1
|
Cui HL. Recent advances in oxidative chlorination. Org Biomol Chem 2024; 22:1580-1601. [PMID: 38312070 DOI: 10.1039/d3ob02012f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Considering the wide occurrence and extensive application of organic chlorides in many research fields, the development of easy, practical and green chlorination methodologies is much needed. In the oxidative chlorination strategy, active chlorinating species can be in situ formed by the interaction of easily accessible chlorides such as NaCl, HCl, KCl, CHCl3, etc. and suitable oxidants. Among the established chlorination approaches, this strategy is an attractive one as it features the use of readily available, cheap and safe inorganic or organic chlorides, good atom economy of chlorine, and multiple choices of oxidants. This review summarizes the representative methodologies in the field of oxidative chlorination, covering 2013 to 2023.
Collapse
Affiliation(s)
- Hai-Lei Cui
- Laboratory of Asymmetric Synthesis, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, 319 Honghe Ave., Yongchuan, Chongqing, 402160, PR China.
| |
Collapse
|
2
|
Shukla G, Singh M, Kumar Yadav A, Shankar Singh M. Aromatic C(sp 2 )-H Functionalization by Consecutive Paired Electrolysis: Dibromination of Aryl Amines with Dibromoethane at Room Temperature. Chemistry 2023:e202303179. [PMID: 38078727 DOI: 10.1002/chem.202303179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Indexed: 12/23/2023]
Abstract
Herein, we disclose a facile and efficient electrochemical method for the dibromination of aryl amines by double functionalization of aromatic C(sp2 )-H (both para and ortho) under metal- and external oxidant-free conditions at room temperature for the first time. The reaction is demonstrated using 1,2-dibromoethane to dibrominate a wide range of N-substituted aryl amines in a simple setup with C(+)/Pt(-) electrodes under mild reaction conditions. This transformation proceeds smoothly with a broad substrate scope affording the valuable and versatile N-substituted 2,4-dibromoanilines in moderate to excellent yields with high regioselectivity. In this paired electrolysis, cathodic reduction of 1,2-DBE followed by anodic oxidation generates bromonium intermediates, which then couple with anilines to furnish the dibrominated products. It represents a distinctive approach to challenging redox-neutral reactions. The versatility of the electrochemical ortho-, para-dibromination was reflected by unique regioselectivities for challenging aryl amines and gram-scale electrosynthesis without the use of a stoichiometric oxidant or an activating agent.
Collapse
Affiliation(s)
- Gaurav Shukla
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Malkeet Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Anup Kumar Yadav
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Maya Shankar Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| |
Collapse
|
3
|
Chen XH, Li YM, Huang X, Cui HL. POCl 3/Sulfoxide-Promoted Synthesis of Indolizino[8,7- b]indoles. J Org Chem 2023; 88:16400-16409. [PMID: 37983977 DOI: 10.1021/acs.joc.3c01912] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
A mild chlorocyclization of pyrrole-tethered indoles has been realized using POCl3 as the chlorine source and tetramethylene sulfoxide as the promoter. A variety of chlorinated indolizino[8,7-b]indole derivatives have been constructed efficiently under this reaction system in moderate to good yields (19 examples, up to 93% yield).
Collapse
Affiliation(s)
- Xiao-Hui Chen
- Laboratory of Asymmetric Synthesis, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, 319 Honghe Ave., Yongchuan, Chongqing 402160, P.R. China
| | - Yun-Meng Li
- Laboratory of Asymmetric Synthesis, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, 319 Honghe Ave., Yongchuan, Chongqing 402160, P.R. China
| | - Xiang Huang
- Laboratory of Asymmetric Synthesis, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, 319 Honghe Ave., Yongchuan, Chongqing 402160, P.R. China
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, P.R. China
| | - Hai-Lei Cui
- Laboratory of Asymmetric Synthesis, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, 319 Honghe Ave., Yongchuan, Chongqing 402160, P.R. China
| |
Collapse
|
4
|
Ren H, Wang RA, Shi J, Song JR, Wu W, Chi Q, Zhang N. Electrochemical bromocyclization enables 3,5-diversification of heterocyclic indolines. Org Biomol Chem 2023; 21:7290-7294. [PMID: 37650516 DOI: 10.1039/d3ob00985h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Electrophilic bromocyclization reactions are widely used as key steps in the synthesis of diverse functionalized tetrahydrofuroindolines and hexahydropyrroloindolines. However, the direct dibromination variants of these reactions for the synthesis of 3,5-dibromoindolines remain undeveloped. Here, we report a protonic-acid-promoted electrooxidative protocol for the dearomative C3,C5-dibromocyclizations of tryptophol and tryptamine derivatives. This electrosynthetic approach, which enables direct selective construction of heterocyclic 3a,5a-dibromoindolines with inexpensive, non-hazardous NaBr as both the electrolyte and Br source, provides a convenient, practical method for the late-stage 3,5-diversification of heterocyclic indolines.
Collapse
Affiliation(s)
- Hai Ren
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, P. R. China.
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, P. R. China
| | - Rui-An Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, P. R. China.
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, P. R. China
| | - Jun Shi
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, P. R. China.
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, P. R. China
| | - Jun-Rong Song
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, P. R. China.
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, P. R. China
| | - Wei Wu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, P. R. China.
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, P. R. China
| | - Qin Chi
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, P. R. China.
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, P. R. China
| | - Ni Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, P. R. China.
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, P. R. China
| |
Collapse
|
5
|
Zheng T, Xu J, Cheng S, Ye J, Ma S, Tong R. Green Halogenation of Indoles with Oxone-Halide. J Org Chem 2023; 88:11497-11503. [PMID: 37499121 DOI: 10.1021/acs.joc.3c00638] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Oxidative functionalization of indoles is one of the most widely used approaches to exploit the synthetic utility of indoles. In continuation of our research interest in the green oxidation of indoles, we further explore the oxidation of indoles with oxone-halide and discover that the protecting group on the nitrogen of indoles plays a decisive role in controlling the pathways of indole oxidation with oxone-halide. An electron-withdrawing group on the nitrogen of indoles (N-EWG) enables C2 halogenation with stoichiometric halide, while C3 halogenation could be selectively achieved by using stoichiometric halide without dependence on the electronic property of the protecting group on the indole nitrogen. Different from our previous results obtained by using catalytic halide, these findings lead to the development of an environmentally friendly, efficient, and mild protocol for access to 2- or 3-haloindoles (chloro and bromo). As compared to the previous synthetic methods for 2-/3-haloindoles, our method exploits the in situ-generated reactive halogenating species from oxone-halide for halogenation of indoles and thus eliminates the use of stoichiometric halogenating agents and the production of toxic and hazardous organic byproducts derived from oxidants.
Collapse
Affiliation(s)
- Tao Zheng
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Jun Xu
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Shaojun Cheng
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Jianghai Ye
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Shiqiang Ma
- Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon 999077, Hong Kong, China
| | - Rongbiao Tong
- Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon 999077, Hong Kong, China
| |
Collapse
|
6
|
Arteaga Giraldo JJ, Lindsay AC, Seo RCY, Kilmartin PA, Sperry J. Electrochemical oxidation of 3-substituted indoles. Org Biomol Chem 2023. [PMID: 37366580 DOI: 10.1039/d3ob00831b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
2-Oxindoles are an abundant heteroaromatic motif in natural products and pharmaceuticals. An appealing method for accessing 2-oxindoles is by oxidation of the corresponding indole, a transformation currently executed using stoichiometric quantities of unsafe chemical oxidants that can also form unwanted side-products. Herein, we report that 3-substituted indoles undergo a logistically straightforward, electrochemical oxidation to the corresponding 2-oxindole in the presence of potassium bromide (>20 examples), with only traces of the oxidative dimer detected. Cyclic voltammetry and control studies infer that the reaction proceeds by electrochemical generation of elemental bromine (Br2) that upon reaction with indole, followed by hydrolysis, delivers the 2-oxindole. This procedure is an appealing alternative to existing methods used to access 2-oxindoles by oxidation of the parent indole.
Collapse
Affiliation(s)
- Juan J Arteaga Giraldo
- Centre for Green Chemical Science, School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, New Zealand.
| | - Ashley C Lindsay
- Centre for Green Chemical Science, School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, New Zealand.
| | - Rachel Chae-Young Seo
- Centre for Green Chemical Science, School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, New Zealand.
| | - Paul A Kilmartin
- Centre for Green Chemical Science, School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, New Zealand.
| | - Jonathan Sperry
- Centre for Green Chemical Science, School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, New Zealand.
| |
Collapse
|
7
|
Luo X, Xu MM, Xu XP, Ji SJ. NBS-induced intramolecular annulation reactions for the divergent synthesis of fused- and spirocyclic indolines. Chem Commun (Camb) 2023; 59:6576-6579. [PMID: 37183546 DOI: 10.1039/d3cc01920a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
An NBS-induced intramolecular annulation of 3-(1H-indol-3-yl)-N-alkoxypropanamide is described. The reactions proceed well and quickly under mild conditions with the help of a base. It was found that C2-substituents on the indole ring in 3-(1H-indol-3-yl)-N-alkoxypropanamide have a great influence upon the reaction. By using C2-methyl- and C2-phenyl-3-(1H-indol-3-yl)-N-alkoxypropanamide as templates, practical protocols for the divergent synthesis of fused- and spirocyclic indoline compounds were studied and established.
Collapse
Affiliation(s)
- Xian Luo
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China.
| | - Meng-Meng Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China.
| | - Xiao-Ping Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China.
- Innovation Center for Chemical Science, Soochow University, China
| | - Shun-Jun Ji
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China.
- Suzhou Baolidi Functional Materials Research Institute, Suzhou 215144, People's Republic of China
| |
Collapse
|
8
|
Liu X, Yang D, Liu Z, Wang Y, Liu Y, Wang S, Wang P, Cong H, Chen YH, Lu L, Qi X, Yi H, Lei A. Unraveling the Structure and Reactivity Patterns of the Indole Radical Cation in Regioselective Electrochemical Oxidative Annulations. J Am Chem Soc 2023; 145:3175-3186. [PMID: 36705997 DOI: 10.1021/jacs.2c12902] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Oxidation-induced strategy for inert chemical bond activation through highly active radical cation intermediate has exhibited unique reactivity. Understanding the structure and reactivity patterns of radical cation intermediates is crucial in the mechanistic study and will be beneficial for developing new reactions. In this work, the structure and properties of indole radical cations have been revealed using time-resolved transient absorption spectroscopy, in situ electrochemical UV-vis, and in situ electrochemical electron paramagnetic resonance (EPR) technique. Density functional theory (DFT) calculations were used to explain and predict the regioselectivity of several electrochemical oxidative indole annulations. Based on the understanding of the inherent properties of several indole radical cations, two different regioselective annulations of indoles have been successfully developed under electrochemical oxidation conditions. Varieties of furo[2,3-b]indolines and furo[3,2-b]indolines were synthesized in good yields with high regioselectivities. Our mechanistic insights into indole radical cations will promote the further development of oxidation-induced indole functionalizations.
Collapse
Affiliation(s)
- Xing Liu
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, Hubei, P. R. China.,College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Dali Yang
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, Hubei, P. R. China.,College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Zhao Liu
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, Hubei, P. R. China.,College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Yunkun Wang
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, Hubei, P. R. China.,College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Yichang Liu
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, Hubei, P. R. China.,College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Shengchun Wang
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, Hubei, P. R. China.,College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Pengjie Wang
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, Hubei, P. R. China.,College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Hengjiang Cong
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, Hubei, P. R. China.,College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Yi-Hung Chen
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Lijun Lu
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, Hubei, P. R. China.,College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Xiaotian Qi
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Hong Yi
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Aiwen Lei
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, Hubei, P. R. China.,College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| |
Collapse
|
9
|
Tan X, Wang Q, Sun J. Electricity-driven asymmetric bromocyclization enabled by chiral phosphate anion phase-transfer catalysis. Nat Commun 2023; 14:357. [PMID: 36690612 PMCID: PMC9870882 DOI: 10.1038/s41467-023-36000-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/11/2023] [Indexed: 01/24/2023] Open
Abstract
Electricity-driven asymmetric catalysis is an emerging powerful tool in organic synthesis. However, asymmetric induction so far has mainly relied on forming strong bonds with a chiral catalyst. Asymmetry induced by weak interactions with a chiral catalyst in an electrochemical medium remains challenging due to compatibility issues related to solvent polarity, electrolyte interference, etc. Enabled by a properly designed phase-transfer strategy, here we have achieved two efficient electricity-driven catalytic asymmetric bromocyclization processes induced by weak ion-pairing interaction. The combined use of a phase-transfer catalyst and a chiral phosphate catalyst, together with NaBr as the bromine source, constitutes the key advantages over the conventional chemical oxidation approach. Synergy over multiple events, including anodic oxidation, ion exchange, phase transfer, asymmetric bromination, and inhibition of Br2 decomposition by NaHCO3, proved critical to the success.
Collapse
Affiliation(s)
- Xuefeng Tan
- grid.24515.370000 0004 1937 1450Department of Chemistry, Energy Institute, Institute for Advanced Study, and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong SAR China ,grid.495521.eHKUST Shenzhen Research Institute, No. 9 Yuexing 1st Rd, 518057 Shenzhen, China
| | - Qingli Wang
- grid.24515.370000 0004 1937 1450Department of Chemistry, Energy Institute, Institute for Advanced Study, and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong SAR China ,grid.510951.90000 0004 7775 6738Shenzhen Bay Laboratory, 518107 Shenzhen, China
| | - Jianwei Sun
- grid.24515.370000 0004 1937 1450Department of Chemistry, Energy Institute, Institute for Advanced Study, and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong SAR China ,grid.495521.eHKUST Shenzhen Research Institute, No. 9 Yuexing 1st Rd, 518057 Shenzhen, China
| |
Collapse
|
10
|
Chen J, Zhang R, Ma C, Zhang P, Zhang Y, Wang B, Xue F, Jin W, Xia Y, Liu C. Sustainable electrochemical dearomatization for the synthesis of diverse 2, 3-functionalized indolines. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
11
|
Wani IA, Sk S, Mal A, Sengupta A, Ghorai MK. Stereoselective Routes to Hexahydropyrroloindoles and Tetrahydropyrroloquinolines from Activated Aziridines and Electron Deficient 3 H-Indoles. Org Lett 2022; 24:7867-7872. [PMID: 36094406 DOI: 10.1021/acs.orglett.2c02354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An unprecedented and novel synthetic route to hexahydropyrrolo[2,3-b]indoles bearing cis-contiguous stereocenters with excellent stereoselectivities (ee of >99%, dr of ≤99:1) has been disclosed that proceeds through the ring opening of activated aziridines with electron deficient 4-substituted indoles followed by a novel cyclization in a domino fashion, thereby obviating the use of 3-substituted indoles as the prerequisite nucleophile. Another efficient synthetic route to tetrahydropyrrolo[4,3,2-de]quinolines in excellent yields (≤93%) and excellent enantioselectivity (ee of >99%) has been established via ring opening of activated aziridines with 4-bromo-1-methyl-1H-indole at relatively higher temperatures followed by Cu(I)-catalyzed intramolecular C-N cyclization in the same pot. The stability and the formation of products at different temperatures are explained by computational studies.
Collapse
Affiliation(s)
- Imtiyaz Ahmad Wani
- Indian Institution of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Sahid Sk
- Indian Institution of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Abhijit Mal
- Indian Institution of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Arunava Sengupta
- Indian Institution of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Manas K Ghorai
- Indian Institution of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| |
Collapse
|
12
|
Xue X, Wang Y, Zhou L, Ge R, Yang J, Kong X, Xu M, Li Z, Ma L, Duan H. An Electrocatalytic Strategy for Dehydrogenative [4+2] Cycloaddition over a Cobalt‐based catalyst. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Xiaomeng Xue
- State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Ye Wang
- Department of Chemistry Tsinghua University Beijing 100084 China
| | - Lina Zhou
- State Key Laboratory of Catalytic Materials and Reaction Engineering Research Institute of Petroleum Processing, SINOPEC Beijing 100083 China
| | - Ruixiang Ge
- Department of Chemistry Tsinghua University Beijing 100084 China
| | - Jiangrong Yang
- State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Xianggui Kong
- State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Ming Xu
- State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Zhenhua Li
- State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Lina Ma
- State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Haohong Duan
- Department of Chemistry Tsinghua University Beijing 100084 China
| |
Collapse
|
13
|
Recent Progresses in the Preparation of Chlorinated Molecules: Electrocatalysis and Photoredox Catalysis in the Spotlight. REACTIONS 2022. [DOI: 10.3390/reactions3020018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Among halogenated molecules, those containing chlorine atoms are fundamental in many areas such as pharmaceuticals, polymers, agrochemicals and natural metabolites. Despite the fact that many reactions have been developed to install chlorine on organic molecules, most of them rely on toxic and hazardous chlorinating reagents as well as harsh conditions. In an attempt to move towards more sustainable approaches, photoredox catalysis and electrocatalysis have emerged as powerful alternatives to traditional methods. In this review, we collect the most recent and significant examples of visible-light- or current-mediated chlorination published in the last five years.
Collapse
|
14
|
Du J, Gao D, Zhang D, Lin X, Liu C, Zhu N, Yang Z, He W, Fang Z, Guo K. Electrochemical Oxidative
ortho
‐Selective Trifluoromethylation of
N
‐Arylamides. ChemElectroChem 2022. [DOI: 10.1002/celc.202101411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jinze Du
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu Rd S. Nanjing 211816 P. R. China
| | - Di Gao
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu Rd S. Nanjing 211816 P. R. China
| | - Dong Zhang
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu Rd S. Nanjing 211816 P. R. China
| | - Xinxin Lin
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu Rd S. Nanjing 211816 P. R. China
| | - Chengkou Liu
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu Rd S. Nanjing 211816 P. R. China
| | - Ning Zhu
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu Rd S. Nanjing 211816 P. R. China
| | - Zhao Yang
- College of Engineering China Pharmaceutical University 24 Tongjiaxiang Nanjing 210003 P. R. China
| | - Wei He
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu Rd S. Nanjing 211816 P. R. China
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu Rd S. Nanjing 211816 P. R. China
- State Key Laboratory of Materials-Oriented Chemical Engineering Nanjing Tech University 30 Puzhu Rd S. Nanjing 211816 P. R. China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu Rd S. Nanjing 211816 P. R. China
- State Key Laboratory of Materials-Oriented Chemical Engineering Nanjing Tech University 30 Puzhu Rd S. Nanjing 211816 P. R. China
| |
Collapse
|
15
|
Kumar D, Chaudhary D, Ishu K, Yadav S, Maurya NK, Kant R, Kuram MR. Copper-catalyzed cascade reaction of tryptamines with diazo compounds to access hexahydropyrroloindoline derivatives. Org Biomol Chem 2022; 20:8610-8614. [DOI: 10.1039/d2ob01635d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A Cu-catalyzed cyclopropanation/ring-opening/iminium cyclization of tryptamine derivatives with donor–acceptor diazo compounds is developed to furnish pyrroloindolines, creating three consecutive stereogenic centers.
Collapse
Affiliation(s)
- Dharmendra Kumar
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Dhananjay Chaudhary
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Km Ishu
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Suman Yadav
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Naveen Kumar Maurya
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ruchir Kant
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Malleswara Rao Kuram
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
16
|
Hu J, Zeng L, Hu J, Ma R, Liu X, Jiao Y, He H, Chen S, Xu Z, Wang H, Lei A. Electrochemical Difunctionalization of Terminal Alkynes: Access to 1,4-Dicarbonyl Compounds. Org Lett 2021; 24:289-292. [PMID: 34923826 DOI: 10.1021/acs.orglett.1c03955] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
1,4-Dicarbonyl compounds are versatile scaffolds for the heterocycle synthesis, including the Paal-Knorr reaction. Herein, a feasible electrosynthesis method to access 1,4-dicarbonyl compounds has been developed from simple alkynes and 1,3-dicarbonyl compounds. When the undivided cell is combined with the constant current mode, aryl alkynes containing numerous medicinal motifs with 1,3-dicarbonyl esters or ketones react smoothly. External oxidant and catalyst-free conditions conform to the requirements of green synthesis.
Collapse
Affiliation(s)
- Jingcheng Hu
- College of Chemistry and Molecular Sciences, The Institute for Advanced Studies (IAS), Wuhan University Wuhan, Hubei 430072, People's Republic of China
| | - Li Zeng
- College of Chemistry and Molecular Sciences, The Institute for Advanced Studies (IAS), Wuhan University Wuhan, Hubei 430072, People's Republic of China
| | - Jiayu Hu
- College of Chemistry and Molecular Sciences, The Institute for Advanced Studies (IAS), Wuhan University Wuhan, Hubei 430072, People's Republic of China
| | - Rui Ma
- College of Chemistry and Molecular Sciences, The Institute for Advanced Studies (IAS), Wuhan University Wuhan, Hubei 430072, People's Republic of China
| | - Xue Liu
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University Nanchang, Jiangxi 330022, People's Republic of China
| | - Ying Jiao
- College of Chemistry and Molecular Sciences, The Institute for Advanced Studies (IAS), Wuhan University Wuhan, Hubei 430072, People's Republic of China
| | - Haoyu He
- College of Chemistry and Molecular Sciences, The Institute for Advanced Studies (IAS), Wuhan University Wuhan, Hubei 430072, People's Republic of China
| | - Siyu Chen
- College of Chemistry and Molecular Sciences, The Institute for Advanced Studies (IAS), Wuhan University Wuhan, Hubei 430072, People's Republic of China
| | - Zhexi Xu
- College of Chemistry and Molecular Sciences, The Institute for Advanced Studies (IAS), Wuhan University Wuhan, Hubei 430072, People's Republic of China
| | - Hongfei Wang
- College of Chemistry and Molecular Sciences, The Institute for Advanced Studies (IAS), Wuhan University Wuhan, Hubei 430072, People's Republic of China
| | - Aiwen Lei
- College of Chemistry and Molecular Sciences, The Institute for Advanced Studies (IAS), Wuhan University Wuhan, Hubei 430072, People's Republic of China.,Department of Chemical and Materials Engineering, Center of Research Excellence in Renewable Energy and Power Systems, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
17
|
Wan H, Li D, Xia H, Yang L, Alhumade H, Yi H, Lei A. Synthesis of 1 H-indazoles by an electrochemical radical C sp2-H/N-H cyclization of arylhydrazones. Chem Commun (Camb) 2021; 58:665-668. [PMID: 34918720 DOI: 10.1039/d1cc04656j] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The development of efficient and sustainable C-N bond-forming reactions to N-heterocyclic frameworks has been a long-standing interest in organic synthesis. In this work, we develop an electrochemical radical Csp2-H/N-H cyclization of arylhydrazones to 1H-indazoles. The electrochemical anodic oxidation approach was adopted to synthesize a variety of 1H-indazole derivatives in moderate to good yields. HFIP was not only employed as a solvent or the proton donor, but also can promote the formation of N free radicals. This synthetic methodology is operationally simple, and less expensive electrodes would be suitable for this chemistry.
Collapse
Affiliation(s)
- Hao Wan
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, P. R. China.
| | - Dongting Li
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, P. R. China.
| | - Huadan Xia
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, P. R. China.
| | - Liwen Yang
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, P. R. China.
| | - Hesham Alhumade
- Department of Chemical and Materials Engineering, Faculty of Engineering, Center of Research Excellence in Renewable Energy and Power Systems, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hong Yi
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, P. R. China.
| | - Aiwen Lei
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, P. R. China. .,College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, P. R. China. .,King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
18
|
Liang K, Lu L, Liu X, Yang D, Wang S, Gao Y, Alhumade H, Yi H, Lei A. Electrochemical Cobalt-catalyzed Cyclotrimerization of Alkynes to 1,2,4-Substituted Arenes. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04639] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kailun Liang
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei P. R. China
| | - Lijun Lu
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei P. R. China
| | - Xing Liu
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei P. R. China
| | - Dali Yang
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei P. R. China
| | - Shengchun Wang
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei P. R. China
| | - Yiming Gao
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei P. R. China
| | - Hesham Alhumade
- Department of Chemical and Materials Engineering, Center of Research Excellence in Renewable Energy and Power Ststems, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hong Yi
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei P. R. China
| | - Aiwen Lei
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
- Department of Chemical and Materials Engineering, Abdulaziz University. Jeddah 21589, Saudi Arabia
| |
Collapse
|
19
|
Harnedy J, Hareram MD, Tizzard GJ, Coles SJ, Morrill LC. Electrochemical oxidative Z-selective C(sp 2)-H chlorination of acrylamides. Chem Commun (Camb) 2021; 57:12643-12646. [PMID: 34762080 DOI: 10.1039/d1cc05824j] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
An electrochemical method for the oxidative Z-selective C(sp2)-H chlorination of acrylamides has been developed. This catalyst and organic oxidant free method is applicable across various substituted tertiary acrylamides, and provides access to a broad range of synthetically useful Z-β-chloroacrylamides in good yields (22 examples, 73% average yield). The orthogonal derivatization of the products was demonstrated through chemoselective transformations and the electrochemical process was performed on gram scale in flow.
Collapse
Affiliation(s)
- James Harnedy
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK.
| | - Mishra Deepak Hareram
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK.
| | - Graham J Tizzard
- UK National Crystallographic Service, Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, UK
| | - Simon J Coles
- UK National Crystallographic Service, Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, UK
| | - Louis C Morrill
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK.
| |
Collapse
|
20
|
Zhou N, Zhao J, Sun C, Lai Y, Ruan Z, Feng P. Electro-Oxidative C-N Bond Formation through Azolation of Indole Derivatives: An Access to 3-Substituent-2-(Azol-1-yl)indoles. J Org Chem 2021; 86:16059-16067. [PMID: 34520191 DOI: 10.1021/acs.joc.1c01271] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A practical protocol to synthesize 3-substituent-2-(azol-1-yl)indole derivatives has been developed via an electrochemical oxidative cross coupling process under mild conditions. This electro-oxidative C-N bond formation strategy tolerates a range of functional groups and is amenable to gram scale synthesis. Moreover, this method was applied to the late-stage functionalization of bioactive molecules.
Collapse
Affiliation(s)
- Naifu Zhou
- Department of Chemistry and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Junhao Zhao
- Department of Chemistry and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Chengbo Sun
- Department of Chemistry and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Yuqin Lai
- Department of Chemistry and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Zhixiong Ruan
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Science, and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Pengju Feng
- Department of Chemistry and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| |
Collapse
|
21
|
Maiti D, Halder A, Sasidharan Pillai A, De Sarkar S. Synthesis of Polysubstituted Furans through Electrochemical Selenocyclization of Homopropargylic Alcohols. J Org Chem 2021; 86:16084-16094. [PMID: 34606280 DOI: 10.1021/acs.joc.1c01688] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The current method represents an electrochemically driven synthetic route to access polysubstituted selenofuran derivatives through the diselenide-promoted cyclization of homopropargyl alcohols. The tandem electro-oxidative transformation operates at ambient temperature and in the absence of an external oxidant. This mild and efficient methodology exhibits good functional group compatibility, providing a broad range of substrate scopes up to 84% isolated yield. Further conversion of the seleno-functionality afforded other valuable furan derivatives.
Collapse
Affiliation(s)
- Debabrata Maiti
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Atreyee Halder
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Aswathy Sasidharan Pillai
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Suman De Sarkar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| |
Collapse
|
22
|
Li Y, Wang H, Zhang H, Lei A. Electrochemical Dimethyl
Sulfide‐Mediated
Esterification of Amino Acids. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yongli Li
- College of Chemistry and Molecular Sciences, The Institute for Advanced Studies (IAS) Wuhan University Wuhan Hubei 430072 China
| | - Huamin Wang
- College of Chemistry and Molecular Sciences, The Institute for Advanced Studies (IAS) Wuhan University Wuhan Hubei 430072 China
| | - Heng Zhang
- College of Chemistry and Molecular Sciences, The Institute for Advanced Studies (IAS) Wuhan University Wuhan Hubei 430072 China
| | - Aiwen Lei
- College of Chemistry and Molecular Sciences, The Institute for Advanced Studies (IAS) Wuhan University Wuhan Hubei 430072 China
- National Research Center for Carbohydrate Synthesis Jiangxi Normal University Nanchang Jiangxi 330022 China
| |
Collapse
|
23
|
Li P, Yang F, Hu G, Zhang X. Palladium-Catalyzed One-Pot Synthesis of Pyrroloindolines from 2-Alkynyl Arylazides and Thioacetamides. J Org Chem 2021; 86:10360-10367. [PMID: 34281342 DOI: 10.1021/acs.joc.1c01058] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A novel and efficient synthetic method for the preparation of various pyrroloindolines from 2-alkynyl arylazides and thioacetamides was developed. The reaction was carried out in a one-pot process under mild reaction conditions to afford the products in moderate to good yields, which has the potential to be used in organic synthesis.
Collapse
Affiliation(s)
- Ping Li
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Fan Yang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Guiwen Hu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Xiaoxiang Zhang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| |
Collapse
|
24
|
Yao Z, Feng H, Xi H, Xi C, Liu W. CF 3SO 3H-enabled cascade ring-opening/dearomatization of indole derivatives to polycyclic heterocycles. Org Biomol Chem 2021; 19:4469-4473. [PMID: 33913995 DOI: 10.1039/d1ob00712b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel dearomatization process to produce fused polycyclic indolines via a CF3SO3H-mediated cascade ring-opening of a β-lactam and hydroaminative cyclization is demonstrated. It provides a new strategy for the synthesis of important polycyclic indoline-2-amine derivatives in moderate to excellent yields, as well as with good functional group tolerance. Moreover, transformation of the product was performed to deliver the corresponding acid, alcohol and amide smoothly.
Collapse
Affiliation(s)
- Zhengdong Yao
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Huangdi Feng
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Hui Xi
- Key Laboratory of Tobacco Flavor Basic Research of CNTC, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Chuanjun Xi
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| | - Weiping Liu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| |
Collapse
|
25
|
Liu F, Wu N, Cheng X. Chlorination Reaction of Aromatic Compounds and Unsaturated Carbon-Carbon Bonds with Chlorine on Demand. Org Lett 2021; 23:3015-3020. [PMID: 33792338 DOI: 10.1021/acs.orglett.1c00704] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chlorination with chlorine is straightforward, highly reactive, and versatile, but it has significant limitations. In this Letter, we introduce a protocol that could combine the efficiency of electrochemical transformation and the high reactivity of chlorine. By utilizing Cl3CCN as the chloride source, donating up to all three chloride atom, the reaction could generate and consume the chlorine in situ on demand to achieve the chlorination of aromatic compounds and electrodeficient alkenes.
Collapse
Affiliation(s)
- Feng Liu
- Institute of Chemistry and Biomedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, National Demonstration Center for Experimental Chemistry Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Na Wu
- Institute of Chemistry and Biomedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, National Demonstration Center for Experimental Chemistry Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xu Cheng
- Institute of Chemistry and Biomedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, National Demonstration Center for Experimental Chemistry Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
26
|
Scheide MR, Nicoleti CR, Martins GM, Braga AL. Electrohalogenation of organic compounds. Org Biomol Chem 2021; 19:2578-2602. [DOI: 10.1039/d0ob02459g] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this review we target sp, sp2 and sp3 carbon fluorination, chlorination, bromination and iodination reactions using electrolysis as a redox medium. Mechanistic insights and substrate reactivity are also discussed.
Collapse
Affiliation(s)
- Marcos R. Scheide
- Departamento de Química
- Universidade Federal de Santa Catarina – UFSC
- Florianópolis
- Brazil
| | - Celso R. Nicoleti
- Departamento de Química
- Universidade Federal de Santa Catarina – UFSC
- Florianópolis
- Brazil
| | - Guilherme M. Martins
- Departamento de Química
- Universidade Federal de Santa Catarina – UFSC
- Florianópolis
- Brazil
| | - Antonio L. Braga
- Departamento de Química
- Universidade Federal de Santa Catarina – UFSC
- Florianópolis
- Brazil
| |
Collapse
|