1
|
Thomson C, Sani MA, White KF, Abrahams BF, White JM. Host-Guest Interactions Facilitated by Chalcogen Bonding within Selenadiazole Functionalised Porphyrin Nanotubes. Chemistry 2024:e202403248. [PMID: 39513595 DOI: 10.1002/chem.202403248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
The structural rigidity of tetrakis(4-pyridyl)porphyrin (TPyP) has been utilised to prepare a robust novel porous coordination polymer of composition Cd2(TPyP)(sez)2 (TPyP=5,10,15,20-tetra(4-pyridyl)porphyrin, sez=1,2,5-benzoselenadiazole-5-carboxylate). The coordination polymer may be described as a hexagonal porphyrin nanotube (PNT) and has the potential to bind guest molecules through chalcogen bonding. Single crystal X-ray diffraction (SCXRD) data indicate an internal pore diameter ~9 Å which represents ~35 % of the crystal volume. Immersion of the PNTs in solvents such as DMSO and CS2 result in the incorporation of these molecules within the nanotubes with chalcogen bonding between host and guest. The crystallographic guest-inclusion investigations are complemented by solid-state 77Se, 13C, 113Cd and 2H NMR studies which provide insights into dynamic behaviour. The porosity of the crystals was further explored using gas adsorption experiments, indicating the reversible uptake of CO2, CH4, H2 and N2. Structure-function relationships are clearly established from complementary crystallographic, NMR and adsorption investigations.
Collapse
Affiliation(s)
- Catriona Thomson
- School of Chemistry, The University of Melbourne, Parkville, Victoria, 3010, Australia
- The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Marc-Antoine Sani
- School of Chemistry, The University of Melbourne, Parkville, Victoria, 3010, Australia
- The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Keith F White
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Brendan F Abrahams
- School of Chemistry, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Jonathan M White
- School of Chemistry, The University of Melbourne, Parkville, Victoria, 3010, Australia
- The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
2
|
Simões MMQ, Cavaleiro JAS, Ferreira VF. Recent Synthetic Advances on the Use of Diazo Compounds Catalyzed by Metalloporphyrins. Molecules 2023; 28:6683. [PMID: 37764459 PMCID: PMC10537418 DOI: 10.3390/molecules28186683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Diazo compounds are organic substances that are often used as precursors in organic synthesis like cyclization reactions, olefinations, cyclopropanations, cyclopropenations, rearrangements, and carbene or metallocarbene insertions into C-H, N-H, O-H, S-H, and Si-H bonds. Typically, reactions from diazo compounds are catalyzed by transition metals with various ligands that modulate the capacity and selectivity of the catalyst. These ligands can modify and enhance chemoselectivity in the substrate, regioselectivity and enantioselectivity by reflecting these preferences in the products. Porphyrins have been used as catalysts in several important reactions for organic synthesis and also in several medicinal applications. In the chemistry of diazo compounds, porphyrins are very efficient as catalysts when complexed with low-cost metals (e.g., Fe and Co) and, therefore, in recent years, this has been the subject of significant research. This review will summarize the advances in the studies involving the field of diazo compounds catalyzed by metalloporphyrins (M-Porph, M = Fe, Ru, Os, Co, Rh, Ir) in the last five years to provide a clear overview and possible opportunities for future applications. Also, at the end of this review, the properties of artificial metalloenzymes and hemoproteins as biocatalysts for a broad range of applications, namely those concerning carbene-transfer reactions, will be considered.
Collapse
Affiliation(s)
- Mário M. Q. Simões
- Department of Chemistry & LAQV-REQUIMTE, University of Aveiro, 3810-193 Aveiro, Portugal; (M.M.Q.S.); (J.A.S.C.)
| | - José A. S. Cavaleiro
- Department of Chemistry & LAQV-REQUIMTE, University of Aveiro, 3810-193 Aveiro, Portugal; (M.M.Q.S.); (J.A.S.C.)
| | - Vitor F. Ferreira
- Departamento de Tecnologia Farmacêutica Química, Universidade Federal Fluminense, Niterói 24241-002, RJ, Brazil
| |
Collapse
|
3
|
Epping RF, Vesseur D, Zhou M, de Bruin B. Carbene Radicals in Transition-Metal-Catalyzed Reactions. ACS Catal 2023; 13:5428-5448. [PMID: 37123600 PMCID: PMC10127290 DOI: 10.1021/acscatal.3c00591] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/21/2023] [Indexed: 04/08/2023]
Abstract
Discovered as organometallic curiosities in the 1970s, carbene radicals have become a staple in modern-day homogeneous catalysis. Carbene radicals exhibit nucleophilic radical-type reactivity orthogonal to classical electrophilic diamagnetic Fischer carbenes. Their successful catalytic application has led to the synthesis of a myriad of carbo- and heterocycles, ranging from simple cyclopropanes to more challenging eight-membered rings. The field has matured to employ densely functionalized chiral porphyrin-based platforms that exhibit high enantio-, regio-, and stereoselectivity. Thus far the focus has largely been on cobalt-based systems, but interest has been growing for the past few years to expand the application of carbene radicals to other transition metals. This Perspective covers the advances made since 2011 and gives an overview on the coordination chemistry, reactivity, and catalytic application of carbene radical species using transition metal complexes and catalysts.
Collapse
Affiliation(s)
- Roel F.J. Epping
- Homogeneous, Supramolecular and Bio-Inspired Catalysis Group, van ‘t Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - David Vesseur
- Homogeneous, Supramolecular and Bio-Inspired Catalysis Group, van ‘t Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Minghui Zhou
- Homogeneous, Supramolecular and Bio-Inspired Catalysis Group, van ‘t Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Bas de Bruin
- Homogeneous, Supramolecular and Bio-Inspired Catalysis Group, van ‘t Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
4
|
Davies JA, Tarzia A, Ronson TK, Auras F, Jelfs KE, Nitschke JR. Tetramine Aspect Ratio and Flexibility Determine Framework Symmetry for Zn 8 L 6 Self-Assembled Structures. Angew Chem Int Ed Engl 2023; 62:e202217987. [PMID: 36637345 PMCID: PMC10946785 DOI: 10.1002/anie.202217987] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/14/2023]
Abstract
We derive design principles for the assembly of rectangular tetramines into Zn8 L6 pseudo-cubic coordination cages. Because of the rectangular, as opposed to square, geometry of the ligand panels, and the possibility of either Δ or Λ handedness of each metal center at the eight corners of the pseudo-cube, many different cage diastereomers are possible. Each of the six tetra-aniline subcomponents investigated in this work assembled with zinc(II) and 2-formylpyridine in acetonitrile into a single Zn8 L6 pseudo-cube diastereomer, however. Each product corresponded to one of four diastereomeric configurations, with T, Th , S6 or D3 symmetry. The preferred diastereomer for a given tetra-aniline subcomponent was shown to be dependent on its aspect ratio and conformational flexibility. Analysis of computationally modeled individual faces or whole pseudo-cubes provided insight as to why the observed diastereomers were favored.
Collapse
Affiliation(s)
- Jack A. Davies
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Andrew Tarzia
- Department of ChemistryMolecular Sciences Research HubImperial College London White City CampusWood LaneLondonW12 0BZUK
| | - Tanya K. Ronson
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Florian Auras
- Department of Synthetic Materials and Functional DevicesMax-Planck Institute of Microstructure PhysicsWeinberg 206120HalleGermany
| | - Kim E. Jelfs
- Department of ChemistryMolecular Sciences Research HubImperial College London White City CampusWood LaneLondonW12 0BZUK
| | - Jonathan R. Nitschke
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| |
Collapse
|
5
|
Metallocavitins as Advanced Enzyme Mimics and Promising Chemical Catalysts. Catalysts 2023. [DOI: 10.3390/catal13020415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
The supramolecular approach is becoming increasingly dominant in biomimetics and chemical catalysis due to the expansion of the enzyme active center idea, which now includes binding cavities (hydrophobic pockets), channels and canals for transporting substrates and products. For a long time, the mimetic strategy was mainly focused on the first coordination sphere of the metal ion. Understanding that a highly organized cavity-like enzymatic pocket plays a key role in the sophisticated functionality of enzymes and that the activity and selectivity of natural metalloenzymes are due to the effects of the second coordination sphere, created by the protein framework, opens up new perspectives in biomimetic chemistry and catalysis. There are two main goals of mimicking enzymatic catalysis: (1) scientific curiosity to gain insight into the mysterious nature of enzymes, and (2) practical tasks of mankind: to learn from nature and adopt from its many years of evolutionary experience. Understanding the chemistry within the enzyme nanocavity (confinement effect) requires the use of relatively simple model systems. The performance of the transition metal catalyst increases due to its retention in molecular nanocontainers (cavitins). Given the greater potential of chemical synthesis, it is hoped that these promising bioinspired catalysts will achieve catalytic efficiency and selectivity comparable to and even superior to the creations of nature. Now it is obvious that the cavity structure of molecular nanocontainers and the real possibility of modifying their cavities provide unlimited possibilities for simulating the active centers of metalloenzymes. This review will focus on how chemical reactivity is controlled in a well-defined cavitin nanospace. The author also intends to discuss advanced metal–cavitin catalysts related to the study of the main stages of artificial photosynthesis, including energy transfer and storage, water oxidation and proton reduction, as well as highlight the current challenges of activating small molecules, such as H2O, CO2, N2, O2, H2, and CH4.
Collapse
|
6
|
Li TR, Piccini G, Tiefenbacher K. Supramolecular Capsule-Catalyzed Highly β-Selective Furanosylation Independent of the S N1/S N2 Reaction Pathway. J Am Chem Soc 2023; 145:4294-4303. [PMID: 36751707 DOI: 10.1021/jacs.2c13641] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The resorcin[4]arene capsule was found to catalyze β-selective furanosylation reactions for a variety of different furanosyl donors: α-d- and α-l-arabinosyl-, α-l-fucosyl-, α-d-ribosyl-, α-d-xylosyl-, and even α-d-lyxosyl fluorides. The scope is only limited by the inherently finite volume inside the closed capsular catalyst. The catalyst is readily available on a multi-100 g scale and can be recycled for at least seven rounds without significant loss in activity, yield, and selectivity. The mechanistic investigations indicated that the furanosylation mechanism is shifted toward an SN1 reaction on the mechanistic continuum between the prototypical SN1 and SN2 substitution types, as compared to the pyranosylation reaction inside the same catalyst. This is especially true for the lyxosyl donor, as indicated by the nucleophile reaction order of 0.26, and supported by metadynamics calculations. The mechanistic shift toward SN1 is of high interest as it indicates that this catalyst not only enables β-selective furanosylations and pyranoslyations independently of the substrate configuration but in addition also independently of the operating mechanism. To our knowledge, there is no alternative catalyst available that displays such properties.
Collapse
Affiliation(s)
- Tian-Ren Li
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland
- NCCR Molecular Systems Engineering, BPR 1095, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - GiovanniMaria Piccini
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Konrad Tiefenbacher
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland
- NCCR Molecular Systems Engineering, BPR 1095, Mattenstrasse 24a, 4058 Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| |
Collapse
|
7
|
Matviyishyn M, Białońska A, Szyszko B. Crownphyrins: Metal-Mediated Transformations of the Porphyrin-Crown Ether Hybrids. Angew Chem Int Ed Engl 2022; 61:e202211671. [PMID: 36214485 PMCID: PMC10098552 DOI: 10.1002/anie.202211671] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Indexed: 11/06/2022]
Abstract
Crownphyrins are hybrid macrocycles combining structural features of porphyrin and crown ethers. The molecular architecture renders them an intriguing class of hosts capable of binding neutral, and ionic guests. The presence of dynamic covalent imine linkages connecting the dipyrrin segment with the ether chain enables unusual coordination behavior of crownphyrins, as demonstrated by the formation of two classes of strikingly different complexes. The remarkable metal-mediated expansion to the helical [2+2] macrocyclic complex is reversible. The reaction of the figure-eight mercury(II) assembly with [2.2.2]cryptand results in ring contraction providing the metal-free crownphyrin macrocycle.
Collapse
Affiliation(s)
- Maksym Matviyishyn
- Faculty of ChemistryUniversity of Wrocław14 F. Joliot-Curie St.50-383WrocławPoland
| | - Agata Białońska
- Faculty of ChemistryUniversity of Wrocław14 F. Joliot-Curie St.50-383WrocławPoland
| | - Bartosz Szyszko
- Faculty of ChemistryUniversity of Wrocław14 F. Joliot-Curie St.50-383WrocławPoland
| |
Collapse
|
8
|
Pfrunder MC, Marshall DL, Poad BLJ, Stovell EG, Loomans BI, Blinco JP, Blanksby SJ, McMurtrie JC, Mullen KM. Exploring the Gas-Phase Formation and Chemical Reactivity of Highly Reduced M 8 L 6 Coordination Cages. Angew Chem Int Ed Engl 2022; 61:e202212710. [PMID: 36102176 PMCID: PMC9827999 DOI: 10.1002/anie.202212710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Indexed: 01/12/2023]
Abstract
Coordination cages with well-defined cavities show great promise in the field of catalysis on account of their unique combination of molecular confinement effects and transition-metal redox chemistry. Here, three coordination cages are reduced from their native 16+ oxidation state to the 2+ state in the gas phase without observable structural degradation. Using this method, the reaction rate constants for each reduction step were determined, with no noticeable differences arising following either the incorporation of a C60 -fullerene guest or alteration of the cage chemical structure. The reactivity of highly reduced cage species toward molecular oxygen is "switched-on" after a threshold number of reduction steps, which is influenced by guest molecules and the structure of cage components. These new experimental approaches provide a unique window to explore the chemistry of highly-reduced cage species that can be modulated by altering their structures and encapsulated guest species.
Collapse
Affiliation(s)
- Michael C. Pfrunder
- Centre for Materials Science (CFMS)Queensland University of Technology (QUT)2 George StreetBrisbaneQueensland4000Australia
- School of Chemistry and PhysicsQueensland University of Technology2 George StreetBrisbaneQueensland4000Australia
| | - David L. Marshall
- Centre for Materials Science (CFMS)Queensland University of Technology (QUT)2 George StreetBrisbaneQueensland4000Australia
- Central Analytical Research Facility (CARF)Queensland University of Technology2 George StreetBrisbaneQueensland4000Australia
| | - Berwyck L. J. Poad
- Centre for Materials Science (CFMS)Queensland University of Technology (QUT)2 George StreetBrisbaneQueensland4000Australia
- School of Chemistry and PhysicsQueensland University of Technology2 George StreetBrisbaneQueensland4000Australia
- Central Analytical Research Facility (CARF)Queensland University of Technology2 George StreetBrisbaneQueensland4000Australia
| | - Ethan G. Stovell
- School of Chemistry and PhysicsQueensland University of Technology2 George StreetBrisbaneQueensland4000Australia
| | - Benjamin I. Loomans
- Centre for Materials Science (CFMS)Queensland University of Technology (QUT)2 George StreetBrisbaneQueensland4000Australia
- School of Chemistry and PhysicsQueensland University of Technology2 George StreetBrisbaneQueensland4000Australia
| | - James P. Blinco
- Centre for Materials Science (CFMS)Queensland University of Technology (QUT)2 George StreetBrisbaneQueensland4000Australia
- School of Chemistry and PhysicsQueensland University of Technology2 George StreetBrisbaneQueensland4000Australia
| | - Stephen J. Blanksby
- Centre for Materials Science (CFMS)Queensland University of Technology (QUT)2 George StreetBrisbaneQueensland4000Australia
- School of Chemistry and PhysicsQueensland University of Technology2 George StreetBrisbaneQueensland4000Australia
- Central Analytical Research Facility (CARF)Queensland University of Technology2 George StreetBrisbaneQueensland4000Australia
| | - John C. McMurtrie
- Centre for Materials Science (CFMS)Queensland University of Technology (QUT)2 George StreetBrisbaneQueensland4000Australia
- School of Chemistry and PhysicsQueensland University of Technology2 George StreetBrisbaneQueensland4000Australia
| | - Kathleen M. Mullen
- Centre for Materials Science (CFMS)Queensland University of Technology (QUT)2 George StreetBrisbaneQueensland4000Australia
- School of Chemistry and PhysicsQueensland University of Technology2 George StreetBrisbaneQueensland4000Australia
| |
Collapse
|
9
|
Blackburn PT, Lipke MC. Effects of a triangular nanocage structure on the binding of neutral and anionic ligands to Co II and Zn II porphyrins. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2128786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- P. Thomas Blackburn
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Mark C. Lipke
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| |
Collapse
|
10
|
Sokolova D, Piccini G, Tiefenbacher K. Enantioselective Tail-to-Head Terpene Cyclizations by Optically Active Hexameric Resorcin[4]arene Capsule Derivatives. Angew Chem Int Ed Engl 2022; 61:e202203384. [PMID: 35324038 PMCID: PMC9323437 DOI: 10.1002/anie.202203384] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Indexed: 01/01/2023]
Abstract
Molecular capsules enable the conversion of substrates inside a closed cavity, mimicking to some extent enzymatic catalysis. Chirality transfer from the molecular capsule onto the encapsulated substrate has been only studied in a few cases. Here we demonstrate that chirality transfer is possible inside a rather large molecular container of approximately 1400 Å3 . Specifically, we present 1) the first examples of optically active hexameric resorcin[4]arene capsules, 2) their ability to enantioselectively catalyze tail-to-head terpene cyclizations, and 3) the surprisingly high sensitivity of enantioselectivity on the structural modifications.
Collapse
Affiliation(s)
- Daria Sokolova
- Department of ChemistryUniversity of BaselMattenstrasse 24a4058BaselSwitzerland
| | - GiovanniMaria Piccini
- Facoltà di Informatica, Istituto EuleroUniversità della Svizzera Italiana (USI)LuganoSwitzerland
| | - Konrad Tiefenbacher
- Department of ChemistryUniversity of BaselMattenstrasse 24a4058BaselSwitzerland
- Department of Biosystems Science and EngineeringETH ZurichMattenstrasse 264058BaselSwitzerland
| |
Collapse
|
11
|
Xue W, Ronson TK, Lu Z, Nitschke JR. Solvent Drives Switching between Λ and Δ Metal Center Stereochemistry of M 8L 6 Cubic Cages. J Am Chem Soc 2022; 144:6136-6142. [PMID: 35364808 PMCID: PMC9098163 DOI: 10.1021/jacs.2c00245] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
An
enantiopure ligand with four bidentate metal-binding sites and
four (S)-carbon stereocenters self-assembles with
octahedral ZnII or CoII to produce O-symmetric M8L6 coordination cages. The Λ-
or Δ-handedness of the metal centers forming the corners of
these cages is determined by the solvent environment: the same (S)-ligand produces one diastereomer, (S)24-Λ8-M8L6, in
acetonitrile but another with opposite metal-center handedness, (S)24-Δ8-M8L6, in nitromethane. Van ’t Hoff analysis revealed the Δ
stereochemical configuration to be entropically favored but enthalpically
disfavored, consistent with a loosening of the coordination sphere
and an increase in conformational freedom following Λ-to-Δ
transition. The binding of 4,4′-dipyridyl naphthalenediimide
and tetrapyridyl Zn-porphyrin guests did not interfere with the solvent-driven
stereoselectivity of self-assembly, suggesting applications where
either a Λ- or Δ-handed framework may enable chiral separations
or catalysis.
Collapse
Affiliation(s)
- Weichao Xue
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Tanya K Ronson
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Zifei Lu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Jonathan R Nitschke
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
12
|
Sokolova D, Piccini G, Tiefenbacher K. Enantioselective Tail‐to‐Head Terpene Cyclizations by Optically Active Hexameric Resorcin[4]arene Capsule Derivatives. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Daria Sokolova
- University of Basel: Universitat Basel Chemistry SWITZERLAND
| | - GiovanniMaria Piccini
- Università della Svizzera Italiana: Universita della Svizzera Italiana Informatica SWITZERLAND
| | | |
Collapse
|
13
|
Mouarrawis V, Bobylev EO, Bruin B, Reek JNH. Controlling the Activity of a Caged Cobalt‐Porphyrin‐Catalyst in Cyclopropanation Reactions with Peripheral Cage Substituents. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Valentinos Mouarrawis
- Homogeneous and Supramolecular Catalysis Group Van' t Hoff Institute for Molecular Science (HIMS) University of Amsterdam (UvA) Science Park 904 1098 XH Amsterdam The Netherlands
| | - Eduard O. Bobylev
- Homogeneous and Supramolecular Catalysis Group Van' t Hoff Institute for Molecular Science (HIMS) University of Amsterdam (UvA) Science Park 904 1098 XH Amsterdam The Netherlands
| | - Bas Bruin
- Homogeneous and Supramolecular Catalysis Group Van' t Hoff Institute for Molecular Science (HIMS) University of Amsterdam (UvA) Science Park 904 1098 XH Amsterdam The Netherlands
| | - Joost N. H. Reek
- Homogeneous and Supramolecular Catalysis Group Van' t Hoff Institute for Molecular Science (HIMS) University of Amsterdam (UvA) Science Park 904 1098 XH Amsterdam The Netherlands
| |
Collapse
|
14
|
Mouarrawis V, Bobylev EO, de Bruin B, Reek JNH. A Novel M 8 L 6 Cubic Cage That Binds Tetrapyridyl Porphyrins: Cage and Solvent Effects in Cobalt-Porphyrin-Catalyzed Cyclopropanation Reactions. Chemistry 2021; 27:8390-8397. [PMID: 33780040 PMCID: PMC8252039 DOI: 10.1002/chem.202100344] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Indexed: 12/17/2022]
Abstract
Confinement of a catalyst can have a significant impact on catalytic performance and can lead to otherwise difficult to achieve catalyst properties. Herein, we report the design and synthesis of a novel caged catalyst system Co-G@Fe8 (Zn-L ⋅ 1)6 , which is soluble in both polar and apolar solvents without the necessity of any post-functionalization. This is a rare example of a metal-coordination cage able to bind catalytically active porphyrins that is soluble in solvents spanning a wide variety of polarity. This system was used to investigate the combined effects of the solvent and the cage on the catalytic performance in the cobalt catalyzed cyclopropanation of styrene, which involves radical intermediates. Kinetic studies show that DMF has a protective influence on the catalyst, slowing down deactivation of both [Co(TPP)] and Co-G@Fe8 (Zn-L ⋅ 1)6 , leading to higher TONs in this solvent. Moreover, DFT studies on the [Co(TPP)] catalyst show that the rate determining energy barrier of this radical-type transformation is not influenced by the coordination of DMF. As such, the increased TONs obtained experimentally stem from the stabilizing effect of DMF and are not due to an intrinsic higher activity caused by axial ligand binding to the cobalt center ([Co(TPP)(L)]). Remarkably, encapsulation of Co-G led to a three times more active catalyst than [Co(TPP)] (TOFini ) and a substantially increased TON compared to both [Co(TPP)] and free Co-G. The increased local concentration of the substrates in the hydrophobic cage compared to the bulk explains the observed higher catalytic activities.
Collapse
Affiliation(s)
- Valentinos Mouarrawis
- Homogeneous and Supramolecular Catalysis Group, Van' t Hoff Institute for Molecular Science (HIMS), University of Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Eduard O Bobylev
- Homogeneous and Supramolecular Catalysis Group, Van' t Hoff Institute for Molecular Science (HIMS), University of Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Bas de Bruin
- Homogeneous and Supramolecular Catalysis Group, Van' t Hoff Institute for Molecular Science (HIMS), University of Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Joost N H Reek
- Homogeneous and Supramolecular Catalysis Group, Van' t Hoff Institute for Molecular Science (HIMS), University of Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|