1
|
Oudard S, Timsit MO, Maillet D, Mouillet G, Campedel L, Colomba É, Dourthe LM, Eymard JC, Gobert A, Jamet C, Joly C, Serrate C, Ploussard G. [Metastatic castration-resistant prostate cancer and PARP inhibitors: From tumor genomics to new therapeutic combinations]. Bull Cancer 2025; 112:61-81. [PMID: 39232886 DOI: 10.1016/j.bulcan.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/29/2024] [Accepted: 05/06/2024] [Indexed: 09/06/2024]
Abstract
Castration-resistant metastatic prostate cancer remains lethal and a therapeutic challenge. Current strategies are geared towards the personalization of treatments based on the identification of relevant molecular targets, including genomic alterations involved in tumoral processes. Among these novel targeted therapies, poly-ADP-ribose polymerase inhibitors (PARPi), by blocking the action of enzymes involved in deoxyribonucleic acid (DNA) repair, induce the destruction of cells carrying defects in homologous recombination repair, often associated with alterations in genes involved in this mechanism. Thus, determining the presence of a molecular anomaly, particularly alterations in the BRCA1/2 genes, is a prerequisite for initiating PARPi monotherapy. In patients with metastatic castration-resistant prostate cancer , around 20-30 % carry this type of mutation. In this population, single-agent studies have demonstrated PARPi ability to prolong overall survival, and to improve symptom control, including pain. Other studies are underway to assess their effectiveness in combination with other therapies, and it already appears that association with new-generation hormone therapy can further prolong radiological progression-free survival, regardless of the mutation status of the genes involved in DNA repair, indicating a synergistic action between PARPi and new-generation hormone therapy.
Collapse
Affiliation(s)
- Stéphane Oudard
- Hôpital Européen Georges-Pompidou, service de cancérologie médicale, Paris, France.
| | - Marc-Olivier Timsit
- Université de Paris, service urologie, cancérologie génito-urinaire et transplantation rénale, Paris, France; Hôpital Necker-Enfants malades, service d'urologie, Paris, France
| | - Denis Maillet
- Hospices civils de Lyon (IC-HCL), Institut de cancérologie, service d'oncologie médicale, Lyon, France; Faculté de médecine Jacques-Lisfranc, Saint-Étienne, France
| | | | - Luca Campedel
- Université Clermont-Auvergne, CHU de Gabriel-Montpied, service d'oncologie, Clermont-Ferrand, France
| | - Émeline Colomba
- Université Paris-Saclay, Institut Gustave Roussy, service de médecine oncologique, Villejuif, France
| | | | | | - Aurélien Gobert
- Centre hospitalier privé Saint-Grégoire, ICRB, Rennes, France
| | - Claire Jamet
- Centre hospitalier Saint-Louis, service d'oncologie médicale, La Rochelle, France
| | - Charlotte Joly
- Hôpital Henri-Mondor, service d'oncologie, Créteil, France
| | - Camille Serrate
- Groupe hospitalier Diaconesses Croix Saint-Simon, service d'oncologie médicale, Paris, France
| | - Guillaume Ploussard
- IUCT Oncopôle Toulouse, service d'urologie, Toulouse, France; Clinique La Croix du Sud, UROSUD, Toulouse, France
| |
Collapse
|
2
|
Tommasi S, Coppola CA, Caniglia A, Pilato B, Zito FA, Carosi M, Melucci E, Casini B, Russo A, Gismondi V, Cirmena G, Paudice M, Malapelle U, Pepe F, Troncone G, Fontanini G, Bruno R, Faviana P, Vacirca D, Taormina SV, Francesconi S, Caprera C, Corsi M, Bracarda S, Barberis M. BRCA testing in metastatic castration-resistant prostate cancer: successes and troubles in a real world setting. An Italian Multicentric study. Pathologica 2024; 116:303-309. [PMID: 39748712 DOI: 10.32074/1591-951x-1010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/29/2024] [Indexed: 01/04/2025] Open
Abstract
Objective Prostate cancer (PCa) is the most common cause of cancer-related deaths in men worldwide. BRCA1/2 genes are reported altered in approximately 1% and 8% of PCa cases, respectively. To date, formalin-fixed paraffin-embedded (FFPE) tissues have a consolidate use in the clinical practice, but with a significant drawback related to DNA/RNA degradation during the pre-analytical process. The purpose of this study is to evaluate the feasibility of detecting BRCA1/2 alterations in DNA extracted from FFPE tissues collected from PCa patients after various years of storage in seven Italian hospitals. Methods A total of 241 DNA samples were extracted from FFPE tissue with different storage times (1-12 y) and sequenced with NGS technology. BRCA1/2 evaluability was assessed performing data analysis with a chi-square test to study the impact of the storage time on the DNA degradation. Results The data collected showed a strict relation not only between the storage time and the BRCA1/2 evaluability, but even between the storage time and DNA degradation (DIN). Taken together, all the parameters considered decrease with an increase in the storage time. Conclusions Excessive FFPE tissues storage time (more than 3 years) can harshly affect DNA analysis and evaluability, hindering the achievement of a result useful in the clinical practice. Hence, it should be considered to perform the analysis as soon as possible to increase the evaluability of the test.
Collapse
Affiliation(s)
- Stefania Tommasi
- Molecular Diagnostics and Pharmacogenetics Unit, IRCCS Istituto Tumori Giovanni Paolo II Bari
| | - Claudio Antonio Coppola
- Molecular Diagnostics and Pharmacogenetics Unit, IRCCS Istituto Tumori Giovanni Paolo II Bari
| | | | - Brunella Pilato
- Molecular Diagnostics and Pharmacogenetics Unit, IRCCS Istituto Tumori Giovanni Paolo II Bari
| | | | - Mariantonia Carosi
- Pathologic Anatomy and Histology Cytodiagnostics and Advanced Molecular Diagnostics, IRCCS Istituto Nazionale Tumori Regina Elena Roma
| | - Elisa Melucci
- Pathologic Anatomy and Histology Cytodiagnostics and Advanced Molecular Diagnostics, IRCCS Istituto Nazionale Tumori Regina Elena Roma
| | - Beatrice Casini
- Pathologic Anatomy and Histology Cytodiagnostics and Advanced Molecular Diagnostics, IRCCS Istituto Nazionale Tumori Regina Elena Roma
| | - Andrea Russo
- Pathologic Anatomy and Histology Cytodiagnostics and Advanced Molecular Diagnostics, IRCCS Istituto Nazionale Tumori Regina Elena Roma
| | - Viviana Gismondi
- Hereditary Tumors Unit, IRCCS Ospedale Policlinico San Martino Genova
| | - Gabriella Cirmena
- Hereditary Tumors Unit, IRCCS Ospedale Policlinico San Martino Genova
| | | | - Umberto Malapelle
- Department of Public Health, Università Federico II di Napoli, Napoli
| | - Francesco Pepe
- Department of Public Health, Università Federico II di Napoli, Napoli
| | | | - Gabriella Fontanini
- Laboratory of Molecular Pathology of Pathologic Anatomy. Azienda Ospedaliera Universitaria Pisana (Aoup)
| | - Rossella Bruno
- Laboratory of Molecular Pathology of Pathologic Anatomy. Azienda Ospedaliera Universitaria Pisana (Aoup)
| | - Pinuccia Faviana
- Laboratory of Molecular Pathology of Pathologic Anatomy. Azienda Ospedaliera Universitaria Pisana (Aoup)
| | - Davide Vacirca
- Division of Pathologic Anatomy, Istituto Europeo di Oncologia, IRCCS, Milano
| | | | - Simona Francesconi
- S.C. University Anatomic Pathology, Università di Perugia, Az. Osp. Santa Maria, Terni
| | - Cecilia Caprera
- S.C. University Anatomic Pathology, Università di Perugia, Az. Osp. Santa Maria, Terni
| | - Matteo Corsi
- S.C. University Anatomic Pathology, Università di Perugia, Az. Osp. Santa Maria, Terni
| | - Sergio Bracarda
- Department of Oncology and S.C. of Medical and Translational Oncology, Azienda Ospedaliera Santa Maria, Terni
| | - Massimo Barberis
- Division of Experimental Oncology, Istituto Europeo di Oncologia, IRCCS, Milano
| |
Collapse
|
3
|
Schostak M, Bradbury A, Briganti A, Gonzalez D, Gomella L, Mateo J, Penault-Llorca F, Stenzinger A, Wyatt AW, Bjartell A. Practical Guidance on Establishing a Molecular Testing Pathway for Alterations in Homologous Recombination Repair Genes in Clinical Practice for Patients with Metastatic Prostate Cancer. Eur Urol Oncol 2024; 7:344-354. [PMID: 37714762 DOI: 10.1016/j.euo.2023.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 08/01/2023] [Accepted: 08/14/2023] [Indexed: 09/17/2023]
Abstract
CONTEXT Prostate cancer is a molecularly heterogeneous disease that is amenable to diagnostic testing to identify patients potentially eligible for personalised treatments inform familial risk and provide relevant information about potential prognosis. Several guidelines support the integration of genomic testing in a shared decision-making framework so that both health care professionals (HCPs) and patients are involved in determining the best treatment approach. OBJECTIVE To review current guidelines on molecular diagnostic testing for homologous recombination repair (HRR) gene alterations in patients with metastatic prostate cancer, with the aim of providing practical considerations for effective guideline implementation and establishment of an appropriate pathway for molecular diagnostic testing. EVIDENCE ACQUISITION We undertook a nonsystematic narrative review of the literature using PubMed to identify current guidelines and recommendations on molecular diagnostic testing for BRCA and/or homologous recombination repair gene alterations (HRRm) in patients with prostate cancer. In addition, selected articles that included BRCA/HRRm testing in clinical trials in metastatic castration-resistant prostate cancer and real-world evidence were also evaluated. Websites for relevant societies were reviewed for molecular diagnostic guidelines not published on PubMed. EVIDENCE SYNTHESIS Our review of guidelines published by several international societies that include molecular testing in prostate cancer identified variations in molecular testing approaches. The review of testing approaches used in clinical trials and real-world settings also highlighted several aspects that require improvement. Therefore, we compiled practical guidance for establishing an appropriate BRCA/HRR mutation testing pathway. CONCLUSIONS While there are several challenges to molecular testing and interpretation of test results that require enhancement, a multidisciplinary team approach will empower HCPs and their institutions to improve on or initiate their own molecular testing pathways. This in turn will lead to improvements in management strategies for patients with metastatic prostate cancer, for whom better treatment outcomes is a significant unmet need. PATIENT SUMMARY Establishing a molecular testing pathway in clinical practice for patients with metastatic castration-resistant prostate cancer will lead to fairer and more equal access to personalised treatments. This should lead to better outcomes, particularly for patients whose disease has spread to other areas of the body.
Collapse
Affiliation(s)
- Martin Schostak
- Department of Urology, Urooncology, Robot-assisted and Focal Treatment, University Hospital Magdeburg, Magdeburg, Germany.
| | - Angela Bradbury
- Perelman Center for Advanced Medicine, Philadelphia, PA, USA
| | | | - David Gonzalez
- Patrick G. Johnston Centre for Cancer Research, Queen's University, Belfast, UK
| | - Leonard Gomella
- Department of Urology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Joaquin Mateo
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron University Hospital, Barcelona, Spain
| | | | | | - Alexander W Wyatt
- Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada
| | - Anders Bjartell
- Department of Urology, Skåne University Hospital, Malmö, Sweden; Department of Translational Medicine, Lund University, Lund, Sweden
| |
Collapse
|
4
|
Manneh R, Verson CA, Martin A, Delgado A, Isaacsson Velho PH, Manduley A, Tejado L, Rodríguez Y, Vargas C, Barata PC. Prospective Study of Homologous Recombination Repair Gene Mutation Prevalence in Patients With Advanced Prostate Cancer From Latin America: Challenges and Future Approaches. JCO Precis Oncol 2024; 8:e2300628. [PMID: 38748947 PMCID: PMC11371117 DOI: 10.1200/po.23.00628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/05/2024] [Accepted: 03/15/2024] [Indexed: 07/15/2024] Open
Abstract
PURPOSE The prevalence of homologous recombination repair gene mutations (HRRm) in patients with metastatic castration-resistant prostate cancer (mCRPC) in Latin America and the Caribbean (LAC) is unknown. Prevalence of homologous Recombination repair (HRR) gene mutatiOns in patientS with metastatic castration resistant ProstatE Cancer in LaTin America (PROSPECT) aimed to determine this prevalence and to describe the demographic and clinical characteristics of the participants. MATERIALS AND METHODS This was a prospective, cross-sectional, multicenter study across 11 cancer centers in seven LAC countries. After informed consent, all eligible participants underwent genomic testing by provided blood samples for germline HRR testing; they also provided PC tissue blocks if available for somatic HRR testing. RESULTS Between April 2021 and April 2022, 387 patients (median age, 70 years [49-89], 94.3% Eastern Cooperative Oncology Group 0-1) with mCRPC were enrolled in the study. Almost 40% of them had a family history of cancer, and the overall time from their initial PC and mCRPC diagnosis was 3 years and 1 year, respectively. The overall prevalence of germline HRRm was 4.2%. The mutations detected included the genes CHEK2 (n = 4, 1%), ATM (n = 3, 0.8%), BRCA2 (n = 3, 0.8%), BRIP1 (n = 2, 0.5%), RAD51B (n = 2, 0.5%), BRCA1 (n = 1, 0.3%), and MRE11 (n = 1, 0.3%). The prevalence of somatic HRRm could not be assessed because of high HRR testing failure rates (79%, 199/251) associated with insufficient DNA, absence of tumor cells, and poor-quality DNA. CONCLUSION Despite the study's limitations, to our knowledge, PROSPECT was the first attempt to describe the prevalence of HRRm in patients with PC from LAC. Notably, the germline HRRm prevalence in this study was inferior to that observed in North American and European populations. The somatic HRR testing barriers identified are being addressed by several projects to improve access to HRR testing and biomarker-based therapies in LAC.
Collapse
Affiliation(s)
- Ray Manneh
- Sociedad de Oncología y Hematología del Cesar, Valledupar, Colombia
| | - Carmen Alaez Verson
- Laboratorio de Diagnóstico Genómico, Instituto Nacional de Medicina Genómica, Ciudad de Mexico, Mexico
| | - Angel Martin
- Instituto Alexander Fleming, Buenos Aires, Argentina
| | - Arturo Delgado
- Centro Médico Nacional Siglo XXI, Ciudad de Mexico, Mexico
| | | | | | | | | | | | | |
Collapse
|
5
|
Kanesvaran R, Chia PL, Chiong E, Chua MLK, Ngo NT, Ow S, Sim HG, Tan MH, Tay KH, Wong ASC, Wong SW, Tan PH. An approach to genetic testing in patients with metastatic castration-resistant prostate cancer in Singapore. ANNALS OF THE ACADEMY OF MEDICINE, SINGAPORE 2023; 52:135-148. [PMID: 38904491 DOI: 10.47102/annals-acadmedsg.2022372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Introduction There has been a rapid evolution in the treatment strategies for metastatic castration-resistant prostate cancer (mCRPC) following the identification of targetable mutations, making genetic testing essential for patient selection. Although several international guidelines recommend genetic testing for patients with mCRPC, there is a lack of locally endorsed clinical practice guidelines in Singapore. Method A multidisciplinary specialist panel with representation from medical and radiation oncology, urology, pathology, interventional radiology, and medical genetics discussed the challenges associated with patient selection, genetic counselling and sample processing in mCRPC. Results A clinical model for incorporating genetic testing into routine clinical practice in Singapore was formulated. Tumour testing with an assay that is able to detect both somatic and germline mutations should be utilised. The panel also recommended the "mainstreaming" approach for genetic counselling in which pre-test counselling is conducted by the managing clinician and post-test discussion with a genetic counsellor, to alleviate the bottlenecks at genetic counselling stage in Singapore. The need for training of clinicians to provide pre-test genetic counselling and educating the laboratory personnel for appropriate sample processing that facilitates downstream genetic testing was recognised. Molecular tumour boards and multidisciplinary discussions are recommended to guide therapeutic decisions in mCRPC. The panel also highlighted the issue of reimbursement for genetic testing to reduce patient-borne costs and increase the reach of genetic testing among this patient population. Conclusion This article aims to provide strategic and implementable recommendations to overcome the challenges in genetic testing for patients with mCRPC in Singapore.
Collapse
Affiliation(s)
| | - Puey Ling Chia
- Department of Medical Oncology, Tan Tock Seng Hospital, Singapore
| | - Edmund Chiong
- Department of Urology, National University Hospital, Singapore
- Department of Surgery, National University of Singapore, Singapore
| | | | - Nye Thane Ngo
- Division of Pathology, Singapore General Hospital, Singapore
| | - Samuel Ow
- Department of Haematology-Oncology, National University Cancer Institute, Singapore
| | - Hong Gee Sim
- Ravenna Urology Clinic, Gleneagles Medical Centre, Singapore
| | | | - Kiang Hiong Tay
- Department of Vascular and Interventional Radiation, Singapore General Hospital, Singapore
| | | | | | - Puay Hoon Tan
- Division of Pathology, Singapore General Hospital, Singapore
| |
Collapse
|
6
|
Uemura H, Oya M, Kamoto T, Sugimoto M, Shinozaki K, Morita K, Koto R, Takahashi M, Nii M, Shin E, Nonomura N. The prevalence of gene mutations in homologous recombination repair pathways in Japanese patients with metastatic castration-resistant prostate cancer in real-world clinical practice: The multi-institutional observational ZENSHIN study. Cancer Med 2023; 12:5265-5274. [PMID: 36358026 PMCID: PMC10028105 DOI: 10.1002/cam4.5333] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/07/2022] [Accepted: 09/25/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Metastatic castration-resistant prostate cancer (mCRPC) is a genetically heterogeneous disease with a poor prognosis. The prevalence of mutations in homologous recombination repair (HRR) pathway genes, including BRCA1/2, as well as treatment patterns and clinical outcomes, are not well characterized among Japanese men with mCRPC. METHODS This multicenter, noninterventional cohort study enrolled Japanese men with mCRPC from 24 institutions between 2014 and 2018. Mutations in the 15 HRR-related genes were assessed using archival primary or metastatic tumor samples. Patterns of sequential therapies for mCRPC were investigated. Patients were followed up for survival evaluation including prostate-specific antigen progression-free survival (PSA-PFS) and overall survival (OS). RESULTS Of the 143 patients analyzed, HRR-related mutations were detected in 51 patients (35.7%). The most frequently mutated genes were CDK12 (N = 19, 13.3%), followed by BRCA2 (N = 18, 12.6%), ATM (N = 8, 5.6%), and CHEK2 (N = 3, 2.1%). The most common type of first-line therapy for mCRPC was next-generation hormonal agents (NHA, 44.4%), followed by first-generation antiandrogens (FGA, 30.3%), and taxanes (22.5%). Commonly prescribed first-/second-line sequential regimens included FGA/NHA (17.6%), NHA/NHA (15.5%), and NHA/taxanes (14.1%). The median PSA-PFS and OS for the entire cohort were 5.6 and 26.1 months, respectively. Patients carrying BRCA1/2 mutations had numerically shorter PSA-PFS (median 3.3 vs. 5.9 months) and OS (median 20.7 vs. 27.3 months) than those without mutations. CONCLUSIONS In conclusion, approximately one-third of Japanese patients with mCRPC carried mutations in HRR-related genes in this study. The real-world outcomes of mCRPC are poor with conventional therapy, warranting an expansion of treatment options based on genetic abnormalities of the disease.
Collapse
Affiliation(s)
- Hiroji Uemura
- Department of Urology and Renal Transplantation, Yokohama City University Medical Center, Yokohama City, Japan
| | - Mototsugu Oya
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Toshiyuki Kamoto
- Department of Urology, Faculty of Medicine, Miyazaki University, Miyazaki, Japan
| | - Mikio Sugimoto
- Department of Urology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | | | | | | | | | | | | | - Norio Nonomura
- Department of Urology, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
7
|
Matsubara N, de Bono J, Olmos D, Procopio G, Kawakami S, Ürün Y, van Alphen R, Flechon A, Carducci MA, Choi YD, Hotte SJ, Korbenfeld E, Kramer G, Agarwal N, Chi KN, Dearden S, Gresty C, Kang J, Poehlein C, Harrington EA, Hussain M. Olaparib Efficacy in Patients with Metastatic Castration-resistant Prostate Cancer and BRCA1, BRCA2, or ATM Alterations Identified by Testing Circulating Tumor DNA. Clin Cancer Res 2023; 29:92-99. [PMID: 36318705 PMCID: PMC9811154 DOI: 10.1158/1078-0432.ccr-21-3577] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/17/2021] [Accepted: 10/28/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE The phase III PROfound study (NCT02987543) evaluated olaparib versus abiraterone or enzalutamide (control) in metastatic castration-resistant prostate cancer (mCRPC) with tumor homologous recombination repair (HRR) gene alterations. We present exploratory analyses on the use of circulating tumor DNA (ctDNA) testing as an additional method to identify patients with mCRPC with HRR gene alterations who may be eligible for olaparib treatment. PATIENTS AND METHODS Plasma samples collected during screening in PROfound were retrospectively sequenced using the FoundationOne®Liquid CDx test for BRCA1, BRCA2 (BRCA), and ATM alterations in ctDNA. Only patients from Cohort A (BRCA/ATM alteration positive by tissue testing) were evaluated. We compared clinical outcomes, including radiographic progression-free survival (rPFS) between the ctDNA subgroup and Cohort A. RESULTS Of the 181 (73.9%) Cohort A patients who gave consent for plasma sample ctDNA testing, 139 (76.8%) yielded a result and BRCA/ATM alterations were identified in 111 (79.9%). Of these, 73 patients received olaparib and 38 received control. Patients' baseline demographics and characteristics, and the prevalence of HRR alterations were comparable with the Cohort A intention-to-treat (ITT) population. rPFS was longer in the olaparib group versus control [median 7.4 vs. 3.5 months; hazard ratio (HR), 0.33; 95% confidence interval (CI), 0.21-0.53; nominal P < 0.0001], which is consistent with Cohort A ITT population (HR, 0.34; 95% CI, 0.25-0.47). CONCLUSIONS When tumor tissue testing is not feasible or has failed, ctDNA testing may be a suitable alternative to identify patients with mCRPC carrying BRCA/ATM alterations who may benefit from olaparib treatment.
Collapse
Affiliation(s)
- Nobuaki Matsubara
- National Cancer Center Hospital East, Chiba, Japan
- Corresponding Author: Nobuaki Matsubara, National Cancer Center Hospital East, 6-5-1, Kashiwanoha, 104-0045 Kashiwa, Chiba, Japan. Phone: 814-7133-1111; Fax: 814-7134-6922; E-mail:
| | - Johann de Bono
- The Institute of Cancer Research and Royal Marsden, London, United Kingdom
| | - David Olmos
- Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - Giuseppe Procopio
- Medical Oncology Dept, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Satoru Kawakami
- Department of Urology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Yüksel Ürün
- Department of Medical Oncology, Ankara University, Ankara, Turkey
| | - Robbert van Alphen
- Department of Oncology, Elisabeth Tweesteden Hospital, Tilburg, the Netherlands
| | - Aude Flechon
- Cancérologie Médicale, Centre Léon-Bérard, Lyon Cedex, France
| | | | - Young Deuk Choi
- Department of Urology, Yonsei University Severance Hospital, Seoul, Republic of South Korea
| | | | | | | | - Neeraj Agarwal
- Huntsman Cancer Institute, University of Utah (NCI-CCC), Salt Lake City, Utah
| | - Kim N. Chi
- University of British Columbia, Vancouver, Canada
| | | | | | | | | | | | - Maha Hussain
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
8
|
Chi KN, Barnicle A, Sibilla C, Lai Z, Corcoran C, Barrett JC, Adelman CA, Qiu P, Easter A, Dearden S, Oxnard GR, Agarwal N, Azad A, de Bono J, Mateo J, Olmos D, Thiery-Vuillemin A, Harrington EA. Detection of BRCA1, BRCA2, and ATM Alterations in Matched Tumor Tissue and Circulating Tumor DNA in Patients with Prostate Cancer Screened in PROfound. Clin Cancer Res 2023; 29:81-91. [PMID: 36043882 PMCID: PMC9811161 DOI: 10.1158/1078-0432.ccr-22-0931] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/01/2022] [Accepted: 08/15/2022] [Indexed: 02/06/2023]
Abstract
PURPOSE Not all patients with metastatic castration-resistant prostate cancer (mCRPC) have sufficient tumor tissue available for multigene molecular testing. Furthermore, samples may fail because of difficulties within the testing procedure. Optimization of screening techniques may reduce failure rates; however, a need remains for additional testing methods to detect cancers with alterations in homologous recombination repair genes. We evaluated the utility of plasma-derived circulating tumor DNA (ctDNA) in identifying deleterious BRCA1, BRCA2 (BRCA), and ATM alterations in screened patients with mCRPC from the phase III PROfound study. PATIENTS AND METHODS Tumor tissue samples were sequenced prospectively at Foundation Medicine, Inc. (FMI) using an investigational next-generation sequencing (NGS) assay based on FoundationOne®CDx to inform trial eligibility. Matched ctDNA samples were retrospectively sequenced at FMI, using an investigational assay based on FoundationOne®Liquid CDx. RESULTS 81% (503/619) of ctDNA samples yielded an NGS result, of which 491 had a tumor tissue result. BRCA and ATM status in tissue compared with ctDNA showed 81% positive percentage agreement and 92% negative percentage agreement, using tissue as reference. At variant-subtype level, using tissue as reference, concordance was high for nonsense (93%), splice (87%), and frameshift (86%) alterations but lower for large rearrangements (63%) and homozygous deletions (27%), with low ctDNA fraction being a limiting factor. CONCLUSIONS We demonstrate that ctDNA can greatly complement tissue testing in identifying patients with mCRPC and BRCA or ATM alterations who are potentially suitable for receiving targeted PARP inhibitor treatments, particularly patients with no or insufficient tissue for genomic analyses.
Collapse
Affiliation(s)
- Kim N. Chi
- BC Cancer Agency, Vancouver, Canada
- Corresponding Author: Kim N. Chi, University of British Columbia Chief Medical Officer, BC Cancer, 686 West Broadway, Vancouver, British Columbia, V5Z 1G1 Canada. Phone: 604-877-6000; Fax: 604-877-0585; E-mail:
| | - Alan Barnicle
- Translational Medicine, AstraZeneca, Cambridge, United Kingdom
| | - Caroline Sibilla
- Precision Medicine and Biosamples, AstraZeneca, Cambridge, United Kingdom
| | - Zhongwu Lai
- Translational Medicine, AstraZeneca, Waltham, Massachusetts
| | - Claire Corcoran
- Precision Medicine and Biosamples, AstraZeneca, Cambridge, United Kingdom
| | | | | | - Ping Qiu
- Merck & Co., Inc., Rahway, New Jersey
| | - Ashley Easter
- Oncology Business Unit, AstraZeneca, Cambridge, United Kingdom
| | - Simon Dearden
- Precision Medicine and Biosamples, AstraZeneca, Cambridge, United Kingdom
| | | | - Neeraj Agarwal
- Huntsman Cancer Institute, University of Utah (NCI-CCC), Salt Lake City, Utah
| | - Arun Azad
- Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Johann de Bono
- The Institute of Cancer Research and The Royal Marsden, London, United Kingdom
| | - Joaquin Mateo
- Vall d'Hebron Institute of Oncology and Vall d'Hebron University Hospital, Barcelona, Spain
| | - David Olmos
- Department of Medical Oncology, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | | | | |
Collapse
|
9
|
Hiemenz MC, Graf RP, Schiavone K, Harries L, Oxnard GR, Ross JS, Huang RSP. Real-World Comprehensive Genomic Profiling Success Rates in Tissue and Liquid Prostate Carcinoma Specimens. Oncologist 2022; 27:e970-e972. [PMID: 36069892 PMCID: PMC9732218 DOI: 10.1093/oncolo/oyac181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/04/2022] [Indexed: 02/06/2023] Open
Abstract
Challenges with sequencing tissue samples from patients with prostate cancer have been reported in clinical trials. To assess the success rate of comprehensive genomic profiling (CGP) for prostate cancer patients, we analyzed a real-world cohort who underwent sequencing of their prostate tissue sample as well as a subset of patients with a reflex liquid biopsy. Overall, a significant majority (82%) of tissue prostate carcinoma samples yielded reportable CGP results. Of those samples that were unsuccessful, most (75%) were inadequate samples that did not meet pre-established criteria to advance into sequencing. For cases where liquid CGP was performed if tissue CGP was unsuccessful, mutations that were likely attributable to prostate carcinoma were observed in most cases and all cases were successful in generating a report. These results suggest that, for CGP testing, prostate cancer tissue is a reasonable matrix type and that liquid samples can be effectively used as an alternative to tissue.
Collapse
Affiliation(s)
| | - Ryon P Graf
- Foundation Medicine, Inc., Cambridge, MA, USA
| | | | | | | | - Jeffrey S Ross
- Foundation Medicine, Inc., Cambridge, MA, USA
- Department of Pathology, Upstate Medical University, Syracuse, NY, USA
| | | |
Collapse
|
10
|
Shore ND, Morgans AK, El-Haddad G, Srinivas S, Abramowitz M. Addressing Challenges and Controversies in the Management of Prostate Cancer with Multidisciplinary Teams. Target Oncol 2022; 17:709-725. [PMID: 36399218 PMCID: PMC9672595 DOI: 10.1007/s11523-022-00925-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2022] [Indexed: 11/19/2022]
Abstract
The diagnostic and treatment landscapes of prostate cancer are rapidly evolving. This has led to several challenges and controversies regarding optimal management of the disease that outpace guidelines and clinical data. Multidisciplinary teams (MDTs) can be used to engage the array of specialists that collaborate to treat complex malignancies such as prostate cancer. While the rationale for the use of MDTs in prostate cancer is well known, ways to optimally use MDTs to address the challenges and controversies associated with prostate cancer management are less well understood. One area of MDT care that remains undefined is how MDTs can most effectively provide guidance on clinical decision-making in situations in which information from novel diagnostic testing (genetic testing, molecular imaging) is substantially different from the established clinical risk factors. In this review, we provide a clinical perspective on ways that MDTs can be used to address this and other challenges and controversies across the prostate cancer disease continuum, from diagnosis to end-of-life considerations. Beyond clinical scenarios, we also review ways in which MDTs can mitigate disparities of care in prostate cancer. Overall, MDTs play a central role in helping to address the daily vexing issues faced by clinicians related to diagnosis, risk stratification, and treatment. Given the accelerating advances in precision medicine and targeted therapy, and the new questions and controversies these will bring, the value of MDTs for prostate cancer management will only increase in the future.
Collapse
|
11
|
Chiu PKF, Lee EKC, Chan MTY, Chan WHC, Cheung MH, Lam MHC, Ma ESK, Poon DMC. Genetic Testing and Its Clinical Application in Prostate Cancer Management: Consensus Statements from the Hong Kong Urological Association and Hong Kong Society of Uro-Oncology. Front Oncol 2022; 12:962958. [PMID: 35924163 PMCID: PMC9339641 DOI: 10.3389/fonc.2022.962958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 06/24/2022] [Indexed: 11/17/2022] Open
Abstract
Background In recent years, indications for genetic testing in prostate cancer (PC) have expanded from patients with a family history of prostate and/or related cancers to those with advanced castration-resistant disease, and even to early PC patients for determination of the appropriateness of active surveillance. The current consensus aims to provide guidance to urologists, oncologists and pathologists working with Asian PC patients on who and what to test for in selected populations. Methods A joint consensus panel from the Hong Kong Urological Association and Hong Kong Society of Uro-Oncology was convened over a series of 5 physical and virtual meetings. A background literature search on genetic testing in PC was performed in PubMed, ClinicalKey, EBSCOHost, Ovid and ProQuest, and three working subgroups were formed to review and present the relevant evidence. Meeting agendas adopted a modified Delphi approach to ensure that discussions proceed in a structured, iterative and balanced manner, which was followed by an anonymous voting on candidate statements. Of 5 available answer options, a consensus statement was accepted if ≥ 75% of the panelists chose “Accept Completely” (Option A) or “Accept with Some Reservation” (Option B). Results The consensus was structured into three parts: indications for testing, testing methods, and therapeutic implications. A list of 35 candidate statements were developed, of which 31 were accepted. The statements addressed questions on the application of PC genetic testing data and guidelines to Asian patients, including patient selection for germline testing, selection of gene panel and tissue sample, provision of genetic counseling, and use of novel systemic treatments in metastatic castration-resistant PC patients. Conclusion This consensus provides guidance to urologists, oncologists and pathologists working with Asian patients on indications for genetic testing, testing methods and technical considerations, and associated therapeutic implications.
Collapse
Affiliation(s)
- Peter K. F. Chiu
- S.H. Ho Urology Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Eric K. C. Lee
- Department of Clinical Oncology, Tuen Mun Hospital, Hong Kong SAR, China
| | - Marco T. Y. Chan
- Division of Urology, Department of Surgery, Tuen Mun Hospital, Hong Kong SAR, China
| | - Wilson H. C. Chan
- Division of Urology, Department of Surgery, United Christian Hospital, Hong Kong SAR, China
| | - M. H. Cheung
- Division of Urology, Department of Surgery, Tseung Kwan O Hospital, Hong Kong SAR, China
| | - Martin H. C. Lam
- Department of Oncology, United Christian Hospital, Hong Kong SAR, China
| | - Edmond S. K. Ma
- Department of Pathology, Hong Kong Sanatorium and Hospital, Hong Kong SAR, China
| | - Darren M. C. Poon
- Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, Hong Kong Cancer Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
- Comprehensive Oncology Centre, Hong Kong Sanatorium and Hospital, Hong Kong SAR, China
- *Correspondence: Darren M. C. Poon,
| |
Collapse
|
12
|
Lozano R, Olmos D, Castro E. Implications of DNA damage repair alterations for the management of prostate cancer. Curr Opin Urol 2022; 32:302-310. [PMID: 35266912 DOI: 10.1097/mou.0000000000000983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW In this review, we summarize the prevalence of alterations in DNA damage repair (DDR) genes in prostate cancer, their clinical significance, the therapeutic strategies developed to take advantage of the impaired tumour ability to repair DNA and the diagnostic approaches available to identify patients likely to benefit from DDR-targeting agents. RECENT FINDINGS DDR alterations are more frequent in metastatic than in localized prostate cancer and some of them associate with aggressive disease whereas the significance of others remain unclear. The most appropriate management approach for DDR-defective prostate cancer patients is unknown. Clinical trials have demonstrated the efficacy of different poly-ADP ribose polymerase inhibitors (PARPi) to treat metastatic castration-resistant prostate cancer patients with BRCA1/2 alterations, although there may be other DDR alterations that sensitize patients to these drugs. Multiple strategies to target DDR defects are being investigated, including PARPi in combination, platinum-based chemotherapy and immunotherapy, both in earlier and late disease stages. Optimization of molecular testing is paramount for the implementation of precision oncology in prostate cancer. SUMMARY Certain DDR defects present in prostate cancer have prognostic and therapeutic implications whereas the significance of other DDR alterations is yet to be elucidated.
Collapse
Affiliation(s)
- Rebeca Lozano
- Department of Medical Oncology, Salamanca University Hospital, Salamanca
| | - David Olmos
- Department of Medical Oncology, 12 Octubre University Hospital, Madrid
- Research Institute Hospital 12 de Octubre, Madrid
- Genitourinary Cancers Traslational Research Group, Institute of Biomedical Research in Malaga (IBIMA), Malaga
| | - Elena Castro
- Genitourinary Cancers Traslational Research Group, Institute of Biomedical Research in Malaga (IBIMA), Malaga
- Department of Medical Oncology, Virgen de la Victoria University Hospital, Malaga, Spain
| |
Collapse
|
13
|
The promising role of new molecular biomarkers in prostate cancer: from coding and non-coding genes to artificial intelligence approaches. Prostate Cancer Prostatic Dis 2022; 25:431-443. [PMID: 35422101 PMCID: PMC9385485 DOI: 10.1038/s41391-022-00537-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/24/2022] [Accepted: 03/30/2022] [Indexed: 12/15/2022]
Abstract
Background Risk stratification or progression in prostate cancer is performed with the support of clinical-pathological data such as the sum of the Gleason score and serum levels PSA. For several decades, methods aimed at the early detection of prostate cancer have included the determination of PSA serum levels. The aim of this systematic review is to provide an overview about recent advances in the discovery of new molecular biomarkers through transcriptomics, genomics and artificial intelligence that are expected to improve clinical management of the prostate cancer patient. Methods An exhaustive search was conducted by Pubmed, Google Scholar and Connected Papers using keywords relating to the genetics, genomics and artificial intelligence in prostate cancer, it includes “biomarkers”, “non-coding RNAs”, “lncRNAs”, “microRNAs”, “repetitive sequence”, “prognosis”, “prediction”, “whole-genome sequencing”, “RNA-Seq”, “transcriptome”, “machine learning”, and “deep learning”. Results New advances, including the search for changes in novel biomarkers such as mRNAs, microRNAs, lncRNAs, and repetitive sequences, are expected to contribute to an earlier and accurate diagnosis for each patient in the context of precision medicine, thus improving the prognosis and quality of life of patients. We analyze several aspects that are relevant for prostate cancer including its new molecular markers associated with diagnosis, prognosis, and prediction to therapy and how bioinformatic approaches such as machine learning and deep learning can contribute to clinic. Furthermore, we also include current techniques that will allow an earlier diagnosis, such as Spatial Transcriptomics, Exome Sequencing, and Whole-Genome Sequencing. Conclusion Transcriptomic and genomic analysis have contributed to generate knowledge in the field of prostate carcinogenesis, new information about coding and non-coding genes as biomarkers has emerged. Synergies created by the implementation of artificial intelligence to analyze and understand sequencing data have allowed the development of clinical strategies that facilitate decision-making and improve personalized management in prostate cancer.
Collapse
|
14
|
Teyssonneau D, Thiery-Vuillemin A, Dariane C, Barret E, Beauval JB, Brureau L, Créhange G, Fiard G, Fromont G, Gauthé M, Ruffion A, Renard-Penna R, Mathieu R, Sargos P, Rouprêt M, Ploussard G, Roubaud G. PARP Inhibitors as Monotherapy in Daily Practice for Advanced Prostate Cancers. J Clin Med 2022; 11:jcm11061734. [PMID: 35330059 PMCID: PMC8952857 DOI: 10.3390/jcm11061734] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/07/2022] [Accepted: 03/14/2022] [Indexed: 02/05/2023] Open
Abstract
Despite recent improvements in survival, metastatic castration-resistant prostate cancers (mCRPCs) remain lethal. Alterations in genes involved in the homologous recombination repair (HRR) pathway are associated with poor prognosis. Poly-ADP-ribose polymerase (PARP) inhibitors (PARPis) have demonstrated anti-tumoral effects by synthetic lethality in patients with mCRPCs harboring HRR gene alterations, in particular BRCA2. While both olaparib and rucaparib have obtained government approvals for use, the selection of eligible patients as well as the prescription of these treatments within the clinical urology community are challenging. This review proposes a brief review of the rationale and outcomes of PARPi treatment, then a pragmatic vision of PARPi use in terms of prescription and the selection of patients based on molecular screening, which can involve potential genetic counseling in the case of associated germinal alterations.
Collapse
Affiliation(s)
- Diego Teyssonneau
- Department of Medical Oncology, Institut Bergonié, 33000 Bordeaux, France;
- Correspondence:
| | - Antoine Thiery-Vuillemin
- Department of Medical Oncology, Centre Hospitalier Universitaire Besançon, 25000 Besançon, France;
| | - Charles Dariane
- Department of Urology, Hôpital Européen Georges-Pompidou, AP-HP, Paris University, 75005 Paris, France;
| | - Eric Barret
- Department of Urology, Institut Mutualiste Montsouris, 75014 Paris, France;
| | - Jean-Baptiste Beauval
- Department of Urology, La Croix du Sud Hôpital, Quint Fonsegrives, 31000 Toulouse, France; (J.-B.B.); (G.P.)
| | - Laurent Brureau
- Department of Urology, CHU de Pointe-à-Pitre, University of Antilles, 97110 Pointe-à-Pitre, France;
| | - Gilles Créhange
- Department of Urology, Grenoble Alpes University Hospital, Université Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, 38400 Grenoble, France;
| | - Gaëlle Fiard
- Department of Radiation Oncology, Curie Institute, 75005 Paris, France;
| | - Gaëlle Fromont
- Department of Pathology, CHRU Tours, 37000 Tours, France;
| | - Mathieu Gauthé
- Department of Nuclear Medicine, Scintep, 38000 Grenoble, France;
| | - Alain Ruffion
- Service d’Urologie Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, 69000 Lyon, France;
- Equipe 2, Centre d’Innovation en Cancérologie de Lyon (EA 3738 CICLY), Faculté de Médecine Lyon Sud, Université Lyon 1, 69000 Lyon, France
| | - Raphaële Renard-Penna
- Department of Radiology, Sorbonne University, AP-HP, Radiology, Pitie-Salpetriere Hospital, 75013 Paris, France;
| | - Romain Mathieu
- Department of Urology, University of Rennes, 35000 Rennes, France;
- Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), University of Rennes, 35000 Rennes, France
| | - Paul Sargos
- Department of Radiotherapy, Institut Bergonié, 33000 Bordeaux, France;
| | - Morgan Rouprêt
- Department of Urology, Sorbonne University, GRC 5 Predictive Onco-Uro, AP-HP, Urology, Pitie-Salpetriere Hospital, 75013 Paris, France;
| | - Guillaume Ploussard
- Department of Urology, La Croix du Sud Hôpital, Quint Fonsegrives, 31000 Toulouse, France; (J.-B.B.); (G.P.)
| | - Guilhem Roubaud
- Department of Medical Oncology, Institut Bergonié, 33000 Bordeaux, France;
| | | |
Collapse
|
15
|
Recherche d’altérations des gènes de réparation de l’ADN dans le cancer de la prostate : mise au point pratique du Comité de cancérologie de l’association française d’urologie. Prog Urol 2022; 32:155-164. [DOI: 10.1016/j.purol.2021.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/20/2021] [Accepted: 12/27/2021] [Indexed: 12/25/2022]
|
16
|
Hussain M, Corcoran C, Sibilla C, Fizazi K, Saad F, Shore N, Sandhu S, Mateo J, Olmos D, Mehra N, Kolinsky MP, Roubaud G, Ӧzgüroǧlu M, Matsubara N, Gedye C, Choi YD, Padua C, Kohlmann A, Huisden R, Elvin JA, Kang J, Adelman CA, Allen A, Poehlein C, de Bono J. Tumor Genomic Testing for >4000 Men with Metastatic Castration-resistant Prostate Cancer in the Phase III Trial PROfound (Olaparib). Clin Cancer Res 2022; 28:1518-1530. [PMID: 35091440 DOI: 10.1158/1078-0432.ccr-21-3940] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/21/2021] [Accepted: 01/26/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE Successful implementation of genomic testing in clinical practice is critical for identification of men with metastatic castration-resistant prostate cancer (mCRPC) eligible for olaparib and future molecularly targeted therapies. PATIENTS AND METHODS An investigational clinical trial assay, based on the FoundationOne®CDx tissue test, was used to prospectively identify patients with qualifying homologous recombination repair (HRR) gene alterations in the phase III PROfound study. Evaluation of next-generation sequencing (NGS) tissue test outcome against pre-analytical parameters was performed to identify key factors influencing NGS result generation. RESULTS 4858 tissue samples from 4047 patients were tested and reported centrally. NGS results were obtained in 58% (2792/4858) of samples, equating to 69% of patients. Of samples submitted, 83% were primary tumor samples (96% were archival and 4% newly obtained). Almost 17% were metastatic tumor samples (60% were archival and 33% newly obtained). NGS results were generated more frequently from newly obtained compared with archival samples (63.9% v. 56.9%), and metastatic compared with primary samples (63.9% v. 56.2%). Although generation of an NGS result declined with increasing sample age, approximately 50% of samples aged >10 years generated results. While higher tumor content and DNA yield resulted in greater success in obtaining NGS results, other factors, including selection and preservation of samples, may also have had an impact. CONCLUSIONS The PROfound study demonstrates that tissue testing to identify HRR alterations is feasible and that high-quality tumor tissue samples are key to obtaining NGS results and identifying patients with mCRPC who may benefit from olaparib treatment.
Collapse
Affiliation(s)
| | - Claire Corcoran
- Precision Medicine & Biosamples, R&D Oncology, AstraZeneca (Australia)
| | | | - Karim Fizazi
- Department of Medical Oncology, Institut Gustave Roussy, University of Paris Sud
| | - Fred Saad
- Department of Surgery, Centre Hospitalier de l'Université de Montréal, Université de Montréal
| | | | - Shahneen Sandhu
- Division of Cancer Medicine, Peter MacCallum Cancer Centre and the University of Melbourne
| | - Joaquin Mateo
- Prostate Cancer Translational Research, Vall d'Hebron Institute of Oncology and Vall d'Hebron University Hospital
| | - David Olmos
- Clinical Research programme, Spanish National Cancer Research Centre
| | - Niven Mehra
- Medical Oncology, Radboud University Nijmegen Medical Centre
| | | | | | - Mustafa Ӧzgüroǧlu
- Medical Oncology, Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty
| | | | - Craig Gedye
- School of Biomedical Sciences and Pharmacy, University of Newcastle
| | - Young Deuk Choi
- Department of Urology, Yonsei University College of Medicine
| | | | | | | | - Julia A Elvin
- Pathology and Diagnostic Medicine, Foundation Medicine Inc
| | | | | | - Allison Allen
- Global Medical Affairs, AstraZeneca (United Kingdom)
| | | | | |
Collapse
|
17
|
Miquelestorena-Standley E, Tallegas M, Bouvier C, Larousserie F, Aubert S, Gomez-Brouchet A, Guinebretière JM, Le Loarer F, Galant C, de Pinieux G. [From an optimal management of bone tissue samples to a quality patients' care in 2022 : A new paradigm]. Ann Pathol 2022; 42:202-207. [PMID: 35093248 DOI: 10.1016/j.annpat.2022.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/04/2022] [Indexed: 10/19/2022]
Abstract
Bone tissue can be involved by primitive or metastatic tumors and requires a specific processing both at the department of pathology and during multidisciplinary meetings. The development of fine-needle percutaneous biopsies and of molecular techniques in bone tumor pathology requires a specific management. Moreover, decalcification of samples is crucial but can be deleterious if not controlled or not appropriate. The aim of this review is to provide recommendations for management and decalcification of bone tumor samples.
Collapse
Affiliation(s)
- Elodie Miquelestorena-Standley
- Service d'anatomie et cytologie pathologiques, CHRU de Tours, hôpital Trousseau, avenue de la République, 37170 Chambray-les-Tours, France; Faculté de médecine, Université de Tours, 10, boulevard Tonnellé, 37000 Tours, France.
| | - Matthias Tallegas
- Service d'anatomie et cytologie pathologiques, CHRU de Tours, hôpital Trousseau, avenue de la République, 37170 Chambray-les-Tours, France; Plateforme de génétique moléculaire des cancers, CHRU de Tours, hôpital Trousseau, avenue de la République, 37170 Chambray-les-Tours, France
| | - Corinne Bouvier
- Service d'anatomie et cytologie pathologiques, CHU de Marseille La Timone, 264, rue Saint-Pierre, 13005 Marseille, France
| | - Frédérique Larousserie
- Service d'anatomie et cytologie pathologiques, Hôpital Cochin, 27, rue du Faubourg Saint-Jacques, 75014 Paris, France
| | - Sébastien Aubert
- Service d'anatomie et cytologie pathologiques, CHU de Lille, 2, avenue Oscar Lambret, 59000 Lille, France
| | - Anne Gomez-Brouchet
- CRB Cancer IUCT-oncopole, 1, avenue Irène Joliot-Curie, 31100 Toulouse, France
| | - Jean-Marc Guinebretière
- Service d'anatomie et cytologie pathologiques, Hôpital Curie, 26, rue d'Ulm, 75005 Paris, France
| | - François Le Loarer
- Service d'anatomie pathologique, Institut Bergonié, 229, cours Argonne, 33000 Bordeaux, France
| | - Christine Galant
- Service d'anatomie et cytologie pathologiques, Cliniques Universitaires Saint-Luc, 10, avenue Hippocrate, 1200 Bruxelles, Belgique
| | - Gonzague de Pinieux
- Service d'anatomie et cytologie pathologiques, CHRU de Tours, hôpital Trousseau, avenue de la République, 37170 Chambray-les-Tours, France; Faculté de médecine, Université de Tours, 10, boulevard Tonnellé, 37000 Tours, France
| |
Collapse
|
18
|
Giunta EF, Annaratone L, Bollito E, Porpiglia F, Cereda M, Banna GL, Mosca A, Marchiò C, Rescigno P. Molecular Characterization of Prostate Cancers in the Precision Medicine Era. Cancers (Basel) 2021; 13:4771. [PMID: 34638258 PMCID: PMC8507555 DOI: 10.3390/cancers13194771] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 12/31/2022] Open
Abstract
Prostate cancer (PCa) therapy has been recently revolutionized by the approval of new therapeutic agents in the metastatic setting. However, the optimal therapeutic strategy in such patients should be individualized in the light of prognostic and predictive molecular factors, which have been recently studied: androgen receptor (AR) alterations, PTEN-PI3K-AKT pathway deregulation, homologous recombination deficiency (HRD), mismatch repair deficiency (MMRd), and tumor microenvironment (TME) modifications. In this review, we highlighted the clinical impact of prognostic and predictive molecular factors in PCa patients' outcomes, identifying biologically distinct subtypes. We further analyzed the relevant methods to detect these factors, both on tissue, i.e., immunohistochemistry (IHC) and molecular tests, and blood, i.e., analysis of circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA). Moreover, we discussed the main pros and cons of such techniques, depicting their present and future roles in PCa management, throughout the precision medicine era.
Collapse
Affiliation(s)
- Emilio Francesco Giunta
- Medical Oncology, Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80131 Naples, Italy;
| | - Laura Annaratone
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (L.A.); (C.M.)
- Pathology Unit, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, 10060 Turin, Italy
| | - Enrico Bollito
- Department of Pathology, University of Turin, San Luigi Gonzaga Hospital, Orbassano, 10043 Turin, Italy;
| | - Francesco Porpiglia
- Department of Urology, University of Turin, San Luigi Gonzaga Hospital, Orbassano, 10043 Turin, Italy;
| | - Matteo Cereda
- Cancer Genomics and Bioinformatics Unit, IIGM-Italian Institute for Genomic Medicine, c/o IRCCS Candiolo, 10060 Turin, Italy;
- Candiolo Cancer Institute, FPO—IRCCS, Str. Prov.le 142, km 3.95, 10060 Candiolo, Italy
| | - Giuseppe Luigi Banna
- Department of Oncology, Portsmouth Hospitals University NHS Trust, Portsmouth PO2 8QD, UK;
| | - Alessandra Mosca
- Multidisciplinary Outpatient Oncology Clinic, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, 10060 Turin, Italy;
| | - Caterina Marchiò
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (L.A.); (C.M.)
- Pathology Unit, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, 10060 Turin, Italy
| | - Pasquale Rescigno
- Interdisciplinary Group for Translational Research and Clinical Trials, Urological Cancers (GIRT-Uro), Candiolo Cancer Institute, FPO-IRCCS, Candiolo, 10060 Turin, Italy
| |
Collapse
|
19
|
Technical and biological constraints on ctDNA-based genotyping. Trends Cancer 2021; 7:995-1009. [PMID: 34219051 DOI: 10.1016/j.trecan.2021.06.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 12/18/2022]
Abstract
Circulating tumor DNA (ctDNA) enables real-time genomic profiling of cancer without the need for tissue biopsy. ctDNA-based technology is seeing rapid uptake in clinical practice due to the potential to inform patient management from diagnosis to advanced disease. In metastatic disease, ctDNA can identify somatic mutations, copy-number variants (CNVs), and structural rearrangements that are predictive of therapy response. However, the ctDNA fraction (ctDNA%) is unpredictable and confounds variant detection strategies, undermining confidence in liquid biopsy results. Assay design also influences which types of genomic alterations are identifiable. Here, we describe the relationships between ctDNA%, methodology, and sensitivity-specificity for major classes of genomic alterations in prostate cancer. We provide recommendations to navigate the technical complexities that constrain the detection of clinically relevant genomic alterations in ctDNA.
Collapse
|
20
|
Building confidence in circulating tumour DNA assays for metastatic castration-resistant prostate cancer. Nat Rev Urol 2021; 18:255-256. [PMID: 33742188 DOI: 10.1038/s41585-021-00455-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
21
|
Gonzalez D, Stenzinger A. Homologous recombination repair deficiency (HRD): From biology to clinical exploitation. Genes Chromosomes Cancer 2021; 60:299-302. [PMID: 33486842 DOI: 10.1002/gcc.22939] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 01/20/2021] [Indexed: 12/20/2022] Open
Affiliation(s)
- David Gonzalez
- Patrick G Johnston Centre for Cancer Research, Queens University Belfast, Belfast, UK
| | - Albrecht Stenzinger
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Center for Lung Research (DZL), Heidelberg, Germany
| |
Collapse
|