1
|
Kuzmin J, Röckl J, Schwarz N, Djossou J, Ahumada G, Ahlquist M, Lundberg H. Electroreductive Desulfurative Transformations with Thioethers as Alkyl Radical Precursors. Angew Chem Int Ed Engl 2023; 62:e202304272. [PMID: 37342889 DOI: 10.1002/anie.202304272] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/29/2023] [Accepted: 06/21/2023] [Indexed: 06/23/2023]
Abstract
Thioethers are highly prevalent functional groups in organic compounds of natural and synthetic origin but remain remarkably underexplored as starting materials in desulfurative transformations. As such, new synthetic methods are highly desirable to unlock the potential of the compound class. In this vein, electrochemistry is an ideal tool to enable new reactivity and selectivity under mild conditions. Herein, we demonstrate the efficient use of aryl alkyl thioethers as alkyl radical precursors in electroreductive transformations, along with mechanistic details. The transformations proceed with complete selectivity for C(sp3 )-S bond cleavage, orthogonal to that of established transition metal-catalyzed two-electron routes. We showcase a hydrodesulfurization protocol with broad functional group tolerance, the first example of desulfurative C(sp3 )-C(sp3 ) bond formation in Giese-type cross-coupling and the first protocol for electrocarboxylation of synthetic relevance with thioethers as starting materials. Finally, the compound class is shown to outcompete their well-established sulfone analogues as alkyl radical precursors, demonstrating their synthetic potential for future desulfurative transformations in a one-electron manifold.
Collapse
Affiliation(s)
- Julius Kuzmin
- Department of Chemistry, KTH Royal Institute of Technology, 10044, Stockholm, Sweden
| | - Johannes Röckl
- Department of Chemistry, KTH Royal Institute of Technology, 10044, Stockholm, Sweden
| | - Nils Schwarz
- Department of Chemistry, KTH Royal Institute of Technology, 10044, Stockholm, Sweden
| | - Jonas Djossou
- Department of Chemistry, KTH Royal Institute of Technology, 10044, Stockholm, Sweden
| | - Guillermo Ahumada
- Department of Chemistry, KTH Royal Institute of Technology, 10044, Stockholm, Sweden
| | - Mårten Ahlquist
- Department of Chemistry, KTH Royal Institute of Technology, 10044, Stockholm, Sweden
| | - Helena Lundberg
- Department of Chemistry, KTH Royal Institute of Technology, 10044, Stockholm, Sweden
| |
Collapse
|
2
|
Streuff J. Reductive Umpolung and Defunctionalization Reactions through Higher-Order Titanium(III) Catalysis. Synlett 2022. [DOI: 10.1055/s-0042-1751391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
AbstractThe single-electron transfer from an in situ formed titanium(III) catalyst to ketones, imines, nitriles, Michael acceptors, and many other functions has enabled a large number of intra- and intermolecular reductive umpolung reactions. Likewise, it allows the homolytic cleavage of functional groups for selective defunctionalizations. These reactions often take place with the participation of two titanium(III) species, avoiding free-radical pathways and enabling high catalyst control of the reaction selectivity. This account discusses the development of the individual reactions together with the fundamental mechanistic discoveries that led to a better understanding of such titanium(III)-catalyzed processes in general.1 Introduction2 Active Titanium(III) Species and Additives3 Ketone-Nitrile Couplings4 Further Reductive Umpolung Reactions5 Catalytic Homolytic C–CN and C–SO2R Cleavage6 Conclusion
Collapse
|
3
|
Schacht JH, Wu S, Klare S, Höthker S, Schmickler N, Gansäuer A. Polymethylhydrosiloxane (PMHS) as sustainable reductant in the titanocene catalyzed epoxide hydrosilylation. ChemCatChem 2022. [DOI: 10.1002/cctc.202200852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | - Shangze Wu
- Rheinische Friedrich-Wilhelms-Universitat Bonn Kekulé Instutu für Organische Chemie GERMANY
| | - Sven Klare
- Rheinische Friedrich-Wilhelms-Universitat Bonn Kekulé Institut für Organische Chemie GERMANY
| | - Sebastian Höthker
- Rheinische Friedrich-Wilhelms-Universitat Bonn Kekulé Institut für Organische Chemie GERMANY
| | - Niklas Schmickler
- Rheinische Friedrich-Wilhelms-Universitat Bonn Kekulé Institut für Organische Chemie GERMANY
| | - Andreas Gansäuer
- Universität Bonn Kekulé-Institut für Organische Chemie Gerhard Domagk Str. 1 53121 Bonn GERMANY
| |
Collapse
|
4
|
Wu X, Chang Y, Lin S. Titanium Radical Redox Catalysis: Recent Innovations in Catalysts, Reactions, and Modes of Activation. Chem 2022; 8:1805-1821. [PMID: 36213842 PMCID: PMC9543366 DOI: 10.1016/j.chempr.2022.06.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Radical chemistry has emerged as a cornerstone in modern organic synthesis, providing chemists with numerous new tools to rapidly expand reactivity and chemical space in academic and industrial research. In this regard, titanium complexes have been recognized as an attractive class of catalysts owing to their rich redox activities in addition to the abundance and low toxicity of this early transition metal. Traditionally employed for the activation of epoxides and carbonyl compounds, Ti radical redox catalysis has broken into new grounds in recent years, giving rise to a diverse repertoire of useful transformations. In this Perspective, we highlight recent developments in the area of TiIII/IV catalysis with respect to the activation of different types of chemical bonds. Furthermore, we discuss future opportunities in integrating Ti radical chemistry with other catalytic systems as well as with emerging new technologies such as photochemistry and electrochemistry.
Collapse
Affiliation(s)
- Xiangyu Wu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850, United States
| | - Yejin Chang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850, United States
| | - Song Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850, United States
| |
Collapse
|
5
|
Hilche T, Younas SL, Gansäuer A, Streuff J. A Guide to Low‐Valent Titanocene Complexes as Tunable Single‐Electron Transfer Catalysts for Applications in Organic Chemistry. ChemCatChem 2022. [DOI: 10.1002/cctc.202200530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Tobias Hilche
- Rheinische Friedrich-Wilhelms-Universitat Bonn Kekulé-Institut für Organische Chemie und Biochemie Gerhard-Domagk-Str. 1 53121 Bonn GERMANY
| | - Sara L. Younas
- Albert-Ludwigs-Universitat Freiburg Institut für Organische Chemie Albertstr. 21 79104 Freiburg im Breisgau GERMANY
| | - Andreas Gansäuer
- Rheinische Friedrich-Wilhelms-Universitat Bonn Kekulé-Institut für Organische Chemie und Biochemie Gerhard-Domagk-Str. 1 53121 Bonn GERMANY
| | - Jan Streuff
- Uppsala Universitet Department of Chemistry - BMC Husargatan 3 752 37 Uppsala SWEDEN
| |
Collapse
|
6
|
Watson I, Zhou Y, Ferguson M, Rivard E. Group 4 Transition Metal Complexes with Anionic N‐Heterocyclic Olefin Ligands. Z Anorg Allg Chem 2022. [DOI: 10.1002/zaac.202200082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | | | | | - Eric Rivard
- University of Alberta Deptm. of Chemistry 11227 Saskatchewan Dr. T6G 2G2 Edmonton CANADA
| |
Collapse
|
7
|
Matsunaga K, Endo R, Nagasawa K, Kishida A, Takatori K. Synthesis of Succinonitrile Derivatives by Homocoupling from Cyanohydrin Derivatives with a Low-Valent Titanium Reagent. J Org Chem 2022; 87:3707-3711. [PMID: 35049306 DOI: 10.1021/acs.joc.1c02643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A method is described for synthesizing succinonitrile derivatives bearing alkyl or aryl substituents from cyanohydrin derivatives using low-valent titanium. The active species in this reaction is proposed to be a resonance hybrid of the TiIV nitrile enolate and TiIII alkyl radical.
Collapse
Affiliation(s)
- Kazuma Matsunaga
- Graduate School of Pharmaceutical Sciences, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Ryusei Endo
- Graduate School of Pharmaceutical Sciences, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Kokoro Nagasawa
- Graduate School of Pharmaceutical Sciences, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Atsushi Kishida
- Graduate School of Pharmaceutical Sciences, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Kazuhiko Takatori
- Graduate School of Pharmaceutical Sciences, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| |
Collapse
|
8
|
Chu XQ, Ge D, Cui YY, Shen ZL, Li CJ. Desulfonylation via Radical Process: Recent Developments in Organic Synthesis. Chem Rev 2021; 121:12548-12680. [PMID: 34387465 DOI: 10.1021/acs.chemrev.1c00084] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
As the "chemical chameleon", sulfonyl-containing compounds and their variants have been merged with various types of reactions for the efficient construction of diverse molecular architectures by taking advantage of their incredible reactive flexibility. Currently, their involvement in radical transformations, in which the sulfonyl group typically acts as a leaving group via selective C-S, N-S, O-S, S-S, and Se-S bond cleavage/functionalization, has facilitated new bond formation strategies which are complementary to classical two-electron cross-couplings via organometallic or ionic intermediates. Considering the great influence and synthetic potential of these novel avenues, we summarize recent advances in this rapidly expanding area by discussing the reaction designs, substrate scopes, mechanistic studies, and their limitations, outlining the state-of-the-art processes involved in radical-mediated desulfonylation and related transformations. With a specific emphasis on their synthetic applications, we believe this review will be useful for medicinal and synthetic organic chemists who are interested in radical chemistry and radical-mediated desulfonylation in particular.
Collapse
Affiliation(s)
- Xue-Qiang Chu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Danhua Ge
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yan-Ying Cui
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zhi-Liang Shen
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Chao-Jun Li
- Department of Chemistry and FQRNT Centre for Green Chemistry and Catalysis, McGill University, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
9
|
Younas SL, Streuff J. Kinetic Analysis Uncovers Hidden Autocatalysis and Inhibition Pathways in Titanium(III)-Catalyzed Ketone-Nitrile Couplings. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02870] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Sara L. Younas
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104 Freiburg, Germany
| | - Jan Streuff
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104 Freiburg, Germany
- Department of Chemistry—BMC, Uppsala University, Husargatan 3, 75237 Uppsala, Sweden
| |
Collapse
|
10
|
Kern C, Selau J, Streuff J. A Titanium-Catalyzed Reductive α-Desulfonylation. Chemistry 2021; 27:6178-6182. [PMID: 33539578 PMCID: PMC8048938 DOI: 10.1002/chem.202005400] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/09/2021] [Indexed: 12/14/2022]
Abstract
A titanium(III)-catalyzed desulfonylation gives access to functionalized alkyl nitrile building blocks from α-sulfonyl nitriles, circumventing traditional base-mediated α-alkylation conditions and strong single electron donors. The reaction tolerates numerous functional groups including free alcohols, esters, amides, and it can be applied also to the α-desulfonylation of ketones. In addition, a one-pot desulfonylative alkylation is demonstrated. Preliminary mechanistic studies indicate a catalyst-dependent mechanism involving a homolytic C-S cleavage.
Collapse
Affiliation(s)
- Christoph Kern
- Institut für Organische ChemieAlbert-Ludwigs-Universität FreiburgAlbertstr. 2179104Freiburg im BreisgauGermany
| | - Jan Selau
- Institut für Organische ChemieAlbert-Ludwigs-Universität FreiburgAlbertstr. 2179104Freiburg im BreisgauGermany
| | - Jan Streuff
- Institut für Organische ChemieAlbert-Ludwigs-Universität FreiburgAlbertstr. 2179104Freiburg im BreisgauGermany
| |
Collapse
|