1
|
Liu SN, Ren QX, Ding YT, Cao XP, Shi ZF, Chow HF, Kuck D. A Molecular Cage Accessed by Threefold Click Reaction of a C3v-Symmetric Triazido-Functionalized Tribenzotriquinacene. J Org Chem 2024; 89:2127-2137. [PMID: 38270538 DOI: 10.1021/acs.joc.3c01349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
The hitherto unknown hexakis(halomethyl)-functionalized tribenzotriquinacenes (TBTQs) 9 and 10 were synthesized from the key 4b,8b,12b-tribromo-TBTQ derivative 6 by an improved route in 67% overall yield. Extension of the bowl-shaped framework of 9 or 10 by threefold condensation with propargylamine or 2-azidoethylamine afforded the corresponding TBTQ-trialkyne 11 and TBTQ-triazide 12, respectively. While attempts to construct bis-TBTQ cages, including homodimerization of 11 and heterocoupling of 11 with 12, were unsuccessful, triazide 12 was found to undergo threefold [3 + 2]-cycloaddition with 3-ethynylaniline and phloroglucinol tripropargyl ether under click chemistry conditions. The latter reaction enabled facile capping of the TBTQ bowl to give the novel cage compound 5 in 22% yield.
Collapse
Affiliation(s)
- Shuai-Nan Liu
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry & Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Qing-Xia Ren
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry & Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yun-Tao Ding
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry & Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xiao-Ping Cao
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry & Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Zi-Fa Shi
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry & Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Hak-Fun Chow
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, NT 999077, Hong Kong
| | - Dietmar Kuck
- Department of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
2
|
Ivanova S, Adamski P, Köster E, Schramm L, Fröhlich R, Beuerle F. Size Determination of Organic Cages by Diffusion NMR Spectroscopy. Chemistry 2023:e202303318. [PMID: 37966964 DOI: 10.1002/chem.202303318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/15/2023] [Accepted: 11/15/2023] [Indexed: 11/17/2023]
Abstract
Reliable structure elucidation of covalent organic cage compounds remains challenging as routine analysis might leave ambiguities. Diffusion-ordered NMR spectroscopy (DOSY) allows insight into the molecular size and mass of the species present in solution, but a systematic evaluation of the diffusion behavior for cage assemblies is rarely considered. Here we report the synthesis of four series of covalent organic cages based on tribenzotriquinacenes and diboronic acids with varying geometry and exohedral substituents. We provide a guideline for the consistent measurement of diffusion coefficients from 1 H-DOSY NMR spectroscopy, which was utilized to study the diffusion behavior for the whole set of cages and selected examples from the literature. For structurally similar cages, a linear correlation between the solvodynamic volume and the molecular mass allows precise size determination. For more complex systems, multiple parameters, such as window size or rigid exohedral functionalization. further modulate cage diffusion in solution.
Collapse
Affiliation(s)
- Svetlana Ivanova
- Julius-Maximilians-Universität Würzburg, Institut für Organische Chemie, Am Hubland, 97074, Würzburg, Germany
- Julius-Maximilians-Universität Würzburg, Center for Nanosystems Chemistry (CNC), Theodor-Boveri-Weg, 97074, Würzburg, Germany
| | - Paul Adamski
- Julius-Maximilians-Universität Würzburg, Institut für Organische Chemie, Am Hubland, 97074, Würzburg, Germany
- Julius-Maximilians-Universität Würzburg, Center for Nanosystems Chemistry (CNC), Theodor-Boveri-Weg, 97074, Würzburg, Germany
| | - Eva Köster
- Julius-Maximilians-Universität Würzburg, Institut für Organische Chemie, Am Hubland, 97074, Würzburg, Germany
- Julius-Maximilians-Universität Würzburg, Center for Nanosystems Chemistry (CNC), Theodor-Boveri-Weg, 97074, Würzburg, Germany
| | - Louis Schramm
- Julius-Maximilians-Universität Würzburg, Institut für Organische Chemie, Am Hubland, 97074, Würzburg, Germany
- Julius-Maximilians-Universität Würzburg, Center for Nanosystems Chemistry (CNC), Theodor-Boveri-Weg, 97074, Würzburg, Germany
| | - Rebecca Fröhlich
- Julius-Maximilians-Universität Würzburg, Institut für Organische Chemie, Am Hubland, 97074, Würzburg, Germany
- Julius-Maximilians-Universität Würzburg, Center for Nanosystems Chemistry (CNC), Theodor-Boveri-Weg, 97074, Würzburg, Germany
| | - Florian Beuerle
- Julius-Maximilians-Universität Würzburg, Institut für Organische Chemie, Am Hubland, 97074, Würzburg, Germany
- Julius-Maximilians-Universität Würzburg, Center for Nanosystems Chemistry (CNC), Theodor-Boveri-Weg, 97074, Würzburg, Germany
- Eberhard Karls Universität Tübingen, Institut für Organische Chemie, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| |
Collapse
|
3
|
Chen Q, Li Z, Lei Y, Chen Y, Tang H, Wu G, Sun B, Wei Y, Jiao T, Zhang S, Huang F, Wang L, Li H. The sharp structural switch of covalent cages mediated by subtle variation of directing groups. Nat Commun 2023; 14:4627. [PMID: 37532710 PMCID: PMC10397198 DOI: 10.1038/s41467-023-40255-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/19/2023] [Indexed: 08/04/2023] Open
Abstract
It is considered a more formidable task to precisely control the self-assembled products containing purely covalent components, due to a lack of intrinsic templates such as transition metals to suppress entropy loss during self-assembly. Here, we attempt to tackle this challenge by using directing groups. That is, the self-assembly products of condensing a 1:2 mixture of a tetraformyl and a biamine can be precisely controlled by slightly changing the substituent groups in the aldehyde precursor. This is because different directing groups provide hydrogen bonds with different modes to the adjacent imine units, so that the building blocks are endowed with totally different conformations. Each conformation favors the formation of a specific product that is thus produced selectively, including chiral and achiral cages. These results of using a specific directing group to favor a target product pave the way for accomplishing atom economy in synthesizing purely covalent molecules without relying on toxic transition metal templates.
Collapse
Affiliation(s)
- Qiong Chen
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, PR China
| | - Zhaoyong Li
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, PR China
- Key Laboratory of Excited-State Materials of Zhejiang Province, Zhejiang University, Hangzhou, 310058, PR China
| | - Ye Lei
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, PR China
| | - Yixin Chen
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, PR China
| | - Hua Tang
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, PR China
| | - Guangcheng Wu
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, PR China
| | - Bin Sun
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, PR China
| | - Yuxi Wei
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, PR China
| | - Tianyu Jiao
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, PR China
| | - Songna Zhang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, PR China.
| | - Feihe Huang
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, PR China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, PR China.
| | - Linjun Wang
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, PR China.
- Key Laboratory of Excited-State Materials of Zhejiang Province, Zhejiang University, Hangzhou, 310058, PR China.
| | - Hao Li
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, PR China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, PR China.
| |
Collapse
|
4
|
Chen J, Ma Z, Li Y, Cao S, Zhuang Q. Research Progress in Metal-Porous Organic Cage Nanocomposites. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202207020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
5
|
Harders P, Griebenow T, Businski A, Kaus AJ, Pietsch L, Näther C, McConnell A. The Dynamic Covalent Chemistry of Amidoboronates: Tuning the rac5/rac6 Ratio via the B‑N and B‐O Dynamic Covalent Bonds. Chempluschem 2022; 87:e202200022. [DOI: 10.1002/cplu.202200022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/07/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Patrick Harders
- Christian-Albrechts-Universitat zu Kiel Otto Diels Institute of Organic Chemistry GERMANY
| | - Thomas Griebenow
- Christian Albrechts Universität zu Kiel: Christian-Albrechts-Universitat zu Kiel Otto Diels Institute of Organic Chemistry GERMANY
| | - Artjom Businski
- Christian-Albrechts-Universitat zu Kiel Otto Diels Institute of Organic Chemistry GERMANY
| | - Anton J. Kaus
- Christian-Albrechts-Universitat zu Kiel Otto Diels Institute of Organic Chemistry GERMANY
| | - Lorenz Pietsch
- Christian-Albrechts-Universitat zu Kiel Otto Diels Institute of Organic Chemistry GERMANY
| | - Christian Näther
- Christian-Albrechts-Universitat zu Kiel Institute of Inorganic Chemistry GERMANY
| | - Anna McConnell
- Kiel University Institute of Organic Chemistry Otto-Hahn-Platz 4 24098 Kiel GERMANY
| |
Collapse
|
6
|
Krzyżanowski M, Nowicka AM, Kazimierczuk K, Durka K, Lulinski S, Kasprzak A. Design of a D3h-symmetry prismatic tris-(ferrocene-1,1ʹ-diyl) molecular cage bearing boronate ester linkages. Dalton Trans 2022; 51:10601-10611. [DOI: 10.1039/d2dt01306a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This paper presents a simple, highly selective, and efficient (isolated yield 68%) synthesis of a novel D3h-symmetry prismatic tris-(ferrocene-1,1ʹ-diyl) organic cage (FcB-cage) by incorporating the boronate ester as a linkage...
Collapse
|
7
|
Seifert M, Barth D, Kuck D. Benzoannellated Fenestranes Bearing
para
‐Terphenyl Units. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Monika Seifert
- Department of Chemistry Bielefeld University 33615 Bielefeld Germany
| | - Dieter Barth
- Department of Chemistry Bielefeld University 33615 Bielefeld Germany
| | - Dietmar Kuck
- Department of Chemistry Bielefeld University 33615 Bielefeld Germany
| |
Collapse
|
8
|
Kunde T, Pausch T, Schmidt BM. Porous Organic Compounds – Small Pores on the Rise. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100892] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Tom Kunde
- Institut für Organische Chemie und Makromolekulare Chemie Heinrich-Heine-Universität Düsseldorf Universitätsstraße 1 40225 Düsseldorf Germany
| | - Tobias Pausch
- Institut für Organische Chemie und Makromolekulare Chemie Heinrich-Heine-Universität Düsseldorf Universitätsstraße 1 40225 Düsseldorf Germany
| | - Bernd M. Schmidt
- Institut für Organische Chemie und Makromolekulare Chemie Heinrich-Heine-Universität Düsseldorf Universitätsstraße 1 40225 Düsseldorf Germany
| |
Collapse
|
9
|
Ivanova S, Köster E, Holstein JJ, Keller N, Clever GH, Bein T, Beuerle F. Isoreticular Crystallization of Highly Porous Cubic Covalent Organic Cage Compounds*. Angew Chem Int Ed Engl 2021; 60:17455-17463. [PMID: 33905140 PMCID: PMC8362030 DOI: 10.1002/anie.202102982] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/23/2021] [Indexed: 12/13/2022]
Abstract
Modular frameworks featuring well-defined pore structures in microscale domains establish tailor-made porous materials. For open molecular solids however, maintaining long-range order after desolvation is inherently challenging, since packing is usually governed by only a few supramolecular interactions. Here we report on two series of nanocubes obtained by co-condensation of two different hexahydroxy tribenzotriquinacenes (TBTQs) and benzene-1,4-diboronic acids (BDBAs) with varying linear alkyl chains in 2,5-position. n-Butyl groups at the apical position of the TBTQ vertices yielded soluble model compounds, which were analyzed by mass spectrometry and NMR spectroscopy. In contrast, methyl-substituted cages spontaneously crystallized as isostructural and highly porous solids with BET surface areas and pore volumes of up to 3426 m2 g-1 and 1.84 cm3 g-1 . Single crystal X-ray diffraction and sorption measurements revealed an intricate cubic arrangement of alternating micro- and mesopores in the range of 0.97-2.2 nm that are fine-tuned by the alkyl substituents at the BDBA linker.
Collapse
Affiliation(s)
- Svetlana Ivanova
- Julius-Maximilians-Universität WürzburgInstitut für Organische ChemieAm Hubland97074WürzburgGermany
- Julius-Maximilians-Universität WürzburgCenter for Nanosystems Chemistry (CNC)Theodor-Boveri-Weg97074WürzburgGermany
| | - Eva Köster
- Julius-Maximilians-Universität WürzburgInstitut für Organische ChemieAm Hubland97074WürzburgGermany
- Julius-Maximilians-Universität WürzburgCenter for Nanosystems Chemistry (CNC)Theodor-Boveri-Weg97074WürzburgGermany
| | - Julian J. Holstein
- Technische Universität DortmundFakultät für Chemie und Chemische BiologieOtto-Hahn-Strasse 644227DortmundGermany
| | - Niklas Keller
- Ludwig-Maximilians-Universität MünchenDepartment of Chemistry & Center for NanoScience (CeNS)Butenandtstrasse 5–1381377MünchenGermany
| | - Guido H. Clever
- Technische Universität DortmundFakultät für Chemie und Chemische BiologieOtto-Hahn-Strasse 644227DortmundGermany
| | - Thomas Bein
- Ludwig-Maximilians-Universität MünchenDepartment of Chemistry & Center for NanoScience (CeNS)Butenandtstrasse 5–1381377MünchenGermany
| | - Florian Beuerle
- Julius-Maximilians-Universität WürzburgInstitut für Organische ChemieAm Hubland97074WürzburgGermany
- Julius-Maximilians-Universität WürzburgCenter for Nanosystems Chemistry (CNC)Theodor-Boveri-Weg97074WürzburgGermany
| |
Collapse
|
10
|
Giraldi E, Scopelliti R, Fadaei-Tirani F, Severin K. Metal-Stabilized Boronate Ester Cages. Inorg Chem 2021; 60:10873-10879. [PMID: 34291934 DOI: 10.1021/acs.inorgchem.1c01719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecular cages with arylboronate ester caps at the vertices are described. The cages were obtained by metal-templated polycondensation reactions of a tris(2-formylpyridine oxime) ligand with arylboronic acids. Suited templates are triflate or triflimide salts of ZnII, FeII, CoII, or MnII. In the products, the metal ions are coordinated internally to the pyridyl and oximato N atoms adjacent to the boronate ester, resulting in an improved hydrolytic stability of the latter. It is possible to decorate the cages with cyano or aldehyde groups using functionalized arylboronic acids. The aldehyde groups allow for a postsynthetic modification of the cages via an imine bond formation.
Collapse
Affiliation(s)
- Erica Giraldi
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Rosario Scopelliti
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Farzaneh Fadaei-Tirani
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Kay Severin
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
11
|
Ivanova S, Köster E, Holstein JJ, Keller N, Clever GH, Bein T, Beuerle F. Isoretikuläre Kristallisation von hochporösen kubischen kovalentorganischen Käfigverbindungen**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Svetlana Ivanova
- Julius-Maximilians-Universität Würzburg Institut für Organische Chemie Am Hubland 97074 Würzburg Deutschland
- Julius-Maximilians-Universität Würzburg Center for Nanosystems Chemistry (CNC) Theodor-Boveri-Weg 97074 Würzburg Deutschland
| | - Eva Köster
- Julius-Maximilians-Universität Würzburg Institut für Organische Chemie Am Hubland 97074 Würzburg Deutschland
- Julius-Maximilians-Universität Würzburg Center for Nanosystems Chemistry (CNC) Theodor-Boveri-Weg 97074 Würzburg Deutschland
| | - Julian J. Holstein
- Technische Universität Dortmund Fakultät für Chemie und Chemische Biologie Otto-Hahn-Straße 6 44227 Dortmund Deutschland
| | - Niklas Keller
- Ludwig-Maximilians-Universität München Department of Chemistry & Center for NanoScience (CeNS) Butenandtstraße 5–13 81377 München Deutschland
| | - Guido H. Clever
- Technische Universität Dortmund Fakultät für Chemie und Chemische Biologie Otto-Hahn-Straße 6 44227 Dortmund Deutschland
| | - Thomas Bein
- Ludwig-Maximilians-Universität München Department of Chemistry & Center for NanoScience (CeNS) Butenandtstraße 5–13 81377 München Deutschland
| | - Florian Beuerle
- Julius-Maximilians-Universität Würzburg Institut für Organische Chemie Am Hubland 97074 Würzburg Deutschland
- Julius-Maximilians-Universität Würzburg Center for Nanosystems Chemistry (CNC) Theodor-Boveri-Weg 97074 Würzburg Deutschland
| |
Collapse
|
12
|
Bourguignon C, Schindler D, Zhou G, Rominger F, Mastalerz M. Cucurbitimines - imine cages with concave walls. Org Chem Front 2021; 8:3668-3674. [PMID: 34354838 PMCID: PMC8276630 DOI: 10.1039/d1qo00478f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 04/29/2021] [Indexed: 12/18/2022]
Abstract
The variety of shape-persistent organic cages by imine bond formation has tremendously enlarged in recent years by using different building blocks (aldehydes and amines) in the condensation reactions. Here, we describe the use of a kinked tetraldehyde to generate pumpkin-shaped cages with concave walls, similar to cucurbiturils. Kinked tetraaldehyde building blocks lead in condensation reactions with diamines to pumpkin shaped cages – the cucurbitimines.![]()
Collapse
Affiliation(s)
- Christine Bourguignon
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Dorothee Schindler
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Gangxiang Zhou
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Frank Rominger
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Michael Mastalerz
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| |
Collapse
|
13
|
Holsten M, Feierabend S, Elbert SM, Rominger F, Oeser T, Mastalerz M. Soluble Congeners of Prior Insoluble Shape-Persistent Imine Cages. Chemistry 2021; 27:9383-9390. [PMID: 33848032 PMCID: PMC8362185 DOI: 10.1002/chem.202100666] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Indexed: 12/12/2022]
Abstract
One of the most applied reaction types to synthesize shape‐persistent organic cage compounds is the imine condensation reaction and it is assumed that the formed cages are thermodynamically controlled products due to the reversibility of the imine condensation. However, most of the synthesized imine cages reported are formed as precipitate from the reaction mixture and therefore rather may be kinetically controlled products. There are even examples in literature, where resulting cages are not soluble at all in common organic solvents to characterize or study their formation by NMR spectroscopy in solution. Here, a triptycene triamine containing three solubilizing n‐hexyloxy chains has been used to synthesize soluble congeners of prior insoluble cages. This allowed us to study the formation as well as the reversibility of cage formation in solution by investigating exchange of building blocks between the cages and deuterated derivatives thereof.
Collapse
Affiliation(s)
- Mattes Holsten
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Sarah Feierabend
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Sven M Elbert
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Frank Rominger
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Thomas Oeser
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Michael Mastalerz
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| |
Collapse
|
14
|
Schäfer N, Bühler M, Heyer L, Röhr MIS, Beuerle F. Endohedral Hydrogen Bonding Templates the Formation of a Highly Strained Covalent Organic Cage Compound*. Chemistry 2021; 27:6077-6085. [PMID: 33528845 PMCID: PMC8048910 DOI: 10.1002/chem.202005276] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/31/2021] [Indexed: 02/06/2023]
Abstract
A highly strained covalent organic cage compound was synthesized from hexahydroxy tribenzotriquinacene (TBTQ) and a meta-terphenyl-based diboronic acid with an additional benzoic acid substituent in 2'-position. Usually, a 120° bite angle in the unsubstituted ditopic linker favors the formation of a [4+6] cage assembly. Here, the introduction of the benzoic acid group is shown to lead to a perfectly preorganized circular hydrogen-bonding array in the cavity of a trigonal-bipyramidal [2+3] cage, which energetically overcompensates the additional strain energy caused by the larger mismatch in bite angles for the smaller assembly. The strained cage compound was analyzed by mass spectrometry and 1 H, 13 C and DOSY NMR spectroscopy. DFT calculations revealed the energetic contribution of the hydrogen-bonding template to the cage stability. Furthermore, molecular dynamics simulations on early intermediates indicate an additional kinetic effect, as hydrogen bonding also preorganizes and rigidifies small oligomers to facilitate the exclusive formation of smaller and more strained macrocycles and cages.
Collapse
Affiliation(s)
- Natalie Schäfer
- Institut für Organische ChemieJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Center for Nanosystems Chemistry (CNC)Julius-Maximilians-Universität WürzburgTheodor-Boveri-Weg97074WürzburgGermany
| | - Michael Bühler
- Center for Nanosystems Chemistry (CNC)Julius-Maximilians-Universität WürzburgTheodor-Boveri-Weg97074WürzburgGermany
| | - Lisa Heyer
- Institut für Organische ChemieJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Center for Nanosystems Chemistry (CNC)Julius-Maximilians-Universität WürzburgTheodor-Boveri-Weg97074WürzburgGermany
| | - Merle I. S. Röhr
- Center for Nanosystems Chemistry (CNC)Julius-Maximilians-Universität WürzburgTheodor-Boveri-Weg97074WürzburgGermany
| | - Florian Beuerle
- Institut für Organische ChemieJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Center for Nanosystems Chemistry (CNC)Julius-Maximilians-Universität WürzburgTheodor-Boveri-Weg97074WürzburgGermany
| |
Collapse
|