1
|
Cavalli ES, Mies T, Rzepa HS, White AJP, Parsons PJ, Barrett AG. Pyrimidine Nucleosides Syntheses by Late-Stage Base Heterocyclization Reactions. Org Lett 2022; 24:8931-8935. [DOI: 10.1021/acs.orglett.2c03152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Elfie S. Cavalli
- Department of Chemistry, Molecular Sciences Research Hub, White City Campus, Imperial College London, 82 Wood Lane, London W12 0BZ, England
| | - Thomas Mies
- Department of Chemistry, Molecular Sciences Research Hub, White City Campus, Imperial College London, 82 Wood Lane, London W12 0BZ, England
| | - Henry S. Rzepa
- Department of Chemistry, Molecular Sciences Research Hub, White City Campus, Imperial College London, 82 Wood Lane, London W12 0BZ, England
| | - Andrew J. P. White
- Department of Chemistry, Molecular Sciences Research Hub, White City Campus, Imperial College London, 82 Wood Lane, London W12 0BZ, England
| | - Philip J. Parsons
- Department of Chemistry, Molecular Sciences Research Hub, White City Campus, Imperial College London, 82 Wood Lane, London W12 0BZ, England
| | - Anthony G.M. Barrett
- Department of Chemistry, Molecular Sciences Research Hub, White City Campus, Imperial College London, 82 Wood Lane, London W12 0BZ, England
| |
Collapse
|
2
|
Arroyo M, Hastert FD, Zhadan A, Schelter F, Zimbelmann S, Rausch C, Ludwig AK, Carell T, Cardoso MC. Isoform-specific and ubiquitination dependent recruitment of Tet1 to replicating heterochromatin modulates methylcytosine oxidation. Nat Commun 2022; 13:5173. [PMID: 36056023 PMCID: PMC9440122 DOI: 10.1038/s41467-022-32799-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 08/15/2022] [Indexed: 01/26/2023] Open
Abstract
Oxidation of the epigenetic DNA mark 5-methylcytosine by Tet dioxygenases is an established route to diversify the epigenetic information, modulate gene expression and overall cellular (patho-)physiology. Here, we demonstrate that Tet1 and its short isoform Tet1s exhibit distinct nuclear localization during DNA replication resulting in aberrant cytosine modification levels in human and mouse cells. We show that Tet1 is tethered away from heterochromatin via its zinc finger domain, which is missing in Tet1s allowing its targeting to these regions. We find that Tet1s interacts with and is ubiquitinated by CRL4(VprBP). The ubiquitinated Tet1s is then recognized by Uhrf1 and recruited to late replicating heterochromatin. This leads to spreading of 5-methylcytosine oxidation to heterochromatin regions, LINE 1 activation and chromatin decondensation. In summary, we elucidate a dual regulation mechanism of Tet1, contributing to the understanding of how epigenetic information can be diversified by spatio-temporal directed Tet1 catalytic activity.
Collapse
Affiliation(s)
- María Arroyo
- grid.6546.10000 0001 0940 1669Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, Schnittspahnstr. 10, 64287 Darmstadt, Germany
| | - Florian D. Hastert
- grid.6546.10000 0001 0940 1669Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, Schnittspahnstr. 10, 64287 Darmstadt, Germany ,grid.425396.f0000 0001 1019 0926Section AIDS and newly emerging pathogens, Paul Ehrlich Institute, Paul-Ehrlich-Str. 51-59, 63225 Langen, Germany
| | - Andreas Zhadan
- grid.6546.10000 0001 0940 1669Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, Schnittspahnstr. 10, 64287 Darmstadt, Germany
| | - Florian Schelter
- grid.5252.00000 0004 1936 973XDepartment of Chemistry, Ludwig Maximilians University, Butenandstr. 5-13, 81377 Munich, Germany
| | - Susanne Zimbelmann
- grid.6546.10000 0001 0940 1669Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, Schnittspahnstr. 10, 64287 Darmstadt, Germany
| | - Cathia Rausch
- grid.6546.10000 0001 0940 1669Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, Schnittspahnstr. 10, 64287 Darmstadt, Germany ,grid.16008.3f0000 0001 2295 9843Present Address: Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 6, avenue du Swing, L-4367 Belvaux, Luxembourg
| | - Anne K. Ludwig
- grid.6546.10000 0001 0940 1669Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, Schnittspahnstr. 10, 64287 Darmstadt, Germany ,grid.5253.10000 0001 0328 4908Present Address: Department of Medicine, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Thomas Carell
- grid.5252.00000 0004 1936 973XDepartment of Chemistry, Ludwig Maximilians University, Butenandstr. 5-13, 81377 Munich, Germany
| | - M. Cristina Cardoso
- grid.6546.10000 0001 0940 1669Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, Schnittspahnstr. 10, 64287 Darmstadt, Germany
| |
Collapse
|
3
|
Fleming AM, Chabot MB, Nguyen NLB, Burrows CJ. Collateral Damage Occurs When Using Photosensitizer Probes to Detect or Modulate Nucleic Acid Modifications. Angew Chem Int Ed Engl 2022; 61:e202110649. [PMID: 34919767 PMCID: PMC8810719 DOI: 10.1002/anie.202110649] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Indexed: 12/23/2022]
Abstract
Nucleic acids are chemically modified to fine-tune their properties for biological function. Chemical tools for selective tagging of base modifications enables new approaches; the photosensitizers riboflavin and anthraquinone were previously proposed to oxidize N6 -methyladenine (m6 A) or 5-methylcytosine (5mdC) selectively. Herein, riboflavin, anthraquinone, or Rose Bengal were allowed to react with the canonical nucleosides dA, dC, dG, and dT, and the modified bases 5mdC, m6 A, 8-oxoguanine (dOG), and 8-oxoadenine (dOA) to rank their reactivities. The nucleoside studies reveal that dOG is the most reactive and that the native nucleoside dG is higher or similar in reactivity to 5mdC or m6 A; competition in both single- and double-stranded DNA of dG vs. 5mdC or 6mdA for oxidant confirmed that dG is favorably oxidized. Thus, photosensitizers are promiscuous nucleic acid oxidants with poor chemoselectivity that will negatively impact attempts at targeted oxidation of modified nucleotides in cells.
Collapse
Affiliation(s)
- Aaron M. Fleming
- Department of Chemistry, University of Utah, 315 S 1400 East, Salt Lake City, UT 84112-0850
| | - Michael B. Chabot
- Department of Chemistry, University of Utah, 315 S 1400 East, Salt Lake City, UT 84112-0850
| | - Ngoc L. B. Nguyen
- Department of Chemistry, University of Utah, 315 S 1400 East, Salt Lake City, UT 84112-0850
| | - Cynthia J. Burrows
- Department of Chemistry, University of Utah, 315 S 1400 East, Salt Lake City, UT 84112-0850
| |
Collapse
|
4
|
Fleming AM, Chabot MB, Nguyen NLB, Burrows CJ. Collateral Damage Occurs When Using Photosensitizer Probes to Detect or Modulate Nucleic Acid Modifications. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Aaron M. Fleming
- Department of Chemistry University of Utah 315 S 1400 East Salt Lake City Ut84112-0850 USA
| | - Michael B. Chabot
- Department of Chemistry University of Utah 315 S 1400 East Salt Lake City Ut84112-0850 USA
| | - Ngoc L. B. Nguyen
- Department of Chemistry University of Utah 315 S 1400 East Salt Lake City Ut84112-0850 USA
| | - Cynthia J. Burrows
- Department of Chemistry University of Utah 315 S 1400 East Salt Lake City Ut84112-0850 USA
| |
Collapse
|
5
|
Schelter F, Kirchner A, Traube FR, Müller M, Steglich W, Carell T. 5-Hydroxymethyl-, 5-Formyl- and 5-Carboxydeoxycytidines as Oxidative Lesions and Epigenetic Marks. Chemistry 2021; 27:8100-8104. [PMID: 33769637 PMCID: PMC8252671 DOI: 10.1002/chem.202100551] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Indexed: 01/20/2023]
Abstract
The four non-canonical nucleotides in the human genome 5-methyl-, 5-hydroxymethyl-, 5-formyl- and 5-carboxydeoxycytidine (mdC, hmdC, fdC and cadC) form a second layer of epigenetic information that contributes to the regulation of gene expression. Formation of the oxidized nucleotides hmdC, fdC and cadC requires oxidation of mdC by ten-eleven translocation (Tet) enzymes that require oxygen, Fe(II) and α-ketoglutarate as cosubstrates. Although these oxidized forms of mdC are widespread in mammalian genomes, experimental evidence for their presence in fungi and plants is ambiguous. This vagueness is caused by the fact that these oxidized mdC derivatives are also formed as oxidative lesions, resulting in unclear basal levels that are likely to have no epigenetic function. Here, we report the xdC levels in the fungus Amanita muscaria in comparison to murine embryonic stem cells (mESCs), HEK cells and induced pluripotent stem cells (iPSCs), to obtain information about the basal levels of hmdC, fdC and cadC as DNA lesions in the genome.
Collapse
Affiliation(s)
- Florian Schelter
- Ludwigs-Maximilian-Universität MünchenButenandtstr. 5–1381377MunichGermany
| | - Angie Kirchner
- Ludwigs-Maximilian-Universität MünchenButenandtstr. 5–1381377MunichGermany
- Cancer Research UK Cambridge InstituteLi Ka Shing CentreUniversity of CambridgeCambridgeCB2 0REUK
| | | | - Markus Müller
- Ludwigs-Maximilian-Universität MünchenButenandtstr. 5–1381377MunichGermany
| | - Wolfgang Steglich
- Ludwigs-Maximilian-Universität MünchenButenandtstr. 5–1381377MunichGermany
| | - Thomas Carell
- Ludwigs-Maximilian-Universität MünchenButenandtstr. 5–1381377MunichGermany
| |
Collapse
|