1
|
Jacob C, Annibaletto J, Peng J, Bai R, Maes BUW, Lan Y, Evano G. Rhodium-Catalyzed Direct ortho-Arylation of Anilines. Angew Chem Int Ed Engl 2024; 63:e202403553. [PMID: 38683292 DOI: 10.1002/anie.202403553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/01/2024]
Abstract
An efficient and broadly applicable rhodium-catalyzed direct ortho-arylation of anilines with aryl iodides relying on readily available aminophosphines as traceless directing groups is reported. Its scope and functional group compatibility were both found to be quite broad as a large variety of both aminophosphines and (hetero)aryl iodides, including complex ones, could be utilized. The ortho-arylated anilines could be obtained in high average yields, without any competing diarylation and with full regioselectivity, which constitutes a major step forward compared to other processes. The reaction is moreover not limited to aryl iodides, as an aryl bromide and a triflate could be successfully used, and could be extended to diarylation. Mechanistic studies revealed the key and unique role of the aminophosphine, acting not only as a substrate but also as a ligand for the rhodium catalyst.
Collapse
Affiliation(s)
- Clément Jacob
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP 160/06, 1050, Brussels, Belgium
- Organic Synthesis Division, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Julien Annibaletto
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP 160/06, 1050, Brussels, Belgium
| | - Ju Peng
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 401331, China
| | - Ruopeng Bai
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 401331, China
| | - Bert U W Maes
- Organic Synthesis Division, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Yu Lan
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 401331, China
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Gwilherm Evano
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP 160/06, 1050, Brussels, Belgium
- WEL Research Institute, Avenue Pasteur 6, 1300, Wavre, Belgium
| |
Collapse
|
2
|
Luo J, Montag M, Milstein D. Metal-Ligand Cooperation with Thiols as Transient Cooperative Ligands: Acceleration and Inhibition Effects in (De)Hydrogenation Reactions. Acc Chem Res 2024; 57:1709-1721. [PMID: 38833580 PMCID: PMC11191399 DOI: 10.1021/acs.accounts.4c00198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 06/06/2024]
Abstract
ConspectusOver the past two decades, we have developed a series of pincer-type transition metal complexes capable of activating strong covalent bonds through a mode of reactivity known as metal-ligand cooperation (MLC). In such systems, an incoming substrate molecule simultaneously interacts with both the metal center and ligand backbone, with one part of the molecule reacting at the metal center and another part at the ligand. The majority of these complexes feature pincer ligands with a pyridine core, and undergo MLC through reversible dearomatization/aromatization of this pyridine moiety. This MLC platform has enabled us to perform a variety of catalytic dehydrogenation, hydrogenation, and related reactions, with high efficiency and selectivity under relatively mild conditions.In a typical catalytic complex that operates through MLC, the cooperative ligand remains coordinated to the metal center throughout the entire catalytic process, and this complex is the only catalytic species involved in the reaction. As part of our ongoing efforts to develop new catalytic systems featuring MLC, we have recently introduced the concept of transient cooperative ligand (TCL), i.e., a ligand that is capable of MLC when coordinated to a metal center, but the coordination of which is reversible rather than permanent. We have thus far employed thiol(ate)s as TCLs, in conjunction with an acridanide-based ruthenium(II)-pincer catalyst, and this has resulted in remarkable acceleration and inhibition effects in various hydrogenation and dehydrogenation reactions. A cooperative thiol(ate) ligand can be installed in situ by the simple addition of an appropriate thiol in an amount equivalent to the catalyst, and this has been repeatedly shown to enable efficient bond activation by MLC without the need for other additives, such as base. The use of an ancillary thiol ligand that is not fixed to the pincer backbone allows the catalytic system to benefit from a high degree of tunability, easily implemented by varying the added thiol. Importantly, thiols are coordinatively labile enough under typical catalytic conditions to leave a meaningful portion of the catalyst in its original unsaturated form, thereby allowing it to carry out its own characteristic catalytic activity. This generates two coexisting catalyst populations─one that contains a thiol(ate) ligand and another that does not─and this may lead to different catalytic outcomes, namely, enhancement of the original catalytic activity, inhibition of this activity, or the occurrence of diverging reactivities within the same catalytic reaction mixture. These thiol effects have enabled us to achieve a series of unique transformations, such as thiol-accelerated base-free aqueous methanol reforming, controlled stereodivergent semihydrogenation of alkynes using thiol as a reversible catalyst inhibitor, and hydrogenative perdeuteration of C═C bonds without using D2, enabled by a combination of thiol-induced acceleration and inhibition. We have also successfully realized the unprecedented formation of thioesters through dehydrogenative coupling of alcohols and thiols, as well as the hydrogenation of organosulfur compounds, wherein the cooperative thiol serves as a reactant or product. In this Account, we present an overview of the TCL concept and its various applications using thiols.
Collapse
Affiliation(s)
- Jie Luo
- Department of Molecular Chemistry
and Materials Science, Weizmann Institute
of Science, Rehovot 7610001, Israel
| | - Michael Montag
- Department of Molecular Chemistry
and Materials Science, Weizmann Institute
of Science, Rehovot 7610001, Israel
| | - David Milstein
- Department of Molecular Chemistry
and Materials Science, Weizmann Institute
of Science, Rehovot 7610001, Israel
| |
Collapse
|
3
|
Ojea V, Ruiz M. DLPNO-CCSD(T) and DFT study of the acetate-assisted C-H activation of benzaldimine at [RuCl 2( p-cymene)] 2: the relevance of ligand exchange processes at ruthenium(II) complexes in polar protic media. Dalton Trans 2024; 53:8662-8679. [PMID: 38695752 DOI: 10.1039/d4dt00380b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
To gain mechanistic insights into the acetate-assisted cyclometallations of arylimines promoted by [RuCl2(p-cymene)]2 in polar protic media, DFT geometry optimizations (with M06 and ωB97X-D3 functionals and the cc-pVDZ-PP[Ru] basis set) followed by DLPNO-CCSD(T)/CBS energy evaluations were performed using benzaldimine as a model substrate and methanol as the solvent (with CPCM or SMD models). The calculation results show that coordination of the imine to an acetate ruthenium precursor is followed by anion (chloride or acetate) dissociation as the rate-determining step of the process. H-Bonding of two explicit MeOH to the anion reduces the calculated activation energy to ca. 23 kcal mol-1, in good agreement with the experimental half-life at room temperature. Subsequent AMLA/CMD C-H activation of the intermediate cationic complexes is a faster, reversible process. Alternative reaction pathways involving neutral diacetate ruthenium complexes offer AMLA/CMD transition state structures of lower energy but are precluded due to higher energy barriers for the initial ligand exchange processes at ruthenium. Solvent assistance accelerates the final chloride/acetate exchange processes on the cycloruthenate intermediates, particularly when compression in the condensed phase is taken into consideration. The performance of six DFT functionals (with the aug-pVTZ-PP[Ru] basis set) was assessed using the DLPNO-CCSD(T)/CBS reference energies. Neutral diacetate ruthenium complexes were incorrectly predicted as being kinetically relevant when using hybrid DFT methods (PBE0-D3(BJ), M06-2X or ωB97M-V). Good agreement between the calculated barrier heights and our benchmark energy results was obtained by using double-hybrid DFT methods. PWPB95 with D3(BJ) or D4 dispersion energy corrections was found to be the most accurate (ΔG≠ MUE of ca. 1 kcal mol-1). This study may aid our understanding of and help with further experimental investigations of synthetically useful carboxylate-assisted C-H bond functionalizations involving (N,C)-cyclometallated (p-cymene)Ru(II) intermediate complexes in sustainable polar protic solvents.
Collapse
Affiliation(s)
- Vicente Ojea
- Departamento de Química, Facultade de Ciencias, Universidade da Coruña, E-15078 A Coruña, Spain.
| | - María Ruiz
- Departamento de Química, Facultade de Ciencias, Universidade da Coruña, E-15078 A Coruña, Spain.
| |
Collapse
|
4
|
Higham JI, Ma TK, Bull JA. When is an Imine Directing Group a Transient Imine Directing Group in C-H Functionalization? Chemistry 2024; 30:e202400345. [PMID: 38375941 DOI: 10.1002/chem.202400345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 02/21/2024]
Abstract
'Transient' C-H functionalization has emerged in recent years to describe the use of a dynamic linkage, often an imine, to direct cyclometallation and subsequent functionalization. As the field continues to grow in popularity, we consider the features that make an imine directing group transient. A transient imine should be i) formed dynamically in situ, ii) avoid discrete introduction or cleavage steps, and iii) offer the potential for catalysis in both the directing group and metal. This concept article contrasts transient imines with pioneering early studies of imines as directing groups for the formation of metallacycles and the use of preformed imines in C-H functionalization. Leading developments in the use of catalytic additives to form transient directing groups (as aldehyde or amine) are covered including selected highlights of the most recent examples of catalytic imine directed C-H functionalization with transition metals.
Collapse
Affiliation(s)
- Joe I Higham
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London, W12 0BZ, UK
| | - Tsz-Kan Ma
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London, W12 0BZ, UK
| | - James A Bull
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London, W12 0BZ, UK
| |
Collapse
|
5
|
Zhang S, Zhang G, Wang J, Feng Y, Zhang Z, Xie S, Lin Z, Yang S, Lin J, Lin H. Native Amino Group Directed Meta-Selective C-H Arylation of Primary Amines Via Pd/Norbornene Catalysis. Org Lett 2024; 26:2495-2499. [PMID: 38506235 DOI: 10.1021/acs.orglett.4c00721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
The selective functionalization of remote C-H bonds in free primary amines holds significant promise for the late-stage diversification of pharmaceuticals. However, to date, the direct functionalization of the meta position of amine substrates lacking additional directing groups remains underexplored. In this Letter, we present a successful meta-C-H arylation of free primary amine derivatives using aryl iodides, resulting in synthetically valuable yields. This meta-selective C-H functionalization is achieved through a sequence involving native amino-directed Pd-catalyzed seven-membered cyclometalation, followed by the utilization of a norbornene-type transient mediator.
Collapse
Affiliation(s)
- Shasha Zhang
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Gong Zhang
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Jie Wang
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Yueyao Feng
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Zemin Zhang
- School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Si Xie
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Ziying Lin
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Shiling Yang
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Jin Lin
- School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Hua Lin
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| |
Collapse
|
6
|
Nobile E, Doche F, Castanheiro T, Musaev DG, Besset T. Copper-Catalyzed C-H (Phenylsulfonyl)difluoromethylation of Acrylamides: Scope, Mechanism, and Critical Role of Additives. Chemistry 2024; 30:e202303362. [PMID: 38095511 DOI: 10.1002/chem.202303362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Indexed: 02/09/2024]
Abstract
Herein, we report the Cu-complex catalyzed, native functional group-assisted, and TFA/NMF additives promoted (phenylsulfonyl)difluoromethylation of vinylic C(sp2 )-H bond of acrylamides. Using our in-home designed reagent, this reaction enables the construction of the C(sp2 )-CF2 SO2 Ph bond from simple C-H bond activation by copper catalysis under mild reaction conditions with total Z-selectivity. The versatility of utilized fluorinated group was illustrated by its conversion into value-added CF2 moieties as well as the remarkable =CHF residue. The performed experimental and computational mechanistic studies enabled to identify the true nature of active catalyst and substrate, as well as establish critical roles of TFA and NMF additives. In this reaction, the TFA acts as a promoter of the much-needed CuII /CuII →CuIII /CuI disproportionation, while the NMF facilitates the following ligand exchange and C-C coupling processes. We ruled out the generation of radical intermediates and established the C-H activation to be irreversible and the rate-determining step of the entire process.
Collapse
Affiliation(s)
- Enzo Nobile
- INSA Rouen Normandie, Univ Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3M FR 3038, F-76000, Rouen, France
| | - Floriane Doche
- INSA Rouen Normandie, Univ Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3M FR 3038, F-76000, Rouen, France
| | - Thomas Castanheiro
- INSA Rouen Normandie, Univ Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3M FR 3038, F-76000, Rouen, France
| | - Djamaladdin G Musaev
- Cherry L. Emerson Center for Scientific Computation, Department of Chemistry, Emory University, 30322, Atlanta, Georgia, United States
| | - Tatiana Besset
- INSA Rouen Normandie, Univ Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3M FR 3038, F-76000, Rouen, France
| |
Collapse
|
7
|
Yang Y, Wu Y, Bin Z, Zhang C, Tan G, You J. Discovery of Organic Optoelectronic Materials Powered by Oxidative Ar-H/Ar-H Coupling. J Am Chem Soc 2024; 146:1224-1243. [PMID: 38173272 DOI: 10.1021/jacs.3c12234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Efficient and streamlined synthetic methods that facilitate the rapid build-up of structurally diverse π-conjugated systems are of paramount importance in the quest for organic optoelectronic materials. Among these methods, transition-metal-catalyzed oxidative Ar-H/Ar-H coupling reactions between two (hetero)arenes have emerged as a concise and effective approach for generating a wide array of bi(hetero)aryl and fused heteroaryl structures. This innovative approach bypasses challenges associated with substrate pre-activation processes, thereby allowing for the creation of frameworks that were previously beyond reach using conventional Ar-X/Ar-M coupling reactions. These inherent advantages have ushered in new design patterns for organic optoelectronic molecules that deviate from traditional methods. This ground-breaking approach enables the transcendence of the limitations of repetitive material structures, ultimately leading to the discovery of novel high-performance materials. In this Perspective, we provide an overview of recent advances in the development of organic optoelectronic materials through the utilization of transition-metal-catalyzed oxidative Ar-H/Ar-H coupling reactions. We introduce several notable synthetic strategies in this domain, covering both directed and non-directed oxidative Ar-H/Ar-H coupling strategies, dual chelation-assisted strategy and directed ortho-C-H arylation/cyclization strategy. Additionally, we shed light on the role of oxidative Ar-H/Ar-H coupling reactions in the advancement of high-performance organic optoelectronic materials. Finally, we discuss the current limitations of existing protocols and offer insights into the future prospects for this field.
Collapse
Affiliation(s)
- Yudong Yang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People's Republic of China
| | - Yimin Wu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People's Republic of China
| | - Zhengyang Bin
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People's Republic of China
| | - Cheng Zhang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People's Republic of China
| | - Guangying Tan
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People's Republic of China
| | - Jingsong You
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People's Republic of China
| |
Collapse
|
8
|
Zhang XL, Wang MY, Liu HJ, Wang YQ. Palladium-Catalyzed Regioselective C4-H Acyloxylation of Indoles with Carboxylic Acids via a Transient Directing Groups Strategy. Org Lett 2024; 26:41-45. [PMID: 38149590 DOI: 10.1021/acs.orglett.3c03568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
The development of an efficient method for the synthesis of C4 oxy-substituted indoles is an appealing yet challenging task. Herein, we report a general palladium-catalyzed TDG approach for the direct C4-H acyloxylation of indoles. The protocol features atom and step economy, excellent regioselectivity, and good tolerance of functional groups. Moreover, the reaction can accommodate a range of carboxylic acids including benzoic acids, phenylacetic acids, and aliphatic acids.
Collapse
Affiliation(s)
- Xing-Long Zhang
- Shaanxi Key Laboratory of Low Metamorphic Coal Clean Utilization, School of Chemistry and Chemical Engineering, Yulin University, Yulin 719000, Shaanxi, P.R. China
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P.R. China
| | - Meng-Yue Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P.R. China
| | - Hui-Jin Liu
- Shaanxi Key Laboratory of Low Metamorphic Coal Clean Utilization, School of Chemistry and Chemical Engineering, Yulin University, Yulin 719000, Shaanxi, P.R. China
| | - Yong-Qiang Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P.R. China
| |
Collapse
|
9
|
Udayanga DMN, Le N, Schwirian EN, Donnadieu B, Nash K, Collier W, Webster CE, Cui X. Synthesis of N-Fused Polycyclic Indole Derivatives via Ru(II)-Catalyzed C-H Bond Activation and Intramolecular Hydroarylation. Org Lett 2023. [PMID: 38032145 DOI: 10.1021/acs.orglett.3c03757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
A new synthesis of N-fused tetracyclic indole derivatives and their related polycyclic analogues has been developed based on ruthenium(II)-catalyzed C-H activation and intramolecular hydroarylation. A series of polycyclic indoles with a 3-formyl group have been prepared in good to high yields. Various aliphatic and aromatic amines have been studied to form a transient directing group with the aldehyde for the catalytic process. A significant impact of the structures of the aromatic amines was identified, and 1-naphthylamine was shown to enable the catalytic process. DFT computations were performed to gain further insight into the role of the transient directing groups.
Collapse
Affiliation(s)
- D M Nirosh Udayanga
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Nghia Le
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Elijah N Schwirian
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Bruno Donnadieu
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Kye Nash
- Department of Chemistry, Tuskegee University, Tuskegee, Alabama 36088, United States
| | - Willard Collier
- Department of Chemistry, Tuskegee University, Tuskegee, Alabama 36088, United States
| | - Charles Edwin Webster
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Xin Cui
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States
| |
Collapse
|
10
|
Mondal S, Midya SP, Das S, Mondal S, Islam ASM, Ghosh P. Pd-Catalyzed Tandem Pathway for Stereoselective Synthesis of (E)-1,3-Enyne from β-Nitroalkenes by Using a Sacrificial Directing Group. Chemistry 2023; 29:e202301637. [PMID: 37551730 DOI: 10.1002/chem.202301637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/20/2023] [Accepted: 08/07/2023] [Indexed: 08/09/2023]
Abstract
The involvement of nitroalkenes instead of minimal one alkyne motif for (E)-1,3-enynes synthesis through a palladium catalyzed stereoselective bond forming pathway at room temperature is presented. Implication of nitro group as a sacrificial directing group, formation of magical alkyne on a newly developed Csp 3 -Csp 3 bond with initial palladium-MBH adduct make this methodology distinctive. This protocol features an unprecedented sequential acetate addition, carbon-carbon bond formation, isomerization of double bond and nitromethane degradation in a tandem catalytic walk via dancing hybridization. Mechanistic understanding through identification of intermediates and computational calculations furnishes complete insight into the tandem catalytic pathway. Broad substrates scope and functional groups tolerance make this synthetic methodology magnificent and dynamic. This represents the first example of stereoselective 1,3-enyne synthesis exclusively from alkene substrates by introducing the concept of sacrificial directing group.
Collapse
Affiliation(s)
- Subal Mondal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata, 700032, India
| | - Siba P Midya
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata, 700032, India
| | - Suman Das
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata, 700032, India
| | - Soumya Mondal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata, 700032, India
| | - Abu S M Islam
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata, 700032, India
| | - Pradyut Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata, 700032, India
| |
Collapse
|
11
|
Monsigny L, Doche F, Besset T. Transition-metal-catalyzed C-H bond activation as a sustainable strategy for the synthesis of fluorinated molecules: an overview. Beilstein J Org Chem 2023; 19:448-473. [PMID: 37123090 PMCID: PMC10130906 DOI: 10.3762/bjoc.19.35] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 03/24/2023] [Indexed: 05/02/2023] Open
Abstract
The last decade has witnessed the emergence of innovative synthetic tools for the synthesis of fluorinated molecules. Among these approaches, the transition-metal-catalyzed functionalization of various scaffolds with a panel of fluorinated groups (XRF, X = S, Se, O) offered straightforward access to high value-added compounds. This review will highlight the main advances made in the field with the transition-metal-catalyzed functionalization of C(sp2) and C(sp3) centers with SCF3, SeCF3, or OCH2CF3 groups among others, by C-H bond activation. The scope and limitations of these transformations are discussed in this review.
Collapse
Affiliation(s)
- Louis Monsigny
- Normandie University, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen, France
| | - Floriane Doche
- Normandie University, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen, France
| | - Tatiana Besset
- Normandie University, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen, France
| |
Collapse
|
12
|
Feng Y, Wang J, Yang J, Chen F, Zhang Z, Ke C, Lin J, Lin H. Native Amino Group Directed Site-Selective ε-C(sp 2)-H Iodination of Primary Amines. Org Lett 2023; 25:1348-1352. [PMID: 36825798 DOI: 10.1021/acs.orglett.2c04288] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Selective remote C-H activating amines using unmodified NH2 as a native directing group demonstrate compelling synthetic utilities. The 3-arylpropan-1-amine moiety is present in many drugs and candidates in clinical trials. Selective iodination of 3-arylpropan-1-amines on remote aryl rings gives valuable intermediates for modifying bioactive molecules and synthesizing quinolones. Here we report the first palladium-catalyzed selective ε-C(sp2)-H iodination of free 3-arylpropan-1-amines via a seven-membered palladacycle.
Collapse
Affiliation(s)
- Yueyao Feng
- Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Jie Wang
- Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Jie Yang
- Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Fengyuan Chen
- School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Zemin Zhang
- School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Chongrong Ke
- National and Local United Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Jin Lin
- School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Hua Lin
- Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| |
Collapse
|
13
|
He Y, Sun B, Lu X, Zhou Y, Zhang FL. Iridium-Catalyzed Direct Ortho-C-H Amidation of α-Ketoesters with Sulfonyl Azides Using a Transient Directing Group Strategy. J Org Chem 2023; 88:4345-4351. [PMID: 36898142 DOI: 10.1021/acs.joc.2c02944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Direct C-H amidation of α-ketoesters was accomplished using various organic azides as the amino source through the combination of transient directing group strategy and iridium catalysis. Excellent functional group tolerance and wide substrate scope were explored under simple and mild conditions. Importantly, it was found that the steric hindrance of the ester moiety played a pivotal role for the reaction efficacy. In addition, the reaction could be enlarged to gram scale, and several useful heterocycles were readily constructed via one-step late-stage derivatization.
Collapse
Affiliation(s)
- Yinlong He
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Bing Sun
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Xuelian Lu
- Shenzhen Research Institute, Wuhan University of Technology, Shenzhen, Guangdong 518057, China
| | - Yirong Zhou
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Fang-Lin Zhang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China.,Shenzhen Research Institute, Wuhan University of Technology, Shenzhen, Guangdong 518057, China
| |
Collapse
|
14
|
Ghouilem J, Bazzi S, Grimblat N, Retailleau P, Gandon V, Messaoudi S. Transient imine as a directing group for the Pd-catalyzed anomeric C(sp 3)-H arylation of 3-aminosugars. Chem Commun (Camb) 2023; 59:2497-2500. [PMID: 36752765 DOI: 10.1039/d3cc00046j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The first example of Pd(II)-catalyzed anomeric arylation of 3-aminosugars is reported by using an L,X-type transient directing group (TDG) approach combined with an external 2-pyridone ligand. The released free amine was in situ transformed into an azide function, which was then exploited in a CuAAC to increase the molecular complexity and prepare a variety of complex substituted C3-triazolo C-glycosides in good yields.
Collapse
Affiliation(s)
- Juba Ghouilem
- Universite Paris-Saclay, CNRS, BioCIS, 92290, Châtenay-Malabry, France.
| | - Sokna Bazzi
- Universite Paris-Saclay, CNRS, BioCIS, 92290, Châtenay-Malabry, France.
| | - Nicolas Grimblat
- Laboratoire de Chimie Moléculaire (LCM), CNRS UMR 9168, Ecole Polytechnique, Institut Polytechnique de Paris, route de Saclay, Palaiseau 91120, France
| | - Pascal Retailleau
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Universite Paris-Saclay, avenue de la terrasse, Gif-sur-Yvette 91198, France
| | - Vincent Gandon
- Laboratoire de Chimie Moléculaire (LCM), CNRS UMR 9168, Ecole Polytechnique, Institut Polytechnique de Paris, route de Saclay, Palaiseau 91120, France.,Université Paris-Saclay, CNRS, ICMMO, 91405, Orsay cedex, France
| | - Samir Messaoudi
- Universite Paris-Saclay, CNRS, BioCIS, 92290, Châtenay-Malabry, France.
| |
Collapse
|
15
|
Choppin S, Wencel-Delord J. Sulfoxide-Directed or 3d-Metal Catalyzed C-H Activation and Hypervalent Iodines as Tools for Atroposelective Synthesis. Acc Chem Res 2023; 56:189-202. [PMID: 36705934 DOI: 10.1021/acs.accounts.2c00573] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
ConspectusThe expanding applications of atropisomeric compounds combined with the growing diversity of such chiral molecules translate into an urgent need for innovative synthetic strategies allowing their rapid, efficient, and sustainable synthesis. Recently, the C-H activation approach has provided new opportunities for synthesizing axially chiral compounds. The two complementary approaches allowing implementation of the C-H activation methodology toward the synthesis of the chiral molecules imply either ortho-functionalization of the preexisting prochiral or atropo-unstable biaryl substrates or direct C-H arylation of sterically encumbered aromatics. The first approach required the preinstallation of a directing group on a biaryl precursor, which drastically limits the diversity of thus generated products. To tackle this important synthetic limitation, we have envisioned using a chiral sulfoxide as both directing group and chiral auxiliary. Indeed, in addition to efficiently coordinating the Pd-catalyst thus allowing chiral induction, the sulfoxide moiety can be easily removed, via the sulfoxide/lithium exchange, after the C-H activation step, thus guaranteeing an almost unlimited postdiversification of the atropisomeric products. The efficiency and generality of this concept could be illustrated by developing atropo-diastereoselective oxidative Heck reaction, direct acetoxylation, and iodination, as well as direct arylation. Besides, the synthetic utility of this methodology was demonstrated by designing an expedient synthesis of a direct steganone precursor. This unique transformation also allowed us to build up unprecedented triaryl scaffolds with two perfectly controlled chiral axes, original chiral skeletons for new ligand design. While considering the atroposelective direct arylations, the clear antagonism between the harsh reaction conditions frequently required for the coupling of two sterically hindered compounds and the atropo-stability of the new product, resulted in the scarcity of such transformations. To solve this fundamental challenge, we have focused on the application of a low-valent cobalt catalyst, prompted to catalyze C-H activation of indoles at the C2 position under extremely mild reaction conditions (room temperature). Accordingly, atroposelective C2-arylation of indoles could be achieved using an original carbene ligand and delivering the uncommon atropoisomerically pure indoles in excellent yields and enantioselectivities. Detailed combined experimental and theoretical mechanistic studies shed light on the mechanism of this transformation, providing strong evidence regarding the origin of the enantioselectivity. Finally, the antagonism between steric hindrance required to guarantee the atropo-stability of a molecule and harsh reaction conditions required to couple two partners is a strong limitation not only for the development of atroposelective C-H arylation reaction but also for the development of direct synthesis of the C-N axially chiral compounds. Despite the long history and incredible advances achieved in Ullmann-Goldberg and Buchwald-Hartwig couplings, atroposelective versions of such transformations have remained unprecedented until recently. Our idea to tackle this challenging issue consisted in using hypervalent iodines as highly reactive coupling partners, thus allowing the desired N-arylations to occur at room temperature. This hypothesis could be validated by reporting first atropo-diastereoselective Cu-catalyzed N-arylation, using sulfoxide λ3-iodanes as the coupling partners. Subsequently, the enantioselective version of this atroposelective N-arylation was successfully established by using a chiral Cu-complex bearing a BOX ligand. In conclusion, we report herein designing tailored-made solutions to provide new synthetic strategies to construct the atropisomeric molecules, including biaryls and C-N axially chiral molecules.
Collapse
Affiliation(s)
- Sabine Choppin
- Laboratoire d'Innovation Moléculaire et Applications (UMR CNRS 7042), Université de Strasbourg/Université de Haute Alsace, ECPM. 25 rue Becquerel, 67087 Strasbourg, France
| | - Joanna Wencel-Delord
- Laboratoire d'Innovation Moléculaire et Applications (UMR CNRS 7042), Université de Strasbourg/Université de Haute Alsace, ECPM. 25 rue Becquerel, 67087 Strasbourg, France
| |
Collapse
|
16
|
Garhwal S, Panda J, Fridman N, Karton A, de Ruiter G. Formation of distinct iron hydrides via mechanistic divergence in directed C-H Bond activation of aryl ketones, esters and amides. Chem Commun (Camb) 2023; 59:426-429. [PMID: 36515102 DOI: 10.1039/d2cc04394g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Directing groups play an important role in controlling the selectivity of C-H bond activation. Here we demonstrate that for iron, the nature of the directing group (e.g., ketone, ester, or amide) influences the C-H activation process. In this study the C-H bond activation step either occurs with or without the assistance of the directing group resulting in distinct cis- and trans-isomers of the corresponding iron hydride.
Collapse
Affiliation(s)
- Subhash Garhwal
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Technion City, Haifa 3200008, Israel.
| | - Jatin Panda
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Technion City, Haifa 3200008, Israel.
| | - Natalia Fridman
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Technion City, Haifa 3200008, Israel.
| | - Amir Karton
- School of Science and Technology, University of New England, Armidale, NSW 2351, Australia.
| | - Graham de Ruiter
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Technion City, Haifa 3200008, Israel.
| |
Collapse
|
17
|
Maurya NK, Yadav S, Chaudhary D, Kumar D, Ishu K, Kuram MR. Palladium-Catalyzed C(sp 3)-H Biarylation of 8-Methyl Quinolines with Cyclic Diaryliodonium Salts to Access Functionalized Biaryls and Fluorene Derivatives. J Org Chem 2022; 87:13744-13749. [PMID: 36198197 DOI: 10.1021/acs.joc.2c01405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Herein, we have developed the cyclic diaryliodonium salts as biarylating agents in the C(sp3)-H functionalization using 8-methyl quinoline as the intrinsic directing group. The oxidant-free reaction produces a vast array of the biarylated products with iodo functionality that can be further functionalized. Additionally, intramolecular C(sp3)-H functionalization in a stepwise manner under palladium-catalyzed conditions produced the fluorene derivatives in excellent yields.
Collapse
Affiliation(s)
- Naveen Kumar Maurya
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Suman Yadav
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Dhananjay Chaudhary
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Dharmendra Kumar
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Km Ishu
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Malleswara Rao Kuram
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
18
|
Das B, Dahiya A, Sahoo AK, Patel BK. Transformable Transient Directing Group-Assisted C(sp 2)–H Activation: Synthesis and Late-Stage Functionalizations of o-Alkenylanilines. J Org Chem 2022; 87:13383-13388. [DOI: 10.1021/acs.joc.2c01626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bubul Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Anjali Dahiya
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Ashish Kumar Sahoo
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Bhisma K. Patel
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| |
Collapse
|
19
|
Vorobjov F, De Smet G, Daems N, Vincent Ching H, Leveque P, Maes BU, Breugelmans T. Electrochemical quinuclidine-mediated C-H activation: intermediates and mechanism. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Sihag P, Jeganmohan M. Rhodium(III)-Catalyzed Redox-Neutral [4 + 1]-Annulation of Unactivated Alkenes with Sulfoxonium Ylides. J Org Chem 2022; 87:11073-11089. [PMID: 35946405 DOI: 10.1021/acs.joc.2c01324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel methodology for redox-neutral [4 + 1] annulation of unactivated alkenes with sulfoxonium ylides leads to the synthesis of a diverse library of indanone compounds. The developed annulation reaction was found to be highly versatile due to its compatibility with various unactivated alkenes functionalized with various sensitive functional groups as well as substituted sulfoxonium ylides. Further, multiple transformations such as ring-expansion, reduction, aldol condensation, and Wittig reaction were carried out with indanones. Using this way, highly useful cyclic heterocycles such as indene, dihydroisocoumarin, and 1-indanilidene were prepared in a single step. A possible reaction mechanism was supported by deuterium labeling studies, competitive studies, and kinetic isotopic studies.
Collapse
Affiliation(s)
- Pinki Sihag
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Masilamani Jeganmohan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| |
Collapse
|
21
|
Xu W, Zhang Y, Wu Y, Wang J, Lu X, Zhou Y, Zhang FL. Direct Assembly of Diverse Unsymmetrical Tertiary 9-Fluorenols via Transient Directing Group-Enabled Palladium-Catalyzed Dual C-H Bond Activation of α-Ketoesters. J Org Chem 2022; 87:10807-10814. [PMID: 35921192 DOI: 10.1021/acs.joc.2c01080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An expeditious construction of an unsymmetrical tertiary 9-fluorenol skeleton was accomplished starting from readily available α-ketoester and aryl iodide. Inexpensive commercially available substituted aniline was utilized as a potent monodentate transient directing group (TDG) to assist palladium-catalyzed direct ortho-C-H arylation and tandem dual C-H activation of α-ketoesters to form two carbon-carbon bonds. To demonstrate practical applications, the reaction was enlarged to the gram scale, and subsequent one-step derivatization allowed facile access to structurally diversified useful derivatives. A series of control experiments were carried out to shed light on the possible catalytic mechanism.
Collapse
Affiliation(s)
- Wengang Xu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan430070, China
| | - Yangyang Zhang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan430070, China
| | - Yongdi Wu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan430070, China
| | - Jian Wang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan430070, China
| | - Xuelian Lu
- Shenzhen Research Institute, Wuhan University of Technology, Shenzhen518057, Guangdong, China
| | - Yirong Zhou
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
| | - Fang-Lin Zhang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan430070, China.,Shenzhen Research Institute, Wuhan University of Technology, Shenzhen518057, Guangdong, China
| |
Collapse
|
22
|
Wang J, Wu Y, Xu W, Lu X, Wang Y, Liu G, Sun B, Zhou Y, Zhang FL. Monodentate transient directing group promoted Pd-catalyzed direct ortho-C‒H arylation and chlorination of α-ketoesters for three-step synthesis of Cloidogrel racemate. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
23
|
Tian M, Shao L, Su X, Zhou X, Zhang H, Wei K, Sun R, Wang J. Transient directing group enabled Pd-catalyzed C-H oxygenation of benzaldehydes and benzylic amines. RSC Adv 2022; 12:18722-18727. [PMID: 35873337 PMCID: PMC9235058 DOI: 10.1039/d2ra00241h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 06/11/2022] [Indexed: 11/21/2022] Open
Abstract
We report a general protocol for ortho-C-H fluoroalkoxylation of benzaldehydes and benzylic amines utilizing an inexpensive amino amide as a transient directing group. In the presence of an electrophilic fluorinating bystanding oxidant and fluorinated alcohols, a wide range of benzaldehydes and benzylic amines could be oxygenated selectively at the ortho positions to afford fluoroalkyl aryl ethers. This elegant approach would provide appealing strategies for synthesis of drug molecules and natural products.
Collapse
Affiliation(s)
- Mixiang Tian
- Center for Scientific Research, Yunnan University of Chinese Medicine Kunming Yunnan 650500 P. R. China
| | - Lidong Shao
- Center for Scientific Research, Yunnan University of Chinese Medicine Kunming Yunnan 650500 P. R. China
| | - Xiaosan Su
- Center for Scientific Research, Yunnan University of Chinese Medicine Kunming Yunnan 650500 P. R. China
| | - Xuhong Zhou
- Center for Scientific Research, Yunnan University of Chinese Medicine Kunming Yunnan 650500 P. R. China
| | - Honglei Zhang
- Center for Scientific Research, Yunnan University of Chinese Medicine Kunming Yunnan 650500 P. R. China
| | - Kun Wei
- School of Chemical Science and Technology, Yunnan University Kunming Yunnan 650500 P. R. China
| | - Ruifen Sun
- Center for Scientific Research, Yunnan University of Chinese Medicine Kunming Yunnan 650500 P. R. China
| | - Junliang Wang
- Center for Scientific Research, Yunnan University of Chinese Medicine Kunming Yunnan 650500 P. R. China
| |
Collapse
|
24
|
Han YF, Lv GF, Li Y, Wu LJ, Ouyang XH, Li JH. Transient Chelating Group-Controlled Stereoselective Rh(I)-Catalyzed Silylative Aminocarbonylation of 2-Alkynylanilines: Entry to (Z)-3-(Silylmethylene)indolin-2-ones. Chem Sci 2022; 13:9425-9431. [PMID: 36092994 PMCID: PMC9383873 DOI: 10.1039/d2sc03009h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/27/2022] [Indexed: 11/21/2022] Open
Abstract
A new, mild acryl transient chelating group-controlled stereoselective Rh(I)-catalyzed silylative aminocarbonylation of 2-alkynylanilines with CO and silanes for producing (Z)-3-(silylmethylene)indolin-2-ones is presented. By using an acryl transient chelating group 2-alkynylanilines...
Collapse
Affiliation(s)
- Ya-Fei Han
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University Nanchang 330063 China
| | - Gui-Fen Lv
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University Nanchang 330063 China
| | - Yang Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University Nanchang 330063 China
| | - Li-Jun Wu
- College of Sciences, Central South University of Forestry and Technology Changsha 410004 China
| | - Xuan-Hui Ouyang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University Nanchang 330063 China
| | - Jin-Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University Nanchang 330063 China
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University Kunming Yunnan 650091 China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University Lanzhou 730000 China
- School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 China
| |
Collapse
|