1
|
Peng G, Zhou GX, Dong XT, Peng YB, Zhang RY, Ma YZ, Ren XM. Multifunctional chiral metal hydrogen-bonded organic frameworks constructed from lanthanide ions with a trigonal prismatic coordination environment. Dalton Trans 2024; 54:152-158. [PMID: 39526395 DOI: 10.1039/d4dt02131b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Two pairs of chiral enantiomers D/L-Dy(PMP)3·2H2O (D-1/L-1) and D/L-Yb(PMP)3·2H2O (D-2/L-2) were synthesized by the introduction of enantiomerically pure D/L-PMP (PMP = (phosphonomethyl)proline) ligands into lanthanide coordination chemistry. The chiral characteristics of these products were confirmed by single crystal X-ray diffraction, second harmonic generation (SHG) measurements and circular dichroism (CD) spectroscopy. These complexes are composed of 1D chains constructed from lanthanide ions with a trigonal prismatic coordination geometry and PMP ligands. The assembly of the 1D chains led to the formation of a lanthanide hydrogen-bonded organic framework with 1D water chains filled in the channels. Zero-field slow relaxation of magnetization was detected in L-1, whereas L-2 showed field-induced single-molecule magnet (SMM) behavior. Complexes D-1, L-1 and L-2 show proton conductive ability and their conductivity values reach the order of 10-5 S cm-1 at 90 °C and 98% relative humidity.
Collapse
Affiliation(s)
- Guo Peng
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Guo-Xing Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Xiang-Tao Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Yong-Bo Peng
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Rong-Yan Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Ying-Zhao Ma
- Chongqing Key Laboratory of Green Synthesis and Application, College of Chemistry, Chongqing Normal University, Chongqing 401331, China
| | - Xiao-Ming Ren
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, P. R. China
| |
Collapse
|
2
|
Yang D, Chen XY, Cao LH. High Proton Conductivity of Sulfonate-amine Ionic HOFs and Enhancement of SPEEK Composite Membranes. Chem Asian J 2024; 19:e202400870. [PMID: 39316040 DOI: 10.1002/asia.202400870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/31/2024] [Accepted: 09/23/2024] [Indexed: 09/25/2024]
Abstract
Hydrogen-bonded organic frameworks (HOFs) are crystalline materials assembled by intermolecular hydrogen-bonding interactions, and their hydrogen-bonding structures are effective pathways for proton transport. Herein, we synthesize iHOF-45 using 4,4'-diaminodiphenylmethane and 1,3,6,8-pyrenetetrasulfonicacid sodium salt with 2D hydrogen-bonding networks. The stability of ionic HOFs (iHOFs) can be enhanced by introducing ionic bonds in addition to hydrogen-bonding forces. Thermal analyses demonstrated that iHOF-45 exhibited excellent thermal stability up to 332 °C. The proton conductivity of iHOF-45 was evaluated, demonstrating a notable increase with rising temperature and RH. At 100 °C and 98 % RH, the conductivity reached 5.25×10-3 S cm-1. The activation energy (Ea) of iHOF-45 was calculated to be 0.281 eV for 98 % RH, and the proton conduction was attributed to the Grotthuss mechanism, whereby the protons were transported in 2D hydrogen-bonding networks. Moreover, iHOF-45 was doped into SPEEK to prepare composite membranes, the proton conductivity of the 15 % iHOF-45/SPEEK membrane reached 9.52×10-2 S cm-1 at 80 °C and 98 % RH, representing a 45.1 % increase over that of the SPEEK. This suggests that doping enhances the proton conductivity of SPEEK and providing a reference for the development of high proton conductivity materials.
Collapse
Affiliation(s)
- Dan Yang
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi' an, 710021, China
| | - Xu-Yong Chen
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi' an, 710021, China
| | - Li-Hui Cao
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi' an, 710021, China
| |
Collapse
|
3
|
Ding C, Zhao Y, Yin W, Kang F, Huang W, Zhang Q. Regulating Intermolecular Hydrogen Bonds in Organic Cathode Materials to Realize Ultra-stable, Flexible and Low-temperature Aqueous Zinc-organic Batteries. Angew Chem Int Ed Engl 2024:e202417988. [PMID: 39382562 DOI: 10.1002/anie.202417988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/10/2024]
Abstract
Rational design of molecular structures is one of the effective strategies to obtain high-performance organic cathode materials. However, besides the optimization of single-molecule structures, the influence of the "weak" interaction forces (e.g. hydrogen bonds) in organic cathode materials on the performance of batteries should be fully considered. Herein, three organic small molecules with different numbers of hydroxyl groups (namely nitrogen heterocyclic tetraketone (DAB), monohydroxyl nitrogen heterocyclic dione (HDA), dihydroxyl nitrogen heterocyclic dione (DHT)) were selected as the cathodes of aqueous zinc ion batteries (AZIBs), and the effect of the intermolecular hydrogen bonds on their electrochemical performance was studied for the first time. Clearly, the stable hydrogen-bond networks built through the hydroxyl groups significantly enhance the cycle stability of organic small-molecule cathodes and facilitate rapid proton conduction between the hydrogen-bond networks through the Grotthuss mechanism, thereby endowing them with excellent rate performance. In addition, a larger and more dense two-dimensional hydrogen-bond network can be constructed through multiple hydroxyl groups, further enhancing the structural stability of organic small-molecule cathodes, giving them better cycle tolerance, excellent rate performance, and extreme environmental tolerance.
Collapse
Affiliation(s)
- Chaojian Ding
- Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao, 066000, China
| | - Yuxuan Zhao
- Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao, 066000, China
| | - Weifeng Yin
- Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao, 066000, China
| | - Fangyuan Kang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Weiwei Huang
- Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao, 066000, China
| | - Qichun Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
- Department of Chemistry, Center of Super-Diamond and Advanced Films (COSDAF) & Hong Kong Institute of Clean Energy (HKICE), City University of Hong Kong, Hong Kong SAR, 999077, China
| |
Collapse
|
4
|
Qin Q, Liu J, Luan X, Xu J, Jiang L. Crystal structure and Hirshfeld surface analysis of two iHOFs based on CH...NC hydrogen bonding. Acta Crystallogr C Struct Chem 2024; 80:419-424. [PMID: 38995665 DOI: 10.1107/s2053229624005850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/17/2024] [Indexed: 07/13/2024] Open
Abstract
Two ionic hydrogen-bonded organic frameworks (iHOFs) assembled from 4-cyano-N-(4-cyanobenzyl)pyridinium, have been crystallized with Br- and antimony(III) pentabromide, [SbBr5]2-, as counter-ions and characterized. These are 4-cyano-N-(4-cyanobenzyl)pyridinium bromide, C14H10N3+·Br-, and bis[4-cyano-N-(4-cyanobenzyl)pyridinium] antimony(III) pentabromide, (C14H10N3)2[SbBr5]. The CH...NC interactions induced by templating anions construct disparate frameworks. Hirshfeld surface analysis indicated that these crystals exhibit two types of hydrogen-bonding interactions, specifically CH...NC and CH...Br. Consecutive reverse-parallel CH...NC hydrogen-bonding interactions in these crystals induced the formation of a large number of CH...NC bonds which exhibit both cis and trans configurations.
Collapse
Affiliation(s)
- Qiaoqi Qin
- School of Chemistry, Sun Yat-sen University, No. 132 Waihuan East Road, Panyu, Guangzhou, Guangdong 510006, People's Republic of China
| | - Jiamin Liu
- School of Chemistry, Sun Yat-sen University, No. 132 Waihuan East Road, Panyu, Guangzhou, Guangdong 510006, People's Republic of China
| | - Xinyu Luan
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, No. 135 Xingang West Road, Guangzhou, Guangdong 510275, People's Republic of China
| | - Jianqiao Xu
- School of Chemistry, Sun Yat-sen University, No. 132 Waihuan East Road, Panyu, Guangzhou, Guangdong 510006, People's Republic of China
| | - Long Jiang
- Instrumental Analysis & Research Center, Sun Yat-sen University, No. 135 Xingang West Road, Guangzhou, Guangdong 510275, People's Republic of China
| |
Collapse
|
5
|
Han Z, Wang M, Shi W. Postsynthetic Modification of Hydrogen-Bonded Frameworks. Chemistry 2024; 30:e202401276. [PMID: 38802325 DOI: 10.1002/chem.202401276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 05/29/2024]
Abstract
Hydrogen-bonded frameworks have garnered significant attention due to their flexible structures with tailored porosity, making them a promising class of porous framework materials. However, the direct synthesis of hydrogen-bonded frameworks with specific functions is highly challenging due to the unpredictable formation of hydrogen-bonded frameworks. In response, postsynthetic modification has emerged as a potent strategy to imbue desired functions into hydrogen-bonded frameworks. Recent advances have demonstrated the effectiveness of postsynthetic modification in hydrogen-bonded frameworks for studying their mechanical, luminescent, electrochemical, and chiral properties. In this concept, we comprehensively summarize the methodologies and outcomes of postsynthetic modification to hydrogen-bonded frameworks, providing a highlight of this exciting research area.
Collapse
Affiliation(s)
- Zongsu Han
- Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (MOE) and State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Mengmeng Wang
- Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (MOE) and State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Wei Shi
- Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (MOE) and State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, 300071, Tianjin, China
| |
Collapse
|
6
|
Li J, Chen B. Flexible hydrogen-bonded organic frameworks (HOFs): opportunities and challenges. Chem Sci 2024; 15:9874-9892. [PMID: 38966355 PMCID: PMC11220619 DOI: 10.1039/d4sc02628d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 05/20/2024] [Indexed: 07/06/2024] Open
Abstract
Flexible behavior is one of the most fascinating features of hydrogen-bonded organic frameworks (HOFs), which represent an emerging class of porous materials that are self-assembled via H-bonding between organic building units. Due to their unique flexibility, HOFs can undergo structural changes or transformations in response to various stimuli (physical or chemical). Taking advantage of this unique structural feature, flexible HOFs show potential in multifunctional applications such as gas storage/separation, molecular recognition, sensing, proton conductivity, biomedicine, etc. While some other flexible porous materials have been extensively studied, the dynamic behavior of HOFs remains relatively less explored. This perspective highlights the inherent flexible properties of HOFs, discusses their different flexible behaviors, including pore size/shape changes, interpenetration/stacking manner, H-bond breaking/reconstruction, and local dynamic behavior, and highlights their potential applications. We believe that this perspective will not only contribute to HOF chemistry and materials science, but will also facilitate the ongoing extensive research on dynamic porous materials.
Collapse
Affiliation(s)
- Jiantang Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Sciences, Zhejiang Normal University Jinhua 321004 P. R. China
| | - Banglin Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Sciences, Zhejiang Normal University Jinhua 321004 P. R. China
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Sciences, Fujian Normal University Fujian 350007 P. R. China
| |
Collapse
|
7
|
Liu X, Liu G, Fu T, Ding K, Guo J, Wang Z, Xia W, Shangguan H. Structural Design and Energy and Environmental Applications of Hydrogen-Bonded Organic Frameworks: A Systematic Review. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400101. [PMID: 38647267 PMCID: PMC11165539 DOI: 10.1002/advs.202400101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/14/2024] [Indexed: 04/25/2024]
Abstract
Hydrogen-bonded organic frameworks (HOFs) are emerging porous materials that show high structural flexibility, mild synthetic conditions, good solution processability, easy healing and regeneration, and good recyclability. Although these properties give them many potential multifunctional applications, their frameworks are unstable due to the presence of only weak and reversible hydrogen bonds. In this work, the development history and synthesis methods of HOFs are reviewed, and categorize their structural design concepts and strategies to improve their stability. More importantly, due to the significant potential of the latest HOF-related research for addressing energy and environmental issues, this work discusses the latest advances in the methods of energy storage and conversion, energy substance generation and isolation, environmental detection and isolation, degradation and transformation, and biological applications. Furthermore, a discussion of the coupling orientation of HOF in the cross-cutting fields of energy and environment is presented for the first time. Finally, current challenges, opportunities, and strategies for the development of HOFs to advance their energy and environmental applications are discussed.
Collapse
Affiliation(s)
- Xiaoming Liu
- Department of Resources and EnvironmentMoutai InstituteRenhuai564507China
| | - Guangli Liu
- College of Environmental Sciences and EngineeringPeking UniversityBeijing100871China
| | - Tao Fu
- College of Environmental Sciences and EngineeringPeking UniversityBeijing100871China
| | - Keren Ding
- AgResearchRuakura Research CentreHamilton3240New Zealand
| | - Jinrui Guo
- College of Environmental Science and EngineeringTongji UniversityShanghai200092China
| | - Zhenran Wang
- School of Environmental Science and EngineeringSouthwest Jiaotong UniversityChengdu611756China
| | - Wei Xia
- Department of Resources and EnvironmentMoutai InstituteRenhuai564507China
| | - Huayuan Shangguan
- Key Laboratory of Urban Environment and HealthInstitute of Urban EnvironmentChinese Academy of SciencesXiamen361021China
| |
Collapse
|
8
|
Vijayakanth T, Dasgupta S, Ganatra P, Rencus-Lazar S, Desai AV, Nandi S, Jain R, Bera S, Nguyen AI, Gazit E, Misra R. Peptide hydrogen-bonded organic frameworks. Chem Soc Rev 2024; 53:3640-3655. [PMID: 38450536 DOI: 10.1039/d3cs00648d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Hydrogen-bonded porous frameworks (HPFs) are versatile porous crystalline frameworks with diverse applications. However, designing chiral assemblies or biocompatible materials poses significant challenges. Peptide-based hydrogen-bonded porous frameworks (P-HPFs) are an exciting alternative to conventional HPFs due to their intrinsic chirality, tunability, biocompatibility, and structural diversity. Flexible, ultra-short peptide-based P-HPFs (composed of 3 or fewer amino acids) exhibit adaptable porous topologies that can accommodate a variety of guest molecules and capture hazardous greenhouse gases. Longer, folded peptides present challenges and opportunities in designing P-HPFs. This review highlights recent developments in P-HPFs using ultra-short peptides, folded peptides, and foldamers, showcasing their utility for gas storage, chiral recognition, chiral separation, and medical applications. It also addresses design challenges and future directions in the field.
Collapse
Affiliation(s)
- Thangavel Vijayakanth
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv-6997801, Israel.
| | - Sneha Dasgupta
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, S.A.S. Nagar (Mohali) 160062, India.
| | - Pragati Ganatra
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, USA.
| | - Sigal Rencus-Lazar
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv-6997801, Israel.
| | - Aamod V Desai
- School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, UK
| | - Shyamapada Nandi
- Chemistry Division, School of Advanced Sciences, Vellore Institute of Technology, 600127, Chennai, India
| | - Rahul Jain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, S.A.S. Nagar (Mohali) 160062, India.
| | - Santu Bera
- Department of Chemistry, Ashoka University, Sonipat, Haryana 131029, India
| | - Andy I Nguyen
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, USA.
| | - Ehud Gazit
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv-6997801, Israel.
- Sagol School of Neuroscience, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Rajkumar Misra
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, S.A.S. Nagar (Mohali) 160062, India.
| |
Collapse
|
9
|
Ding X, Chen J, Ye G. Supramolecular polynuclear clusters sustained cubic hydrogen bonded frameworks with octahedral cages for reversible photochromism. Nat Commun 2024; 15:2782. [PMID: 38555300 PMCID: PMC10981757 DOI: 10.1038/s41467-024-47058-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 03/18/2024] [Indexed: 04/02/2024] Open
Abstract
Developing supramolecular porous crystalline frameworks with tailor-made architectures from advanced secondary building units (SBUs) remains a pivotal challenge in reticular chemistry. Particularly for hydrogen-bonded organic frameworks (HOFs), construction of geometrical cavities through secondary units has been rarely achieved. Herein, a body-centered cubic HOF (TCA_NH4) with octahedral cages was constructed by a C3-symmetric building block and NH4+ node-assembled cluster (NH4)4(COOH)8(H2O)2 that served as supramolecular secondary building units (SSBUs), akin to the polynuclear SBUs in reticular chemistry. Specifically, the octahedral cages could encapsulate four homogenous haloforms including CHCl3, CHBr3, and CHI3 with truncated octahedron configuration. Crystallographic evidence revealed the cages served as spatially-confined nanoreactors, enabling fast, broadband photochromic effect associated with the reversible photo/thermal transformation between encapsulated CHI3 and I2. Overall, this work provides a strategy by shaping SSBUs to expand the framework topology of HOFs and a prototype of hydrogen-bonded nanoreactors to accommodate reversible photochromic reactions.
Collapse
Affiliation(s)
- Xiaojun Ding
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China.
| | - Jing Chen
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Gang Ye
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
10
|
Chen XY, Cao LH, Bai XT, Cao XJ. Charge-Assisted Ionic Hydrogen-Bonded Organic Frameworks: Designable and Stabilized Multifunctional Materials. Chemistry 2024; 30:e202303580. [PMID: 38179818 DOI: 10.1002/chem.202303580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/06/2024]
Abstract
Hydrogen-bonded organic frameworks (HOFs) are a class of crystalline framework materials assembled by hydrogen bonds. HOFs have the advantages of high crystallinity, mild reaction conditions, good solution processability, and reproducibility. Coupled with the reversibility and flexibility of hydrogen bonds, HOFs can be assembled into a wide diversity of crystalline structures. Since the bonding energy of hydrogen bonds is lower than that of ligand and covalent bonds, the framework of HOFs is prone to collapse after desolventisation and the stability is not high, which limits the development and application of HOFs. In recent years, numerous stable and functional HOFs have been developed by π-π stacking, highly interpenetrated networks, charge-assisted, ligand-bond-assisted, molecular weaving, and covalent cross-linking. Charge-assisted ionic HOFs introduce electrostatic attraction into HOFs to improve stability while enriching structural diversity and functionality. In this paper, we review the development, the principles of rational design and assembly of charge-assisted ionic HOFs, and introduces the different building block construction modes of charge-assisted ionic HOFs. Highlight the applications of charge-assisted ionic HOFs in gas adsorption and separation, proton conduction, biological applications, etc., and prospects for the diverse design of charge-assisted ionic HOFs structures and multifunctional applications.
Collapse
Affiliation(s)
- Xu-Yong Chen
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Li-Hui Cao
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Xiang-Tian Bai
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Xiao-Jie Cao
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| |
Collapse
|
11
|
Chen C, Shen L, Lin H, Zhao D, Li B, Chen B. Hydrogen-bonded organic frameworks for membrane separation. Chem Soc Rev 2024; 53:2738-2760. [PMID: 38333989 DOI: 10.1039/d3cs00866e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Hydrogen-bonded organic frameworks (HOFs) are a new class of crystalline porous materials that are formed through the interconnection of organic or metal-organic building units via intermolecular hydrogen bonds. The remarkable flexibility and reversibility of hydrogen bonds, coupled with the customizable nature of organic units, endow HOFs with mild synthesis conditions, high crystallinity, solvent processability, and facile self-healing and regeneration properties. Consequently, these features have garnered significant attention across various fields, particularly in the realm of membrane separation. Herein, we present an overview of the recent advances in HOF-based membranes, including their advanced fabrication strategies and fascinating applications in membrane separation. To attain the desired HOF-based membranes, careful consideration is dedicated to crucial factors such as pore size, stability, hydrophilicity/hydrophobicity, and surface charge of the HOFs. Additionally, diverse preparation methods for HOF-based membranes, including blending, in situ growth, solution-processing, and electrophoretic deposition, have been analyzed. Furthermore, applications of HOF-based membranes in gas separation, water treatment, fuel cells, and other emerging application areas are presented. Finally, the challenges and prospects of HOF-based membranes are critically pointed out.
Collapse
Affiliation(s)
- Cheng Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Dieling Zhao
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Bisheng Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Banglin Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Sciences, Zhejiang Normal University, Jinhua 321004, China
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, China.
| |
Collapse
|
12
|
Jędrzejowska K, Kobylarczyk J, Tabor D, Srebro-Hooper M, Kumar K, Li G, Stefanczyk O, Muzioł TM, Dziedzic-Kocurek K, Ohkoshi SI, Podgajny R. Nonlinear and Emissive {[M III(CN) 6] 3-···Polyresorcinol} (M = Fe, Co, Cr) Cocrystals Exhibiting an Ultralow Frequency Raman Response. Inorg Chem 2024; 63:1803-1815. [PMID: 38109502 PMCID: PMC10828991 DOI: 10.1021/acs.inorgchem.3c03153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 12/20/2023]
Abstract
Optically active functional noncentrosymmetric architectures might be achieved through the combination of molecules with inscribed optical responses and species of dedicated tectonic character. Herein, we present the new series of noncentrosymmetric cocrystal salt solvates (PPh4)3[M(CN)6](L)n·msolv (M = Cr(III), Fe(III), Co(III); L = polyresorcinol coformers, multiple hydrogen bond donors: 3,3',5,5'-tetrahydroxy-1,19-biphenyl, DiR, n = 2, or 5'-(3,5-dihydroxyphenyl)-3,3″,5,5″-tetrahydroxy-1,19:3',1″-terphenyl, TriRB, n = 1) denoted as MDiR and MTriRB, respectively. The hydrogen-bonded subnetworks {[M(CN)6]3-;Ln}∞ of dmp, neb, or dia topology are formed through structural matching between building blocks within supramolecular cis-bis(chelate)-like {[M(CN)6]3-;(H2L)2(HL)2} or tris(chelate)-like {[M(CN)6]3-;(H2L)3} fragments. The quantum-chemical analysis demonstrates the mixed electrostatic and covalent character of these interactions, with their strength clearly enhanced due to the negative charge of the hydrogen bond acceptor metal complex. The corresponding interaction energy is also dependent on the geometry of the contact and size matching of its components, rotational degree of freedom and extent of the π-electron system of the coformer, and overall fit to the molecular surroundings. Symmetry of the crystal lattices is correlated with the local symmetry of coformers and {complex;(coformer)n} hydrogen-bonded motifs characterized by the absence of the inversion center and mirror plane. All compounds reveal second-harmonic generation activity and photoluminescence diversified by individual UV-vis spectral characteristics of the components, and interesting low-frequency Raman scattering spectra within the subterahertz spectroscopic domain. Vibrational (infrared/Raman), UV-vis electronic absorption (experimental and calculated), and 57Fe Mössbauer spectra together with electrospray ionization mass spectrometry (ESI-MS) data are provided for the complete description of our systems.
Collapse
Affiliation(s)
- Katarzyna Jędrzejowska
- Faculty of
Chemistry, Jagiellonian University in Krakow, Gronostajowa 2, 30-387 Kraków, Poland
- Doctoral
School of Exact and Natural Sciences, Jagiellonian
University in Kraków, Prof. St. Łojasiewicza 11, 30-348 Kraków, Poland
| | | | - Dominika Tabor
- Faculty of
Chemistry, Jagiellonian University in Krakow, Gronostajowa 2, 30-387 Kraków, Poland
| | - Monika Srebro-Hooper
- Faculty of
Chemistry, Jagiellonian University in Krakow, Gronostajowa 2, 30-387 Kraków, Poland
| | - Kunal Kumar
- Department
of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Guanping Li
- Department
of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Olaf Stefanczyk
- Department
of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tadeusz M. Muzioł
- Faculty of
Chemistry, Nicolaus Copernicus University
in Toruń, Gagarina
7, 87-100 Toruń, Poland
| | - Katarzyna Dziedzic-Kocurek
- Marian Smoluchowski
Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Krakow, Poland
| | - Shin-ichi Ohkoshi
- Department
of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Robert Podgajny
- Faculty of
Chemistry, Jagiellonian University in Krakow, Gronostajowa 2, 30-387 Kraków, Poland
| |
Collapse
|
13
|
Chen XY, Cao LH, Bai XT, Cao XJ, Yang D, Gao YD. Superprotonic Conductivity of Guanidinium Organosulfonate Hydrogen-Bonded Organic Frameworks with Nanotube-Shaped Proton Transport Channels. PRECISION CHEMISTRY 2023; 1:608-615. [PMID: 39473576 PMCID: PMC11504640 DOI: 10.1021/prechem.3c00094] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/07/2023] [Accepted: 11/20/2023] [Indexed: 11/17/2024]
Abstract
Grasping proton transport pathways and mechanisms is vital for the application of fuel cell technology. Herein, we screened four guanidinium organosulfonate charge-assisted hydrogen-bonded organic frameworks (HOFs), namely, GBBS, G 3 TSPHB, G 4 TSP, and G 6 HSPB, which possess high hydrogen-bonded density proton transport networks shaped like nanotubes. These materials were prepared by self-assembly through charge-assisted interactions between guanidinium cations and organosulfonate anions, as well as by host-guest regulation. At 80 °C and 93% RH, the proton conductivity of GBBS, G 3 TSPHB, G 4 TSP, and G 6 HSPB can reach 4.56 × 10-2, 2.55 × 10-2, 4.01 × 10-2, and 1.2 × 10-1 S cm-1, respectively, with superprotonic conductivity. Doping G 6 HSPB into the Nafion matrix prepared composite membranes for testing the performance of fuel cells. At 80 °C and 98% RH, the proton conductivity of 9%-G 6 HSPB@Nafion reached a maximum value of 1.14 × 10-1 S cm-1, which is 2.8 times higher than recast Nafion. The results showed that charge-assisted HOFs with high proton channel density have better proton transport properties, providing a reference for the design of highly proton-conducting materials.
Collapse
Affiliation(s)
- Xu-Yong Chen
- Shaanxi Key Laboratory of
Chemical Additives for Industry, College of Chemistry and Chemical
Engineering, Shaanxi University of Science
and Technology, Xi’an, 710021, P. R.
China
| | - Li-Hui Cao
- Shaanxi Key Laboratory of
Chemical Additives for Industry, College of Chemistry and Chemical
Engineering, Shaanxi University of Science
and Technology, Xi’an, 710021, P. R.
China
| | - Xiang-Tian Bai
- Shaanxi Key Laboratory of
Chemical Additives for Industry, College of Chemistry and Chemical
Engineering, Shaanxi University of Science
and Technology, Xi’an, 710021, P. R.
China
| | - Xiao-Jie Cao
- Shaanxi Key Laboratory of
Chemical Additives for Industry, College of Chemistry and Chemical
Engineering, Shaanxi University of Science
and Technology, Xi’an, 710021, P. R.
China
| | - Dan Yang
- Shaanxi Key Laboratory of
Chemical Additives for Industry, College of Chemistry and Chemical
Engineering, Shaanxi University of Science
and Technology, Xi’an, 710021, P. R.
China
| | - Yi-Da Gao
- Shaanxi Key Laboratory of
Chemical Additives for Industry, College of Chemistry and Chemical
Engineering, Shaanxi University of Science
and Technology, Xi’an, 710021, P. R.
China
| |
Collapse
|
14
|
Xie Y, Ding X, Wang J, Ye G. Hydrogen-Bonding Assembly Meets Anion Coordination Chemistry: Framework Shaping and Polarity Tuning for Xenon/Krypton Separation. Angew Chem Int Ed Engl 2023; 62:e202313951. [PMID: 37877955 DOI: 10.1002/anie.202313951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 10/26/2023]
Abstract
Hybrid hydrogen-bonded (H-bonded) frameworks built from charged components or metallotectons offer diverse guest-framework interactions for target-specific separations. We present here a study to systematically explore the coordination chemistry of monovalent halide anions, i.e., F- , Cl- , Br- , and I- , with the aim to develop hybrid H-bond synthons that enable the controllable construction of microporous H-bonded frameworks exhibiting fine-tunable surface polarity within the adaptive cavities for realistic xenon/krypton (Xe/Kr) separation. The spherical halide anions, especially Cl- , Br- , and I- , are found to readily participate in the charge-assisted H-bonding assembly with well-defined coordination behaviors, resulting in robust frameworks bearing open halide anions within the distinctive 1D pore channels. The activated frameworks show preferential binding towards Xe (IAST Xe/Kr selectivity ca. 10.5) because of the enhanced polarizability and the pore confinement effect. Specifically, dynamic column Xe/Kr separation with a record-high separation factor (SF=7.0) among H-bonded frameworks was achieved, facilitating an efficient Xe/Kr separation in dilute, CO2 -containing gas streams exactly mimicking the off-gas of spent nuclear fuel (SNF) reprocessing.
Collapse
Affiliation(s)
- Yi Xie
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, 100084, Beijing, China
| | - Xiaojun Ding
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, 100084, Beijing, China
| | - Jianchen Wang
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, 100084, Beijing, China
| | - Gang Ye
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, 100084, Beijing, China
| |
Collapse
|