1
|
Hu JW, Zhong Y, Song RJ. Copper/iron controlled regioselective 1,2-carboazidation of 1,3-dienes with acetonitrile and azidotrimethylsilane. Org Biomol Chem 2025; 23:1437-1442. [PMID: 39748734 DOI: 10.1039/d4ob01661k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Carboazidation and diazidation were carried out on 1,3-diene compounds using TMSN3 as the azide source and MeCN as the cyanoalkylation reagent. This method exhibits excellent functional group tolerance, a broad substrate range, and a short reaction time, providing an effective pathway for synthesizing valuable azides. Our report introduces an unprecedented strategy for the carboazidation and diazidation of 1,3-dienes, with mechanism studies indicating that the reaction involves a radical pathway.
Collapse
Affiliation(s)
- Jun-Wei Hu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China.
| | - Yao Zhong
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China.
| | - Ren-Jie Song
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China.
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| |
Collapse
|
2
|
Kumar Mehra M, Malik M, Kumar B, Kumar D. Chemoselective Cu-catalyzed synthesis of diverse N-arylindole carboxamides, β-oxo amides and N-arylindole-3-carbonitriles using diaryliodonium salts. Org Biomol Chem 2021; 19:1109-1114. [PMID: 33434249 DOI: 10.1039/d0ob02247k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chemoselective copper-catalyzed synthesis of diverse N-arylindole-3-carboxamides, β-oxo amides and N-arylindole-3-carbonitriles from readily accessible indole-3-carbonitriles, α-cyano ketones and diaryliodonium salts has been developed. Diverse N-arylindole-3-carboxamides and β-oxo amides were successfully achieved in high yields under copper-catalyzed neutral reaction conditions, and the addition of an organic base (DIPEA) resulted in a completely different selectivity pattern to produce N-arylindole-3-carbonitriles. Moreover, the importance of the developed methodology was realized by the synthesis of indoloquinolones and N-((1H-indol-3-yl)methyl)aniline and by a single-step gram-scale synthesis of the naturally occurring cephalandole A analogue.
Collapse
Affiliation(s)
- Manish Kumar Mehra
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333 031, Rajasthan, India.
| | - Monika Malik
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333 031, Rajasthan, India.
| | - Bintu Kumar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333 031, Rajasthan, India.
| | - Dalip Kumar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333 031, Rajasthan, India.
| |
Collapse
|
3
|
Saranya PV, Neetha M, Aneeja T, Anilkumar G. Transition metal-catalyzed synthesis of spirooxindoles. RSC Adv 2021; 11:7146-7179. [PMID: 35423236 PMCID: PMC8695110 DOI: 10.1039/d1ra00139f] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/03/2021] [Indexed: 12/17/2022] Open
Abstract
Spirooxindole is a principal bioactive agent and is observed in several natural products including alkaloids. They are broadly studied in the pharmaceutical field and have a significant role in the evolution of drugs such as anti-viral, anti-cancer, anti-microbial etc. In organic chemistry, an indispensable role is presented by transition metal catalysts. An effective synthetic perspective to spirooxindoles is the use of transition metals as the catalyst. This review discusses the synthesis of spirooxindoles catalyzed by transition metals and covers literature up to 2020.
Collapse
Affiliation(s)
- P V Saranya
- School of Chemical Sciences, Mahatma Gandhi University Priyadarsini Hills P O Kottayam Kerala 686560 India
| | - Mohan Neetha
- School of Chemical Sciences, Mahatma Gandhi University Priyadarsini Hills P O Kottayam Kerala 686560 India
| | - Thaipparambil Aneeja
- School of Chemical Sciences, Mahatma Gandhi University Priyadarsini Hills P O Kottayam Kerala 686560 India
| | - Gopinathan Anilkumar
- School of Chemical Sciences, Mahatma Gandhi University Priyadarsini Hills P O Kottayam Kerala 686560 India
- Advanced Molecular Materials Research Centre (AMMRC), Mahatma Gandhi University Priyadarsini Hills P O Kottayam Kerala 686560 India
- Institute for Integrated Programmes and Research in Basic Sciences (IIRBS), Mahatma Gandhi University Priyadarsini Hills P O Kottayam Kerala 686560 India
| |
Collapse
|
4
|
Chen Z, Zhou Q, Chen QN, Chen P, Xiong BQ, Liang Y, Tang KW, Xie J, Liu Y. Copper-promoted cyanoalkylation/ring-expansion of vinylcyclopropanes with α-C-H bonds in alkylnitriles toward 3,4-dihydronaphthalenes. Org Biomol Chem 2020; 18:8677-8685. [PMID: 33078807 DOI: 10.1039/d0ob01864c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A copper-promoted oxidative cyanomethylation/ring-expansion of vinylcyclopropanes with α-C(sp3)-H bonds in alkyl nitriles is established for the generation of 1-cyanoethylated 3,4-dihydronaphthalenes. This cyanomethylation/ring-expansion involves a radical pathway and proceeds via cyanomethyl radical formation, radical addition and ring-expansion. This ring-expansion strategy offers a highly atom-economical route for the construction of nitrile-containing 3,4-dihydronaphthalenes, which can be transformed into other useful products under simple conditions.
Collapse
Affiliation(s)
- Zan Chen
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Quan Zhou
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Qing-Nan Chen
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Pu Chen
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Bi-Quan Xiong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Yun Liang
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China
| | - Ke-Wen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Jun Xie
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China. and Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China
| |
Collapse
|
5
|
Zhu J, Fang S, Jin S, Ma R, Lu T, Du D. Application of isatin-derived saturated esters in the synthesis of 3,3'-spirooxindole γ-butyrolactams. Org Biomol Chem 2019; 17:8745-8748. [PMID: 31532435 DOI: 10.1039/c9ob01347d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Stable while reactive isatin-derived saturated esters have been utilized as 3-carbon synthons in a base-promoted formal [3 + 2] annulation with N-Boc imines. The developed protocol offers a direct pathway for the rapid and divergent construction of two classes of 3,3'-spirooxindole γ-butyrolactam skeletons that are recognized as the privileged structures of various bioactive compounds. This protocol also has the advantages of mild reaction conditions, scalability and wide reaction scope.
Collapse
Affiliation(s)
- Jindong Zhu
- State Key Laboratory of Natural Medicines, School of Science, China Pharmaceutical University, Nanjing, 210009, P. R. China.
| | - Shuaishuai Fang
- State Key Laboratory of Natural Medicines, School of Science, China Pharmaceutical University, Nanjing, 210009, P. R. China.
| | - Shiyi Jin
- State Key Laboratory of Natural Medicines, School of Science, China Pharmaceutical University, Nanjing, 210009, P. R. China.
| | - Rui Ma
- State Key Laboratory of Natural Medicines, School of Science, China Pharmaceutical University, Nanjing, 210009, P. R. China.
| | - Tao Lu
- State Key Laboratory of Natural Medicines, School of Science, China Pharmaceutical University, Nanjing, 210009, P. R. China.
| | - Ding Du
- State Key Laboratory of Natural Medicines, School of Science, China Pharmaceutical University, Nanjing, 210009, P. R. China.
| |
Collapse
|
6
|
Liu YY, Yang XH, Song RJ, Luo S, Li JH. Oxidative 1,2-carboamination of alkenes with alkyl nitriles and amines toward γ-amino alkyl nitriles. Nat Commun 2017; 8:14720. [PMID: 28393864 PMCID: PMC5394231 DOI: 10.1038/ncomms14720] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 01/26/2017] [Indexed: 02/06/2023] Open
Abstract
Difunctionalization of alkenes has become a powerful tool for quickly increasing molecular complexity in synthesis. Despite significant progress in the area of alkene difunctionalization involving the incorporation of a nitrogen atom across the C-C double bonds, approaches for the direct 1,2-carboamination of alkenes to produce linear N-containing molecules are scarce and remain a formidable challenge. Here we describe a radical-mediated oxidative intermolecular 1,2-alkylamination of alkenes with alkyl nitriles and amines involving C(sp3)-H oxidative functionalization catalysed by a combination of Ag2CO3 with iron Lewis acids. This three-component alkene 1,2-alkylamination method is initiated by the C(sp3)-H oxidative radical functionalization, which enables one-step formation of two new chemical bonds, a C-C bond and a C-N bond, to selectively produce γ-amino alkyl nitriles.
Collapse
Affiliation(s)
- Yan-Yun Liu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China.,State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Xu-Heng Yang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China.,State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Ren-Jie Song
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China.,State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Shenglian Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China.,State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Jin-Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China.,State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China.,State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
7
|
Liu Y, Zhao H, Tian G, Du F, Qi Y, Wen Y. A novel coupling reaction of α-halo ketones promoted by SmI3/CuI. RSC Adv 2016. [DOI: 10.1039/c5ra26604a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In the presence of SmI3 and catalyzed by CuI in DMF, α-haloketones were transformed unexpectedly into α-hydroxy-1,4-diketones. The mechanism was probed and DMF was assumed to play a dual role both as a hydroxyl source and as a solvent.
Collapse
Affiliation(s)
- Yongjun Liu
- State Key Laboratory Base of Eco-Chemical Engineering
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- P. R. China
| | - Hengmin Zhao
- State Key Laboratory Base of Eco-Chemical Engineering
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- P. R. China
| | - Guang Tian
- State Key Laboratory Base of Eco-Chemical Engineering
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- P. R. China
| | - Feng Du
- State Key Laboratory Base of Eco-Chemical Engineering
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- P. R. China
| | - Yan Qi
- State Key Laboratory Base of Eco-Chemical Engineering
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- P. R. China
| | - Yonghong Wen
- State Key Laboratory Base of Eco-Chemical Engineering
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- P. R. China
| |
Collapse
|
8
|
|
9
|
Arulananda Babu S, Padmavathi R, Ahmad Aslam N, Rajkumar V. Recent Developments on the Synthesis and Applications of Natural Products-Inspired Spirooxindole Frameworks. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2015. [DOI: 10.1016/b978-0-444-63462-7.00008-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
10
|
|