D) and acceptor (A) constituents as well as IR spectra indicate full CT in TOTA·F4TCNQ, partial CT in (TOTA)2·F4BQ and only a very modest one in (PAA)4·F4TCNQ. Intricate packing motifs are present in the crystal lattice with encaged, π-stacked (F4TCNQ-)2 dimers in TOTA·F4TCNQ or mixed D/A stacks in the other two compounds. Their solid-state UV-vis-NIR spectra feature CT transitions. The CT compounds with F4TCNQ are electrical insulators, while (TOTA)2·F4BQ is weakly conducting.
Collapse
Affiliation(s)
- Rajorshi Das
- Fachbereich Chemie, Universität Konstanz Universitätsstrasse 10, 78457 Konstanz Germany
| | - Michael Linseis
- Fachbereich Chemie, Universität Konstanz Universitätsstrasse 10, 78457 Konstanz Germany
| | - Stefan M Schupp
- Fachbereich Physik, Universität Konstanz Universitätsstrasse 10, 78457 Konstanz Germany
| | - Franciska S Gogesch
- Fachbereich Chemie, Universität Konstanz Universitätsstrasse 10, 78457 Konstanz Germany
| | - Lukas Schmidt-Mende
- Fachbereich Physik, Universität Konstanz Universitätsstrasse 10, 78457 Konstanz Germany
| | - Rainer F Winter
- Fachbereich Chemie, Universität Konstanz Universitätsstrasse 10, 78457 Konstanz Germany
| |
Collapse
|
29
|
Tominaga M, Nanbara S, Hyodo T, Kawahata M, Yamaguchi K. Orientation of carbonyl groups in inclusion crystals formed from ketones with aromatic diimide-based macrocycles. CrystEngComm 2023. [DOI: 10.1039/d2ce01641a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Inclusion crystals were formed from ketones with aromatic diimide-based macrocycles possessing adamantane units, where the oxygen atoms of guests interacted with the electron-deficient π-surfaces of the aromatic diimides through CO⋯π contacts.
Collapse
Affiliation(s)
- Masahide Tominaga
- Faculty of Pharmaceutical Sciences at Kagawa Campus, Tokushima Bunri University, Sanuki, Kagawa 769-2193, Japan
| | - Sakito Nanbara
- Faculty of Pharmaceutical Sciences at Kagawa Campus, Tokushima Bunri University, Sanuki, Kagawa 769-2193, Japan
| | - Tadashi Hyodo
- Faculty of Pharmaceutical Sciences at Kagawa Campus, Tokushima Bunri University, Sanuki, Kagawa 769-2193, Japan
| | | | - Kentaro Yamaguchi
- Faculty of Pharmaceutical Sciences at Kagawa Campus, Tokushima Bunri University, Sanuki, Kagawa 769-2193, Japan
| |
Collapse
|
30
|
Ekim S, Kaya GE, Daştemir M, Yildirim E, Baytekin HT, Baytekin B. Organic Charge Transfer Cocrystals as Additives for Dissipation of Contact Charges on Polymers. ACS APPLIED MATERIALS & INTERFACES 2022; 14:56018-56026. [PMID: 36472348 PMCID: PMC9782351 DOI: 10.1021/acsami.2c13643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/13/2022] [Indexed: 06/17/2023]
Abstract
Common polymers can accumulate surface charges through contact, a phenomenon known since ancient times. This charge accumulation can have detrimental consequences in industry. It causes accidents and yields enormous economic losses. Many empirical methods have been developed to prevent the problems caused by charge accumulation. However, a general chemical approach is still missing in the literature since the charge accumulation and discharging mechanisms have not been completely clarified. The current practice to achieve charge mitigation is to increase materials conductivity by high doping of conductive additives. A recent study showed that using photoexcitation of some organic dyes, charge decay can be started remotely, and the minute amount of additive does not change the material's conductivity. Here, we show the contact charging and charge decay behavior of polydimethylsiloxane doped with a series of organic charge transfer cocrystals (CTC) of TCNQ acceptor and substituted pyrene donors (CTC-PDMS). The results show that the CTC-PDMS are antistatic, and the discharging propensity of the composites follows the calculated charge transfer degree of the complexes. On the other hand, the CTC-PDMS are still insulators, as shown by their high surface resistivities. Kelvin probe force microscopy images of the contact-charged and discharged samples show a quick potential decay in CTC domains upon illumination. Combined with the fast overall decay observed, the antistatic behavior in these insulators can be attributed to an electron transfer between the mechanoions in the polymer and the CTC frontier orbitals. We believe our results will help with the general understanding of the molecular mechanism of contact charging and discharging and help develop insulator antistatics.
Collapse
Affiliation(s)
- Sunay
Dilara Ekim
- UNAM
National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
| | - Görkem Eylül Kaya
- UNAM
National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
| | - Murat Daştemir
- Department
of Chemistry, Middle East Technical University, Ankara 06800, Turkey
| | - Erol Yildirim
- Department
of Chemistry, Middle East Technical University, Ankara 06800, Turkey
- Polymer
Science and Technology Program, Middle East
Technical University, Ankara 06800, Turkey
| | - H. Tarik Baytekin
- Department
of Chemistry, Middle East Technical University, Ankara 06800, Turkey
- Polymer
Science and Technology Program, Middle East
Technical University, Ankara 06800, Turkey
| | - Bilge Baytekin
- UNAM
National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
- Department
of Chemistry, Bilkent University, Ankara 06800, Turkey
| |
Collapse
|
31
|
Hong Y, Geng W, Zhang T, Gong G, Li C, Zheng C, Liu F, Qian J, Chen M, Tang BZ. Facile Access to Far‐Red Fluorescent Probes with Through‐Space Charge‐Transfer Effects for In Vivo Two‐Photon Microscopy of the Mouse Cerebrovascular System. Angew Chem Int Ed Engl 2022; 61:e202209590. [DOI: 10.1002/anie.202209590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Yingjuan Hong
- College of Chemistry and Materials Science Jinan University Guangzhou 510632 China
| | - Weihang Geng
- State Key Laboratory of Modern Optical Instrumentations Centre for Optical and Electromagnetic Research College of Optical Science and Engineering International Research Center for Advanced Photonics Zhejiang University Hangzhou 310058 China
| | - Tian Zhang
- School of Chemistry and Chemical Engineering Shandong University of Technology Zibo 255049 China
| | - Guangshuai Gong
- School of Chemistry and Chemical Engineering Shandong University of Technology Zibo 255049 China
| | - Chongyang Li
- College of Chemistry and Materials Science Jinan University Guangzhou 510632 China
| | - Canze Zheng
- College of Chemistry and Materials Science Jinan University Guangzhou 510632 China
| | - Feng Liu
- College of Chemistry and Materials Science Jinan University Guangzhou 510632 China
| | - Jun Qian
- State Key Laboratory of Modern Optical Instrumentations Centre for Optical and Electromagnetic Research College of Optical Science and Engineering International Research Center for Advanced Photonics Zhejiang University Hangzhou 310058 China
| | - Ming Chen
- College of Chemistry and Materials Science Jinan University Guangzhou 510632 China
| | - Ben Zhong Tang
- School of Science and Engineering Shenzhen Institute of Aggregate Science and Technology The Chinese University of Hong Kong Shenzhen Guangdong 518172 China
| |
Collapse
|
32
|
Hong Y, Geng W, Zhang T, Gong G, Li C, Zheng C, Liu F, Qian J, Chen M, Tang BZ. Facile Access to Far‐Red Fluorescent Probes with Through‐Space Charge Transfer Effect for In Vivo Two‐Photon Microscopy of Mouse Cerebrovascular System. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yingjuan Hong
- Jinan University College of Chemistry and Materials Science CHINA
| | - Weihang Geng
- Zhejiang University College of Optical Science and Engineering CHINA
| | - Tian Zhang
- Shandong University of Technology School of Chemistry and Chemical Engineering CHINA
| | - Guangshuai Gong
- Shandong University of Technology School of Chemistry and Chemical Engineering CHINA
| | - Chongyang Li
- Jinan University College of Chemistry and Materials Science CHINA
| | - Canze Zheng
- Jinan University College of Chemistry and Materials Science CHINA
| | - Feng Liu
- Jinan University College of Chemistry and Materials Science CHINA
| | - Jun Qian
- Zhejiang University College of Optical Science and Engineering CHINA
| | - Ming Chen
- Jinan University College of Chemistry and Materials Science CHINA
| | - Ben Zhong Tang
- The Chinese University of Hong Kong, Shenzhen School of Science and Engineering 2001 Longxiang Boulevard, Longgang District 518172 Shenzhen CHINA
| |
Collapse
|
33
|
Qin Q, Hebert AJ, Cruz RL, Mague JT. Charge Transfer Complexes of New Sulfur- and Selenium-Rich Aromatic Donors. ACS OMEGA 2022; 7:23362-23367. [PMID: 35847256 PMCID: PMC9281308 DOI: 10.1021/acsomega.2c01549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Two new sulfur- and selenium-rich pentacyclic aromatic compounds were prepared by short chemical syntheses. The two donors readily formed charge transfer (CT) complexes upon reaction with antimony pentachloride or tris(4-bromophenyl)ammoniumyl hexachloroantimonate. The X-ray structures of the heterocyclic donors and their CT complexes were determined. The donors flattened considerably upon CT complex formation.
Collapse
Affiliation(s)
- Qian Qin
- Department
of Chemistry and Biochemistry, Loyola University, New Orleans, Louisiana 70118, United States
| | - André J. Hebert
- Department
of Chemistry and Biochemistry, Loyola University, New Orleans, Louisiana 70118, United States
| | - Ricardo L. Cruz
- Department
of Chemistry and Biochemistry, Loyola University, New Orleans, Louisiana 70118, United States
| | - Joel T. Mague
- Department
of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| |
Collapse
|
34
|
Michalsky I, Gensch V, Walla C, Hoffmann M, Rominger F, Oeser T, Tegeder P, Dreuw A, Kivala M. Fully Bridged Triphenylamines Comprising Five- and Seven-Membered Rings. Chemistry 2022; 28:e202200326. [PMID: 35293646 PMCID: PMC9321823 DOI: 10.1002/chem.202200326] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Indexed: 11/07/2022]
Abstract
A family of fully bridged triphenylamines with embedded 5- and 7-membered rings is presented. The compounds are potent electron donors capable to undergo donor/acceptor interactions with strong cyano-based acceptors both in the solid state and solution. These interactions were evaluated by IR and UV/vis spectroscopy as well as X-ray crystallography. The vinylene-bridged compound was oxidized to the corresponding 1,2-diketone which readily underwent acid-catalyzed condensation with selected 1,2-phenylenediamines. The resulting π-extended quinoxaline derivatives represent valuable building blocks for the development of functional chromophores upon appropriate functionalization.
Collapse
Affiliation(s)
- Ina Michalsky
- Organisch-Chemisches InstitutUniversität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
- Centre for Advanced MaterialsUniversität HeidelbergIm Neuenheimer Feld 22569120HeidelbergGermany
| | - Viktoria Gensch
- Department Chemie und PharmazieUniversität Erlangen-NürnbergNikolaus-Fiebiger-Strasse 1091058ErlangenGermany
| | - Christian Walla
- Interdisziplinäres Zentrum für Wissenschaftliches RechnenUniversität HeidelbergIm Neuenheimer Feld 205 A69120HeidelbergGermany
| | - Marvin Hoffmann
- Interdisziplinäres Zentrum für Wissenschaftliches RechnenUniversität HeidelbergIm Neuenheimer Feld 205 A69120HeidelbergGermany
| | - Frank Rominger
- Organisch-Chemisches InstitutUniversität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Thomas Oeser
- Organisch-Chemisches InstitutUniversität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Petra Tegeder
- Physikalisch-Chemisches InstitutUniversität HeidelbergIm Neuenheimer Feld 25369120HeidelbergGermany
| | - Andreas Dreuw
- Interdisziplinäres Zentrum für Wissenschaftliches RechnenUniversität HeidelbergIm Neuenheimer Feld 205 A69120HeidelbergGermany
| | - Milan Kivala
- Organisch-Chemisches InstitutUniversität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
- Centre for Advanced MaterialsUniversität HeidelbergIm Neuenheimer Feld 22569120HeidelbergGermany
| |
Collapse
|
35
|
Tetraruthenium Macrocycles with Laterally Extended Bis(alkenyl)quinoxaline Ligands and Their F4TCNQ•− Salts. INORGANICS 2022. [DOI: 10.3390/inorganics10060082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We report on the tetraruthenium macrocycles Ru4-5 and -6 with a π-conjugated pyrene-appended 5,8-divinylquinoxaline ligand and either isophthalate or thiophenyl-2,5-dicarboxylate linkers and their charge-transfer salts formed by oxidation with two equivalents of F4TCNQ. Both macrocyclic complexes were characterized by NMR spectroscopy, mass spectrometry, cyclic and square-wave voltammetry, and by IR, UV–vis–NIR, and EPR spectroscopy in their various oxidation states.
Collapse
|
36
|
Das R, Linseis M, Schupp SM, Schmidt‐Mende L, Winter RF. Electron-Rich Diruthenium Complexes with π-Extended Alkenyl Ligands and Their F 4 TCNQ Charge-Transfer Salts. Chemistry 2022; 28:e202104403. [PMID: 35235235 PMCID: PMC9310581 DOI: 10.1002/chem.202104403] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Indexed: 11/07/2022]
Abstract
The synthesis of dinuclear ruthenium alkenyl complexes with {Ru(CO)(Pi Pr3 )2 (L)} entities (L=Cl- in complexes Ru2 -3 and Ru2 -7; L=acetylacetonate (acac- ) in complexes Ru2 -4 and Ru2 -8) and with π-conjugated 2,7-divinylphenanthrenediyl (Ru2 -3, Ru2 -4) or 5,8-divinylquinoxalinediyl (Ru2 -7, Ru2 -8) as bridging ligands are reported. The bridging ligands are laterally π-extended by anellating a pyrene (Ru2 -7, Ru2 -8) or a 6,7-benzoquinoxaline (Ru2 -3, Ru2 -4) π-perimeter. This was done with the hope that the open π-faces of the electron-rich complexes will foster association with planar electron acceptors via π-stacking. The dinuclear complexes were subjected to cyclic and square-wave voltammetry and were characterized in all accessible redox states by IR, UV/Vis/NIR and, where applicable, by EPR spectroscopy. These studies signified the one-electron oxidized forms of divinylphenylene-bridged complexes Ru2 -7, Ru2 -8 as intrinsically delocalized mixed-valent species, and those of complexes Ru2 -3 and Ru2 -4 with the longer divinylphenanthrenediyl linker as partially localized on the IR, yet delocalized on the EPR timescale. The more electron-rich acac- congeners formed non-conductive 1 : 1 charge-transfer (CT) salts on treatment with the F4 TCNQ electron acceptor. All spectroscopic techniques confirmed the presence of pairs of complex radical cations and F4 TCNQ.- radical anions in these CT salts, but produced no firm evidence for the relevance of π-stacking to their formation and properties.
Collapse
Affiliation(s)
- Rajorshi Das
- Fachbereich ChemieUniversität KonstanzUniversitätsstrasse 1078457KonstanzGermany
| | - Michael Linseis
- Fachbereich ChemieUniversität KonstanzUniversitätsstrasse 1078457KonstanzGermany
| | - Stefan M. Schupp
- Fachbereich PhysikUniversität KonstanzUniversitätsstrasse 1078457KonstanzGermany
| | - Lukas Schmidt‐Mende
- Fachbereich PhysikUniversität KonstanzUniversitätsstrasse 1078457KonstanzGermany
| | - Rainer F. Winter
- Fachbereich ChemieUniversität KonstanzUniversitätsstrasse 1078457KonstanzGermany
| |
Collapse
|
37
|
Rahman S, Rub MA, Mahbub S, Joy MTR, Rana S, Hoque MA. Spectroscopic and DFT studies of the charge transfer complexation of iodine with aniline and its derivatives in carbon tetrachloride medium. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118667] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
38
|
Chen WK, Cui G, Liu XY. Solvent effects on excited-state relaxation dynamics of paddle-wheel BODIPY-Hexaoxatriphenylene conjugates: Insights from non-adiabatic dynamics simulations. CHINESE J CHEM PHYS 2022. [DOI: 10.1063/1674-0068/cjcp2110214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Understanding the excited state dynamics of donor-acceptor (D-A) complexes is of fundamental importance both experimentally and theoretically. Herein, we have first explored the photoinduced dynamics of a recently synthesized paddle-wheel BODIPY-hexaoxatriphenylene (BODIPY is the abbreviation for BF2-chelated dipyrromethenes) conjugates D-A complexes with the combination of both electronic structure calculations and non-adiabatic dynamics simulations. On the basis of computational results, we concluded that the BODIPY-hexaoxatriphenylene (BH) conjugates will be promoted to the local excited (LE) states of the BODIPY fragments upon excitation, which is followed by the ultrafast exciton transfer from LE state to charge transfer (CT). Instead of the photoinduced electron transfer process proposed in previous experimental work, such a exciton transfer process is accompanied with the photoinduced hole transfer from BODIPY to hexaoxatriphenylene. Additionally, solvent effects are found to play an important role in the photoinduced dynamics. Specifically, the hole transfer dynamics is accelerated by the acetonitrile solvent, which can be ascribed to significant influences of the solvents on the charge transfer states, i.e. the energy gaps between LE and CT excitons are reduced greatly and the non-adiabatic couplings are increased in the meantime. Our present work not only provides valuable insights into the underlying photoinduced mechanism of BH, but also can be helpful for the future design of novel donor-acceptor conjugates with better optoelectronic performance.
Collapse
Affiliation(s)
- Wen-Kai Chen
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xiang-Yang Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| |
Collapse
|
39
|
Fedyanin IV. Control of supramolecular chirality in co-crystals of achiral molecules via stacking interactions and hydrogen bonding. CrystEngComm 2022. [DOI: 10.1039/d2ce00081d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An approach is proposed to obtain non-centrosymmetric crystal structures using co crystallization of specific achiral molecules. The co-formers, donors and acceptors of electron density, are selected in such a way...
Collapse
|
40
|
Ge W, Liu C, Xu Y, Zhang J, Si W, Wang W, Ou C, Dong X. Crystal Engineering of Ferrocene-Based Charge-Transfer Complexes for NIR-II Photothermal Therapy and Ferroptosis. Chem Sci 2022; 13:9401-9409. [PMID: 36093016 PMCID: PMC9384818 DOI: 10.1039/d2sc03273b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/19/2022] [Indexed: 11/21/2022] Open
Abstract
Organic charge-transfer complexes (CTCs) can function as versatile second near-infrared (NIR-II) theranostic platforms to tackle complicated solid tumors, while the structure–property relationship is still an unanswered problem. To uncover the effect of molecular stacking modes on photophysical and biochemical properties, herein, five ferrocene derivatives were synthesized as electron donors and co-assembled with electron-deficient F4TCNQ to form the corresponding CTCs. The crystalline and photophysical results showed that only herringbone-aligned CTCs (named anion-radical salts, ARS NPs) possess good NIR-II absorption ability and a photothermal effect for short π–π distances (<3.24 Å) and strong π-electron delocalization in the 1D F4TCNQ anion chain. More importantly, the ARS NPs simultaneously possess ·OH generation and thiol (Cys, GSH) depletion abilities to perturb cellular redox homeostasis for ROS/LPO accumulation and enhanced ferroptosis. In vitro experiments, FcNEt-F4 NPs, and typical ARS NPs, show outstanding antitumor efficiency for the synergistic effect of NIR-II photothermal therapy and ferroptosis, which provides a new paradigm to develop versatile CTCs for anti-tumor application. Based on crystal engineering of charge transfer complexes (CTCs), ferrocene-based CTCs, with Fenton-catalyzing, biothiol-responsive and NIR-II photothermal abilities, were controllably developed and the structure–property relationship was revealed.![]()
Collapse
Affiliation(s)
- Wei Ge
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech) 30 South Puzhu Road Nanjing 211816 China
| | - Chao Liu
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech) 30 South Puzhu Road Nanjing 211816 China
| | - Yatao Xu
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech) 30 South Puzhu Road Nanjing 211816 China
| | - Jiayao Zhang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech) 30 South Puzhu Road Nanjing 211816 China
| | - Weili Si
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech) 30 South Puzhu Road Nanjing 211816 China
| | - Wenjun Wang
- School of Physical Science and Information Technology, Liaocheng University Liaocheng 252059 China
| | - Changjin Ou
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology Nanjing 210044 China
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech) 30 South Puzhu Road Nanjing 211816 China
- School of Chemistry & Materials Science, Jiangsu Normal University Xuzhou 221116 China
| |
Collapse
|
41
|
Amemori S, Hamamoto R, Mizuno M. Enhancement of association constants of various charge-transfer complexes in siloxane solvents. NEW J CHEM 2022. [DOI: 10.1039/d2nj00214k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The association constants of various charge-transfer complexes were evaluated in n-hexane, octamethyltrisiloxane and PDMS to investigate the solvent effect.
Collapse
Affiliation(s)
- Shogo Amemori
- NanoMaterials Research Institute, Kanazawa University, Kanazawa 920-1192, Japan
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa 920-1192, Japan
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan
| | - Ryosuke Hamamoto
- School of Chemistry, College of Science and Engineering, Kanazawa University, Kanazawa 920-1192, Japan
| | - Motohiro Mizuno
- NanoMaterials Research Institute, Kanazawa University, Kanazawa 920-1192, Japan
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa 920-1192, Japan
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan
| |
Collapse
|
42
|
Sudhakar C, Saravanabhavan M, Ramesh K, Badavath V, Chandrasekar S, Babu B, Sekar M. Pharmacological and quantum chemical studies of 2-aminobenzo[d]thiazol-3-ium 4-chlorobenzenesulphonate: Synthesis, spectral, thermal analysis and structural elucidation. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
43
|
An indicator displacement assay-based optical chemosensor for heparin with a dual-readout and a reversible molecular logic gate operation based on the pyranine/methyl viologen. Biosens Bioelectron 2021; 194:113612. [PMID: 34507094 DOI: 10.1016/j.bios.2021.113612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/21/2021] [Accepted: 09/01/2021] [Indexed: 11/23/2022]
Abstract
We have reported an optical indicator displacement assay (IDA) for heparin with a UV-vis absorbance and fluorescence dual-readout based on pyranine/methyl viologen (MV2+). Upon introducing heparin, pyranine/MV2+ shows a clearly observable increase in UV-vis absorbance and a turn-on of the fluorescence signal. We have demonstrated that the ionic nature of buffers significantly affects the pyranine displacement and the zwitterionic HEPES was most suitable for heparin sensing. After careful screening of experimental conditions, the pyranine/MV2+-based optical chemosensor exhibits a fast, sensitive, and selective response toward heparin. It shows dynamic linear concentration of heparin in the ranges of 0.1-40 U·mL-1 and 0.01-20 U·mL-1 for the absorptive and fluorescent measurements, respectively, which both cover the clinically relevant levels of heparin. As with the animal experiments, the optical chemosensor has been demonstrated to be selective and effective for heparin level qualification in rat plasma. The chemosensor is readily accessible, cost-effective, and reliable, which holds a great promise for potential application on clinical and biological studies. Furthermore, this IDA system can serve as an IMPLICATION logic gate with a reversible and switchable logical manner.
Collapse
|
44
|
Jiang M, Zhen C, Li S, Zhang X, Hu W. Organic Cocrystals: Recent Advances and Perspectives for Electronic and Magnetic Applications. Front Chem 2021; 9:764628. [PMID: 34957044 PMCID: PMC8695556 DOI: 10.3389/fchem.2021.764628] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/22/2021] [Indexed: 11/18/2022] Open
Abstract
Cocrystal engineering is an advanced supramolecular strategy that has attracted a lot of research interest. Many studies on cocrystals in various application fields have been reported, with a particular focus on the optoelectronics field. However, few articles have combined and summarized the electronic and magnetic properties of cocrystals. In this review, we first introduce the growth methods that serve as the basis for realizing the different properties of cocrystals. Thereafter, we present an overview of cocrystal applications in electronic and magnetic fields. Some functional devices based on cocrystals are also introduced. We hope that this review will provide researchers with a more comprehensive understanding of the latest progress and prospects of cocrystals in electronic and magnetic fields.
Collapse
Affiliation(s)
- Mengjia Jiang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, China
| | - Chun Zhen
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, China
| | - Shuyu Li
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, China
| | - Xiaotao Zhang
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, China
- School of Chemistry and Chemical Engineering, Qinghai Minzu University, Qinghai, China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou, China
| |
Collapse
|
45
|
Charge Transfer Complexes of 1,3,6-Trinitro-9,10-phenanthrenequinone with Polycyclic Aromatic Compounds. Molecules 2021; 26:molecules26216391. [PMID: 34770800 PMCID: PMC8588456 DOI: 10.3390/molecules26216391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/17/2021] [Accepted: 10/19/2021] [Indexed: 12/24/2022] Open
Abstract
Understanding the interactions of organic donor and acceptor molecules in binary associates is crucial for design and control of their functions. Herein, we carried out a theoretical study on the properties of charge transfer complexes of 1,3,6-trinitro-9,10-phenanthrenequinone (PQ) with 23 aromatic π-electron donors. Density functional theory (DFT) was employed to obtain geometries, frontier orbital energy levels and amounts of charge transfer in the ground and first excited states. For the most effective donors, namely, dibenzotetrathiafulvalene, pentacene, tetrathiafulvalene, 5,10-dimethylphenazine, and tetramethyl-p-phenylenediamine, the amount of charge transfer in the ground state was shown to be 0.134−0.240 e−. Further, a novel charge transfer complex of PQ with anthracene was isolated in crystalline form and its molecular and crystal structure elucidated by single-crystal synchrotron X-ray diffraction.
Collapse
|
46
|
Yang C, Luo L, Chen J, Yang B, Wang W, Wang H, Long G, Liu G, Zhang J, Huang W. Helical mesoscopic crystals based on an achiral charge-transfer complex with controllable untwisting/breaking. Chem Commun (Camb) 2021; 57:10031-10034. [PMID: 34505585 DOI: 10.1039/d1cc03767f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The development of synthetic helical structures from achiral molecules and stimulus-responsive shape transformations are vital for biomimetics and mechanical actuators. A stimulus regarded as the force to induce chirality modulation plays a significant role in the helical supramolecular structure design through symmetry breaking. Herein, we synthesized a metastable complex Form 1 crystal composed of pyrene and (4,8-bis(dicyanomethylene)-4,8-dihydrobenzo[1,2-b:4,5-b']-dithiophen-e) DTTCNQ components with a torsional backbone by C-H⋯N hydrogen bonds via a quick cooling method. The helix motion kinetics of Form 1 depends on the intrinsic factor (crystal thickness) and external stimuli (polar solvents). The self-assembled helical microstructures grow into needle-like crystals in liquid media via an untwistingprocess. Furthermore, they undergo predictable deformation of untwisting or breaking under a stimulus-responsive strain-relaxing phase transformation. This work illustrates a new approach in the mediated formation of helical morphologies from achiral binary supramolecules and dynamic motion, which is vital for biomimetics and mechanical actuators.
Collapse
Affiliation(s)
- Canglei Yang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Lixing Luo
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Jinqiu Chen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Bo Yang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Wei Wang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Hebin Wang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, 300350 Tianjin, China
| | - Guankui Long
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, 300350 Tianjin, China
| | - Guangfeng Liu
- Department of Chemistry National, Uniwersitcé Libre de Bruxelles, Avenue F. D. Roosevelt 50, 1050, Brussels, Belgium
| | - Jing Zhang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an 710072, China.
| |
Collapse
|
47
|
Prakash P, Ardhra S, Fall B, Zdilla MJ, Wunder SL, Venkatnathan A. Solvate sponge crystals of (DMF) 3NaClO 4: reversible pressure/temperature controlled juicing in a melt/press-castable sodium-ion conductor. Chem Sci 2021; 12:5574-5581. [PMID: 34168793 PMCID: PMC8179650 DOI: 10.1039/d0sc06455f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/28/2021] [Indexed: 12/23/2022] Open
Abstract
A new type of crystalline solid, termed "solvate sponge crystal", is presented, and the chemical basis of its properties are explained for a melt- and press-castable solid sodium ion conductor. X-ray crystallography and atomistic simulations reveal details of atomic interactions and clustering in (DMF)3NaClO4 and (DMF)2NaClO4 (DMF = N-N'-dimethylformamide). External pressure or heating results in reversible expulsion of liquid DMF from (DMF)3NaClO4 to generate (DMF)2NaClO4. The process reverses upon the release of pressure or cooling. Simulations reveal the mechanism of crystal "juicing," as well as melting. In particular, cation-solvent clusters form a chain of octahedrally coordinated Na+-DMF networks, which have perchlorate ions present in a separate sublattice space in 3 : 1 stoichiometry. Upon heating and/or pressing, the Na+⋯DMF chains break and the replacement of a DMF molecule with a ClO4 - anion per Na+ ion leads to the conversion of the 3 : 1 stoichiometry to a 2 : 1 stoichiometry. The simulations reveal the anisotropic nature of pressure induced stoichiometric conversion. The results provide molecular level understanding of a solvate sponge crystal with novel and desirable physical castability properties for device fabrication.
Collapse
Affiliation(s)
- Prabhat Prakash
- Department of Chemistry and Centre for Energy Science, Indian Institute of Science Education and Research Pune Dr Homi Bhabha Road, Pashan Pune 411008 India
- Materials Science and Engineering, Indian Institute of Technology Gandhinagar Gujarat 382355 India
| | - Shylendran Ardhra
- Department of Chemistry and Centre for Energy Science, Indian Institute of Science Education and Research Pune Dr Homi Bhabha Road, Pashan Pune 411008 India
| | - Birane Fall
- Department of Chemistry, Temple University 1901-N 13th St. Philadelphia PA 19086 USA
| | - Michael J Zdilla
- Department of Chemistry, Temple University 1901-N 13th St. Philadelphia PA 19086 USA
| | - Stephanie L Wunder
- Department of Chemistry, Temple University 1901-N 13th St. Philadelphia PA 19086 USA
| | - Arun Venkatnathan
- Department of Chemistry and Centre for Energy Science, Indian Institute of Science Education and Research Pune Dr Homi Bhabha Road, Pashan Pune 411008 India
| |
Collapse
|
48
|
Shen Y, Wang S, Zhang X, Li N, Liu H, Yang B. Supramolecular complex strategy for pure organic multi-color luminescent materials and stimuli-responsive luminescence switching. CrystEngComm 2021. [DOI: 10.1039/d1ce00449b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Pure organic multi-color luminescent materials were finely tuned from blue through green to red using a supramolecular complex strategy, exhibiting force- and solvent-sensitive luminescence switching in the stimuli-responsive field.
Collapse
Affiliation(s)
- Yue Shen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
- College of Science, Shenyang University of Chemical Technology, Shenyang, 110142, P. R. China
| | - Shiyin Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xiangyu Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Nan Li
- College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Haichao Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Bing Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
49
|
Liu JJ, Xia SB, Liu T, Liu JM, Cheng FX. A two-component molecular hybrid with enhanced emission characteristics and mechanoresponsive luminescence properties. CrystEngComm 2021. [DOI: 10.1039/d1ce00465d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A new binary charge transfer cocrystal system was successfully fabricated by virtue of donor–acceptor interaction and exhibited enhanced emission and sensitive mechanoresponsive luminescence properties.
Collapse
Affiliation(s)
- Jian-Jun Liu
- College of Chemistry and Environmental Science
- Qujing Normal University
- Qujing 655011
- China
| | - Shu-Biao Xia
- College of Chemistry and Environmental Science
- Qujing Normal University
- Qujing 655011
- China
| | - Teng Liu
- College of Chemistry and Environmental Science
- Qujing Normal University
- Qujing 655011
- China
| | - Jia-Ming Liu
- School of Metallurgy Engineering
- Jiangxi University of Science and Technology
- Ganzhou 341000
- PR China
| | - Fei-Xiang Cheng
- College of Chemistry and Environmental Science
- Qujing Normal University
- Qujing 655011
- China
| |
Collapse
|
50
|
Wang SS, Li K, Ma X, Xue P. Acceptor-regulated luminescence in carbazole-based charge transfer complexes. CrystEngComm 2021. [DOI: 10.1039/d1ce00656h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A dicarbazole derivative and two acceptors could formed 1D mixed stacking columns in their charge transfer co-crystals. Moreover, the LUMO energy levels of the acceptors determine the fluorescence colors of the co-crystals.
Collapse
Affiliation(s)
- Si-Si Wang
- Department of Translational Medicine
- The First Hospital of Jilin University
- Changchun
- P. R. China
| | - Kechang Li
- College of Chemistry
- Jilin University
- Changchun
- P. R. China
| | - Xiaohui Ma
- Department of Translational Medicine
- The First Hospital of Jilin University
- Changchun
- P. R. China
- Department of Oncology
| | - Pengchong Xue
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- College of Chemistry
- Tianjin Normal University
- Tianjin
- P. R. China
| |
Collapse
|