1
|
Ajmeera S, Golagani D, Akondi SM. Ferrocene catalyzed carbohydroxylation of alkenes using H 2O and cycloketone oxime esters. Org Biomol Chem 2023; 21:8482-8487. [PMID: 37853953 DOI: 10.1039/d3ob01481a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
A cyanoalkyl-hydroxylation reaction of aryl alkenes has been successfully devised, employing ferrocene as a catalyst for the addition of a cycloketone oxime ester and H2O across the double bond of the alkene. This environmentally friendly approach employs a solvent mixture consisting of water and demonstrates redox neutrality, along with exceptional regio- and chemoselectivity, leading to the formation of diverse distal hydroxy-nitrile compounds. Moreover, this research presents noteworthy contributions in terms of late-stage functionalization of complex molecules and offers valuable insights into the mechanistic aspects of the reaction.
Collapse
Affiliation(s)
- Sriram Ajmeera
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad-500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Durga Golagani
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad-500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Srirama Murthy Akondi
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad-500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
2
|
Wang DM, She LQ, Yuan H, Wu Y, Tang Y, Wang P. Ligand-Enabled Ni II -Catalyzed Hydroxylarylation of Alkenes with Molecular Oxygen. Angew Chem Int Ed Engl 2023; 62:e202304573. [PMID: 37431727 DOI: 10.1002/anie.202304573] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/12/2023]
Abstract
The use of molecular oxygen as the terminal oxidant in transition metal catalyzed oxidative process is an appealing and challenging task in organic synthetic chemistry. Here, we report a Ni-catalyzed hydroxylarylation of unactivated alkenes enabled by a β-diketone ligand with high efficiency and excellent regioselectivity employing molecular oxygen as the oxidant and hydroxyl source. This reaction features mild conditions, broad substrate scope and incredible heterocycle compatibility, providing a variety of β-hydroxylamides, γ-hydroxylamides, β-aminoalcohols, γ-aminoalcohols, and 1,3-diols in high yields. The synthetic value of this methodology was demonstrated by the efficient synthesis of two bioactive compounds, (±)-3'-methoxyl citreochlorol and tea catechin metabolites M4.
Collapse
Affiliation(s)
- Dao-Ming Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS, 345 Lingling Road, Shanghai, 200032, P. R. China
- Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Lu, Shanghai, 200062, P. R. China
| | - Li-Qin She
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Hao Yuan
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Yichen Wu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Yong Tang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS, 345 Lingling Road, Shanghai, 200032, P. R. China
- Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Lu, Shanghai, 200062, P. R. China
| | - Peng Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS, 345 Lingling Road, Shanghai, 200032, P. R. China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, P. R. China
- CAS Key Laboratory of Energy Regulation Materials, Shanghai Institute of Organic Chemistry, CAS, 345 Lingling Road, Shanghai, 200032, P. R. China
| |
Collapse
|
3
|
Köckenberger J, Klemt I, Sauer C, Arkhypov A, Reshetnikov V, Mokhir A, Heinrich MR. Cyanine- and Rhodamine-Derived Alkynes for the Selective Targeting of Cancerous Mitochondria through Radical Thiol-Yne Coupling in Live Cells. Chemistry 2023; 29:e202301340. [PMID: 37171462 DOI: 10.1002/chem.202301340] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/08/2023] [Accepted: 05/11/2023] [Indexed: 05/13/2023]
Abstract
Despite their long history and their synthetic potential underlined by various recent advances, radical thiol-yne coupling reactions have so far only rarely been exploited for the functionalization of biomolecules, and no examples yet exist for their application in live cells - although natural thiols show widespread occurrence therein. By taking advantage of the particular cellular conditions of mitochondria in cancer cells, we have demonstrated that radical thiol-yne coupling represents a powerful reaction principle for the selective targeting of these organelles. Within our studies, fluorescently labeled reactive alkyne probes were investigated, for which the fluorescent moiety was chosen to enable both mitochondria accumulation as well as highly sensitive detection. After preliminary studies under cell-free conditions, the most promising alkyne-dye conjugates were evaluated in various cellular experiments comprising analysis by flow cytometry and microscopy. All in all, these results pave the way for improved future therapeutic strategies relying on live-cell compatibility and selectivity among cellular compartments.
Collapse
Affiliation(s)
- Johannes Köckenberger
- Department of Chemistry and Pharmacy Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Insa Klemt
- Department of Chemistry and Pharmacy, Organic Chemistry II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Caroline Sauer
- Department of Chemistry and Pharmacy Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Anton Arkhypov
- Department of Chemistry and Pharmacy, Organic Chemistry II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Viktor Reshetnikov
- Department of Chemistry and Pharmacy, Organic Chemistry II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Andriy Mokhir
- Department of Chemistry and Pharmacy, Organic Chemistry II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Markus R Heinrich
- Department of Chemistry and Pharmacy Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| |
Collapse
|
4
|
Ouyang Y, Turek-Herman J, Qiao T, Hyster TK. Asymmetric Carbohydroxylation of Alkenes Using Photoenzymatic Catalysis. J Am Chem Soc 2023; 145:17018-17022. [PMID: 37498747 PMCID: PMC10875682 DOI: 10.1021/jacs.3c06618] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Alkene difunctionalizations enable the synthesis of structurally elaborated products from simple and ubiquitous starting materials in a single chemical step. Carbohydroxylations of olefins represent a family of reactivity that furnish structurally complex alcohols. While examples of this type of three-component coupling have been reported, catalytic asymmetric examples remain elusive. Here, we report an enzyme-catalyzed asymmetric carbohydroxylation of alkenes catalyzed by flavin-dependent "ene"-reductases to produce enantioenriched tertiary alcohols. Seven rounds of protein engineering reshape the enzyme's active site to increase activity and enantioselectivity. Mechanistic studies suggest that C-O bond formation occurs via a 5-endo-trig cyclization with the pendant ketone to afford an α-oxy radical which is oxidized and hydrolyzed to form the product. This work demonstrates photoenzymatic reactions involving "ene"-reductases can terminate radicals via mechanisms other than hydrogen atom transfer, expanding their utility in chemical synthesis.
Collapse
Affiliation(s)
- Yao Ouyang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850, United States
| | - Joshua Turek-Herman
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850, United States
| | - Tianzhang Qiao
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850, United States
| | - Todd K. Hyster
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850, United States
| |
Collapse
|
5
|
Wang Y, Lin C, Zhang Z, Shen L, Zou B. Directed Nickel-Catalyzed Selective Arylhydroxylation of Unactivated Alkenes under Air. Org Lett 2023; 25:2172-2177. [PMID: 36946921 DOI: 10.1021/acs.orglett.3c00085] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
An expeditious and novel nickel-catalyzed selective arylhydroxylation of unactivated alkenes with arylboronic acids was developed. This protocol is compatible with β,γ- and γ,δ-alkene amides, including traditionally challenging internal alkenes, to provide important β-arylethylalcohol scaffolds. The free hydroxyl group in the final product could be smoothly further transformed into other functional groups. Control experiments indicated that the oxygen atom of the hydroxyl group in the product is derived from the oxygen in the air.
Collapse
Affiliation(s)
- Yihua Wang
- College of Chemistry and Chemical Engineering, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Cong Lin
- College of Chemistry and Chemical Engineering, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Zongxu Zhang
- College of Chemistry and Chemical Engineering, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Liang Shen
- Jiangxi Engineering Laboratory of Waterborne Coatings, College of Chemistry and Chemical Engineering, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Boya Zou
- College of Chemistry and Chemical Engineering, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| |
Collapse
|
6
|
Diesendorf N, Wenisch P, Oppl J, Heinrich MR. Visible-Light-Mediated Radical Arylations Using a Fluorescein-Derived Diazonium Salt: Reactions Proceeding via an Intramolecular Forth and Back Electron Transfer. Org Lett 2023; 25:76-81. [PMID: 36595351 DOI: 10.1021/acs.orglett.2c03877] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Functionalizations of arenes and alkenes via additive-free radical reactions using highly photosensitive, fluorescein-derived diazonium salts are described. The particular properties of the diazonium salts enable unique Meerwein-type carbohydroxylations of non-activated alkenes, which can be rationalized by a reaction mechanism involving forth and back electron transfer from and to the xanthene subunit of the fluorescein moiety.
Collapse
Affiliation(s)
- Nina Diesendorf
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
| | - Pia Wenisch
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
| | - Janina Oppl
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
| | - Markus R Heinrich
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
| |
Collapse
|
7
|
Kumar R, Jain VK, Jain N. Photoredox Hydroxy-arylation of the Terminal Double Bond of N-Substituted 3-Methyleneisoindolin-1-ones in Visible Light. J Org Chem 2022; 87:11939-11946. [PMID: 36041118 DOI: 10.1021/acs.joc.2c00607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mild and efficient ruthenium-catalyzed hydroxy-arylation of the terminal double bond of N-substituted 3-methyleneisoindolin-1-ones is described. The reaction takes place with aryl diazonium salt as the arylating reagent and water as the hydroxyl source in visible light at ambient temperature. The strategy entails vicinal difunctionalization of alkene and enables construction of 3-benzyl-3-hydroxyisoindolin-1-one heterocyclic scaffolds in moderate to good yields. C-C and C-O bonds are formed in one pot without any external additive and oxidant through an in situ generation of a carbocation intermediate in green light.
Collapse
Affiliation(s)
- Rohit Kumar
- Department of Chemistry, Indian Institute of Technology, New Delhi 110016, India
| | - Vipin Kumar Jain
- Department of Chemistry, Indian Institute of Technology, New Delhi 110016, India
| | - Nidhi Jain
- Department of Chemistry, Indian Institute of Technology, New Delhi 110016, India
| |
Collapse
|
8
|
Shennan BDA, Berheci D, Crompton JL, Davidson TA, Field JL, Williams BA, Dixon DJ. Branching out: redox strategies towards the synthesis of acyclic α-tertiary ethers. Chem Soc Rev 2022; 51:5878-5929. [PMID: 35770619 DOI: 10.1039/d1cs00669j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Acyclic α-tertiary ethers represent a highly prevalent functionality, common to high-value bioactive molecules, such as pharmaceuticals and natural products, and feature as crucial synthetic handles in their construction. As such their synthesis has become an ever-more important goal in synthetic chemistry as the drawbacks of traditional strong base- and acid-mediated etherifications have become more limiting. In recent years, the generation of highly reactive intermediates via redox approaches has facilitated the synthesis of highly sterically-encumbered ethers and accordingly these strategies have been widely applied in α-tertiary ether synthesis. This review summarises and appraises the state-of-the-art in the application of redox strategies enabling acyclic α-tertiary ether synthesis.
Collapse
Affiliation(s)
- Benjamin D A Shennan
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Diana Berheci
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Jessica L Crompton
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Timothy A Davidson
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Joshua L Field
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Benedict A Williams
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Darren J Dixon
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| |
Collapse
|
9
|
Heinrich MR, Diesendorf N. Current Advances in Meerwein-type Radical Alkene Functionalizations. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/s-0040-1719893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AbstractAlkene functionalizations via Meerwein arylations are becoming increasingly attractive, especially since a variety of mild and sustainable methods for aryl radical generation are available today. This entails a broad spectrum of substrates and radical scavengers, as well as convenient synthetic routes to relevant precursors for further transformations. The present review focuses on recent advances in Meerwein-type alkene functionalizations and gives insights into the key mechanistic details of the respective reactions.1 Introduction2 Hydroarylation and Carboarylation3 Carboamination, Carbooxygenation, and Carbothiolation4 Carbohalogenation5 Conclusion and Outlook
Collapse
|
10
|
Tang HJ, Zhang B, Xue F, Feng C. Visible-Light-Induced Meerwein Fluoroarylation of Styrenes. Org Lett 2021; 23:4040-4044. [PMID: 33949871 DOI: 10.1021/acs.orglett.1c01249] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An unprecedented approach for assembling a broad range of 1,2-diarylethane derivatives with fluorine-containing fully substituted carbon centers was developed. The protocol features straightforward operation, proceeds under metal-free condition, and accommodates a large variety of synthetically useful functionalities. The critical aspect to the success of this novel transformation lies in using aryldiazonium salts as both aryl radical progenitor and also as single electron acceptor which elegantly enables a radical-polar crossover manifold.
Collapse
Affiliation(s)
- Hai-Jun Tang
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Bin Zhang
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Fei Xue
- Institute of Material Physics & Chemistry, College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Chao Feng
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| |
Collapse
|
11
|
Fischer O, Heinrich MR. 2-Fluoro-5-nitrophenyldiazonium: A Novel Sanger-Type Reagent for the Versatile Functionalization of Alcohols. Chemistry 2021; 27:5417-5421. [PMID: 33481282 PMCID: PMC8048593 DOI: 10.1002/chem.202100187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Indexed: 12/15/2022]
Abstract
As a novel Sanger-type reagent, 2-fluoro-5-nitrophenyldiazonium tetrafluoroborate enabled the versatile functionalization of primary and secondary aliphatic alcohols. Based on a mild nucleophilic aromatic substitution of the fluorine atom under unprecedented, base-free conditions, the diazonium unit on the aromatic core of the resulting aryl-alkyl ether could be employed for such diverse transformations as radical C-H activation and cyclization, as well as palladium catalyzed cross-coupling reactions.
Collapse
Affiliation(s)
- Oliver Fischer
- Department of Chemistry and Pharmacy, Pharmaceutical ChemistryFriedrich-Alexander-Universität Erlangen-NürnbergNikolaus-Fiebiger-Str. 1091058ErlangenGermany
| | - Markus R. Heinrich
- Department of Chemistry and Pharmacy, Pharmaceutical ChemistryFriedrich-Alexander-Universität Erlangen-NürnbergNikolaus-Fiebiger-Str. 1091058ErlangenGermany
| |
Collapse
|