1
|
Bai W, Zhao X, Ning Q. Development and validation of a radiomic prediction model for TACC3 expression and prognosis in non-small cell lung cancer using contrast-enhanced CT imaging. Transl Oncol 2025; 51:102211. [PMID: 39603208 PMCID: PMC11635781 DOI: 10.1016/j.tranon.2024.102211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/10/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUNDS Non-small cell lung cancer (NSCLC) prognosis remains poor despite treatment advances, and classical prognostic indicators often fall short in precision medicine. Transforming acidic coiled-coil protein-3 (TACC3) has been identified as a critical factor in tumor progression and immune infiltration across cancers, including NSCLC. Predicting TACC3 expression through radiomic features may provide valuable insights into tumor biology and aid clinical decision-making. However, its predictive value in NSCLC remains unexplored. Therefore, we aimed to construct and validate a radiomic model to predict TACC3 levels and prognosis in patients with NSCLC. MATERIALS AND METHODS Genomic data and contrast-enhanced computed tomography (CT) images were sourced from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO) database, and The Cancer Imaging Archive (TCIA). A total of 320 cases of lung adenocarcinoma from TCGA and 122 cases of NSCLC from GEO were used for prognostic analysis. Sixty-three cases from TCIA and GEO were included for radiomics feature extraction and model development. The radiomics model was constructed using logistic regression (LR) and support vector machine (SVM) algorithms. We predicted TACC3 expression and evaluated its correlation with NSCLC prognosis using contrast-enhanced CT-based radiomics. RESULTS TACC3 expression significantly influenced NSCLC prognosis. High TACC3 levels were associated with reduced overall survival, potentially mediated by immune microenvironment and tumor progression regulation. LR and SVM algorithms achieved AUC of 0.719 and 0.724, respectively, which remained at 0.701 and 0.717 after five-fold cross-validation. CONCLUSION Contrast-enhanced CT-based radiomics can non-invasively predict TACC3 expression and provide valuable prognostic information, contributing to personalized treatment strategies.
Collapse
Affiliation(s)
- Weichao Bai
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China
| | - Xinhan Zhao
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China
| | - Qian Ning
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China.
| |
Collapse
|
2
|
Nagaraj A, Srinivasa Raghavan S, Niraikulam A, Gautham N, Gunasekaran K. Sanggenol B, a plant bioactive, as a safer alternative to tackle cancer by antagonising human FGFR. J Biomol Struct Dyn 2024; 42:8331-8342. [PMID: 37551114 DOI: 10.1080/07391102.2023.2245047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/01/2023] [Indexed: 08/09/2023]
Abstract
Fibroblast Growth Receptor Factor (FGFR) are a family of proteins which are, in addition to their biological role, are involved in various pathological functions, such as cancer cellular proliferation, and metastasis. Deregulation of FGFRs at various points could result in malignancy. A conformational transition of the DFG (Asp-Phe-Gly) motif can switch the enzyme from a catalytically active (DFG-in) to an inactive (DFG-out) state. There are a few FDFR inhibitors which have received approval from the FDA, but these have adverse side effects. Hence, there is a demand for safer alternatives. With this aim, Ligand and Structure based virtual screening was carried to identify suitable lead molecule. In this process, Four Featured atom-based 3D Pharmacophore with quantitative structure-activity relationship analysis (3D-QSAR) was developed. The External validation of the hypothesis was carried invoking criteria such as Area under the ROC curve. Natural plant compound databases such as the Traditional Chinese medicine, NPACT and the ZINC Natural databases were chosen for pharmacophore filtering, which was followed by virtual screening against FGFR isoforms. The compound Sanggenol B was identified as the most suitable lead molecule. Structural stability of the protein-ligand complex and interactions of the ligand (Sanggenol B & the reference compound Ponatinib) with FGFR were analysed for 1000 ns (triplicate) by means of molecular simulation and the binding free energy was calculated using MMGBSA. Sanggenol B (PubChem CID: 15233694) binds effectively at the active site with favourable energies and is proposed as a safe alternative from a natural source.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Achyuta Nagaraj
- Department of Crystallography and Biophysics, University of Madras, Chennai, India
| | - Sriram Srinivasa Raghavan
- Department of Crystallography and Biophysics, University of Madras, Chennai, India
- RIKEN Centre for Computational Science, Kobe, Japan
| | - Ayyadurai Niraikulam
- Division of Biotechnology, Council of Scientific and Industrial Research-Central Leather Research Institute (CSIR-CLRI), Chennai, India
| | - Namasivayam Gautham
- Department of Crystallography and Biophysics, University of Madras, Chennai, India
| | | |
Collapse
|
3
|
Priesterbach-Ackley LP, van Kuik J, Tops BBJ, Lasorella A, Iavarone A, van Hecke W, Robe PA, Wesseling P, de Leng WWJ. RT-PCR assay to detect FGFR3::TACC3 fusions in formalin-fixed, paraffin-embedded glioblastoma samples. Neurooncol Pract 2024; 11:142-149. [PMID: 38496910 PMCID: PMC10940835 DOI: 10.1093/nop/npad081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024] Open
Abstract
Background One targeted treatment option for isocitrate dehydrogenase (IDH)-wild-type glioblastoma focuses on tumors with fibroblast growth factor receptor 3::transforming acidic coiled-coil-containing protein 3 (FGFR3::TACC3) fusions. FGFR3::TACC3 fusion detection can be challenging, as targeted RNA next-generation sequencing (NGS) is not routinely performed, and immunohistochemistry is an imperfect surrogate marker. Fusion status can be determined using reverse transcription polymerase chain reaction (RT-PCR) on fresh frozen (FF) material, but sometimes only formalin-fixed, paraffin-embedded (FFPE) tissue is available. Aim To develop an RT-PCR assay to determine FGFR3::TACC3 status in FFPE glioblastoma samples. Methods Twelve tissue microarrays with 353 historical glioblastoma samples were immunohistochemically stained for FGFR3. Samples with overexpression of FGFR3 (n = 13) were subjected to FGFR3::TACC3 RT-PCR on FFPE, using 5 primer sets for the detection of 5 common fusion variants. Fusion-negative samples were additionally analyzed with NGS (n = 6), FGFR3 Fluorescence In Situ Hybridization (n = 6), and RNA sequencing (n = 5). Results Using RT-PCR on FFPE material of the 13 samples with FGFR3 overexpression, we detected an FGFR3::TACC3 fusion in 7 samples, covering 3 different fusion variants. For 5 of these FF was available, and the presence of the fusion was confirmed through RT-PCR on FF. With RNA sequencing, 1 additional sample was found to harbor an FGFR3::TACC3 fusion (variant not covered by current RT-PCR for FFPE). The frequency of FGFR3::TACC3 fusion in this cohort was 9/353 (2.5%). Conclusions RT-PCR for FGFR3::TACC3 fusions can successfully be performed on FFPE material, with a specificity of 100% and (due to limited primer sets) a sensitivity of 83.3%. This assay allows for the identification of potential targeted treatment options when only formalin-fixed tissue is available.
Collapse
Affiliation(s)
| | - Joyce van Kuik
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bastiaan B J Tops
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Anna Lasorella
- Department of Biochemistry and Molecular Biology, Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Antonio Iavarone
- Department of Neurological Surgery, Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Wim van Hecke
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Pierre A Robe
- Department of Neurosurgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Pieter Wesseling
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Pathology, Amsterdam University Medical Centers/VUmc & Brain Tumor Center Amsterdam, Amsterdam, The Netherlands
| | - Wendy W J de Leng
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
4
|
He M, Wu H, Hu L, Liu N, Zhang G, Wang S. Regulatory mechanism of the Glabrene against non-small cell lung cancer by suppressing FGFR3. ENVIRONMENTAL TOXICOLOGY 2024. [PMID: 38517198 DOI: 10.1002/tox.24235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 03/23/2024]
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) is a highly malignant tumor with limited effective treatment options. This study aimed to investigate the regulatory mechanism of Glabrene on NSCLC through its interaction with FGFR3. METHODS HCC827 cells were implanted into nude mice and treated with Glabrene. Tumor volume was monitored at 0, 3, 6, and 9 days after medical treatment. Tissue analysis included Hematoxylin and Eosin (HE) and Terminal deoxynucleotidyl transferase (TdT)-mediated dUTP Nick End Labeling (TUNEL) staining, as well as immunohistochemistry for Ki67, ERK1/2, and p-ERK1/2 expression. Cell viability was determined with the CCK8 method. We utilized immunofluorescence techniques to observe apoptosis, as well as the levels of E-cadherin and Vimentin expression. Cellular proliferation was determined via plate cloning assay and cellular mobility was determined via scratch assay. Cellular invasion ability was assessed via a transwell assay. mRNA and protein levels of FGFR3, MMP1, MMP9, vimentin, E-cadherin, ERK1/2, and p-ERK1/2 were detected via qPCR and Western blot. IGF-1, VEGF, and Estradiol (E2) levels were measured through Enzyme linked immunosorbent assay (ELISA). RESULTS This study verified that Glabrene was capable of suppressing tumor growth in NSCLC mice, reversing tumor tissue's pathological morphology, attenuating the capacities of cancerous cells' proliferation, migration, and invasion, and leading to apoptosis. Besides, Glabrene could reduce the FGFR3 expression in HCC827 cells. Over-expression of FGFR3 promotes the proliferation of HCC827 cells, increase both contents of IGF-1, VEGF, and E2, and expressions of MMP1, MMP9, vimentin, and p-ERK1/2, while Glabrene inhibited FGFR3. Glabrene, and inhibition of FGFR3 expression were capable of decreasing FGFR3, MMP1, MMP9, vimentin, and p-ERK1/2 expression, as well as contents of IGF-1, VEGF, and E2 in model mice and HCC827 cells, and promoting the expression of E-cadherin. CONCLUSION Glabrene has the potential as a therapeutic agent for NSCLC by reducing cancer invasion and migration through the inhibition of ERK1/2 phosphorylation and suppression of epithelial-mesenchymal transition (EMT).
Collapse
Affiliation(s)
- Miao He
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
- Department of Hematology and Oncology, Chongqing Oncology Hematology Department, Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Huiling Wu
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
- Bone and joint rehabilitation department, The Affiliated Rehabilitation Hospital of Chongqing Medical University, Chongqing, China
| | - Lingjing Hu
- Department of Hematology and Oncology, Chongqing Oncology Hematology Department, Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Nan Liu
- Department of Hematology and Oncology, Chongqing Oncology Hematology Department, Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Guoduo Zhang
- Department of Hematology and Oncology, Chongqing Oncology Hematology Department, Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Shumei Wang
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
5
|
Safhi FA, Al-Hazani TMI, Jalal AS, Alduwish MA, Alshaya DS, Almufareh NA, Domiaty DM, Alshehri E, Al-Shamrani SM, Abboosh TS, Alotaibi MA, Alwaili MA, Al-Qahtani WS. FGFR3 and FGFR4 overexpression in juvenile nasopharyngeal angiofibroma: impact of smoking history and implications for personalized management. J Appl Genet 2023; 64:749-758. [PMID: 37656292 DOI: 10.1007/s13353-023-00780-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 09/02/2023]
Abstract
Lifestyle factors, including smoking, have been linked to neoplastic diseases, and reports suggest an association between smoking and overexpression of FGFR (fibroblast growth factor receptor) in certain neoplasms. This study aims to assess the expression of FGFR3 and FGFR4 genes in patients with and without a history of smoking.A total of 118 participants were recruited, including 83 Juvenile Nasopharyngeal Angiofibroma (JNA) patients and 35 healthy participants, the JNA patients were further stratified as smokers and nonsmokers. Total RNA was extracted from the blood & saliva sample by using TRIzol reagent, and quantified using a Nanodrop, and then subjected to gene expression analysis of FGFR3/4 using RT-PCR. Immunohistochemistry analysis was employed using fresh biopsies of JNA to validate the findings. All experiments were performed in triplicates and analysed using the Chi-Square test (P < 0.05). Smokers exhibited significantly lower total RNA concentrations across all sample types (P < 0.001). The study revealed significant upregulation of both FGFR3/4 genes in JNA patients (P < 0.05). Moreover, FGFR3 expression was significantly higher among smokers 66% (95% CI: 53-79%) compared to non-smokers 22% (95% CI: 18-26%). Immunohistochemistry analysis demonstrated moderate to strong staining intensity for FGFR3 among smokers. The study highlights the overexpression of FGFR3/4 genes in JNA patients, with a stronger association observed among smokers. Furthermore, medical reports indicated higher rates of recurrence and bleeding intensity among smokers. These findings emphasize the potential role of FGFR3 as a key molecular factor in JNA, particularly in the context of smoking.
Collapse
Affiliation(s)
- Fatmah Ahmed Safhi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia
| | - Tahani Mohamed Ibrahim Al-Hazani
- Department of Biology, College of Sciences and Humanities, Prince Sattam Bin Abdulaziz University, P.O. Box 83, 11940, Al-Kharj, Saudi Arabia
| | - Areej Saud Jalal
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia
| | - Manal Abdullah Alduwish
- Department of Biology, College of Sciences and Humanities, Prince Sattam Bin Abdulaziz University, P.O. Box 83, 11940, Al-Kharj, Saudi Arabia
| | - Dalal S Alshaya
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia
| | - Nawaf Abdulrahman Almufareh
- Department of Pediatric Dentistry and Preventive Dental Sciences, Riyadh Elm University, Riyadh, Saudi Arabia
| | - Dalia Mostafa Domiaty
- College of Science, Department of Biology, University of Jeddah, P.O. Box 13151, 21493, Jeddah, Saudi Arabia
| | - Eman Alshehri
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Salha M Al-Shamrani
- College of Science, Department of Biology, University of Jeddah, P.O. Box 13151, 21493, Jeddah, Saudi Arabia
| | - Tahani Saeed Abboosh
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
- Public Security, Forensic Evidence Laboratories, Criminal Examinations, Ministry of Interior, Riyadh, Saudi Arabia
| | | | - Maha Abdulla Alwaili
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia
| | - Wedad Saeed Al-Qahtani
- Department of Forensic Sciences, College of Criminal Justice, Naif Arab University for Security Sciences, P.O. Box 6830, 11452, Riyadh, Saudi Arabia.
| |
Collapse
|
6
|
Hu W, Wong JYY, Dai Y, Ren D, Blechter B, Duan H, Niu Y, Xu J, Fu W, Meliefste K, Zhou B, Yang J, Ye M, Jia X, Meng T, Bin P, Rahman ML, Dean Hosgood H, Vermeulen RC, Silverman DT, Zheng Y, Lan Q, Rothman N. Occupational exposure to diesel engine exhaust and serum levels of microRNAs in a cross-sectional molecular epidemiology study in China. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2023; 64:159-166. [PMID: 36762959 DOI: 10.1002/em.22533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/29/2023] [Accepted: 02/08/2023] [Indexed: 05/03/2023]
Abstract
Diesel engine exhaust (DEE) is an established lung carcinogen, but the biological mechanisms of diesel-induced lung carcinogenesis are not well understood. MicroRNAs (miRNAs) are small noncoding RNAs that play a potentially important role in regulating gene expression related to lung cancer. We conducted a cross-sectional molecular epidemiology study to evaluate whether serum levels of miRNAs are altered in healthy workers occupationally exposed to DEE compared to unexposed controls. We conducted a two-stage study, first measuring 405 miRNAs in a pilot study of six DEE-exposed workers exposed and six controls. In the second stage, 44 selected miRNAs were measured using the Fireplex circulating miRNA assay that profiles miRNAs directly from biofluids of 45 workers exposed to a range of DEE (Elemental Carbon (EC), median, range: 47.7, 6.1-79.7 μg/m3 ) and 46 controls. The relationship between exposure to DEE and EC with miRNA levels was analyzed using linear regression adjusted for potential confounders. Serum levels of four miRNAs were significantly lower (miR-191-5p, miR-93-5p, miR-423-3p, miR-122-5p) and one miRNA was significantly higher (miR-92a-3p) in DEE exposed workers compared to controls. Of these miRNAs, miR-191-5p (ptrend = .001, FDR = 0.04) and miR-93-5p (ptrend = .009, FDR = 0.18) showed evidence of an inverse exposure-response with increasing EC levels. Our findings suggest that occupational exposure to DEE may affect circulating miRNAs implicated in biological processes related to carcinogenesis, including immune function.
Collapse
Affiliation(s)
- Wei Hu
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Jason Y Y Wong
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Yufei Dai
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Dianzhi Ren
- Chaoyang Center for Disease Control and Prevention, Chaoyang, China
| | - Batel Blechter
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Huawei Duan
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yong Niu
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jun Xu
- School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Wei Fu
- Chaoyang Center for Disease Control and Prevention, Chaoyang, China
| | - Kees Meliefste
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | | | - Jufang Yang
- Chaoyang Center for Disease Control and Prevention, Chaoyang, China
| | - Meng Ye
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaowei Jia
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Tao Meng
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ping Bin
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Mohammad L Rahman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - H Dean Hosgood
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
- Division of Epidemiology, Albert Einstein College of Medicine, The Bronx, New York, USA
| | - Roel C Vermeulen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Debra T Silverman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Yuxin Zheng
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
- School of Public Health, Qingdao University, Qingdao, China
| | - Qing Lan
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Nathaniel Rothman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
7
|
Roslan A, Sulaiman N, Mohd Ghani KA, Nurdin A. Cancer-Associated Membrane Protein as Targeted Therapy for Bladder Cancer. Pharmaceutics 2022; 14:pharmaceutics14102218. [PMID: 36297654 PMCID: PMC9607037 DOI: 10.3390/pharmaceutics14102218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/23/2022] [Accepted: 10/11/2022] [Indexed: 12/24/2022] Open
Abstract
Bladder cancer (BC) recurrence is one of the primary clinical problems encountered by patients following chemotherapy. However, the mechanisms underlying their resistance to chemotherapy remain unclear. Alteration in the pattern of membrane proteins (MPs) is thought to be associated with this recurrence outcome, often leading to cell dysfunction. Since MPs are found throughout the cell membrane, they have become the focus of attention for cancer diagnosis and treatment. Identifying specific and sensitive biomarkers for BC, therefore, requires a major collaborative effort. This review describes studies on membrane proteins as potential biomarkers to facilitate personalised medicine. It aims to introduce and discuss the types and significant functions of membrane proteins as potential biomarkers for future medicine. Other types of biomarkers such as DNA-, RNA- or metabolite-based biomarkers are not included in this review, but the focus is mainly on cell membrane surface protein-based biomarkers.
Collapse
Affiliation(s)
- Adlina Roslan
- Laboratory of UPM-MAKNA Cancer Research (CANRES), Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Nurshahira Sulaiman
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Khairul Asri Mohd Ghani
- Department of Urology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Armania Nurdin
- Laboratory of UPM-MAKNA Cancer Research (CANRES), Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Correspondence: ; Tel.: +603-8609-2971
| |
Collapse
|
8
|
Patient Selection Approaches in FGFR Inhibitor Trials-Many Paths to the Same End? Cells 2022; 11:cells11193180. [PMID: 36231142 PMCID: PMC9563413 DOI: 10.3390/cells11193180] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 12/16/2022] Open
Abstract
Inhibitors of fibroblast growth factor receptor (FGFR) signaling have been investigated in various human cancer diseases. Recently, the first compounds received FDA approval in biomarker-selected patient populations. Different approaches and technologies have been applied in clinical trials, ranging from protein (immunohistochemistry) to mRNA expression (e.g., RNA in situ hybridization) and to detection of various DNA alterations (e.g., copy number variations, mutations, gene fusions). We review, here, the advantages and limitations of the different technologies and discuss the importance of tissue and disease context in identifying the best predictive biomarker for FGFR targeting therapies.
Collapse
|
9
|
Moes-Sosnowska J, Skupinska M, Lechowicz U, Szczepulska-Wojcik E, Skronska P, Rozy A, Stepniewska A, Langfort R, Rudzinski P, Orlowski T, Popiel D, Stanczak A, Wieczorek M, Chorostowska-Wynimko J. FGFR1-4 RNA-Based Gene Alteration and Expression Analysis in Squamous Non-Small Cell Lung Cancer. Int J Mol Sci 2022; 23:ijms231810506. [PMID: 36142417 PMCID: PMC9505002 DOI: 10.3390/ijms231810506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/27/2022] [Accepted: 09/02/2022] [Indexed: 02/07/2023] Open
Abstract
While fibroblast growth factor receptors (FGFRs) are involved in several biological pathways and FGFR inhibitors may be useful in the treatment of squamous non-small cell lung cancer (Sq-NSCLC), FGFR aberrations are not well characterized in Sq-NSCLC. We comprehensively evaluated FGFR expression, fusions, and variants in 40 fresh-frozen primary Sq-NSCLC (stage IA3−IV) samples and tumor-adjacent normal tissues using real-time PCR and next-generation sequencing (NGS). Protein expression of FGFR1−3 and amplification of FGFR1 were also analyzed. FGFR1 and FGFR4 median gene expression was significantly (p < 0.001) decreased in tumors compared with normal tissue. Increased FGFR3 expression enhanced the recurrence risk (hazard ratio 4.72, p = 0.029), while high FGFR4 expression was associated with lymph node metastasis (p = 0.036). Enhanced FGFR1 gene expression was correlated with FGFR1 protein overexpression (r = 0.75, p = 0.0003), but not with FGFR1 amplification. NGS revealed known pathogenic FGFR2,3 variants, an FGFR3::TACC3 fusion, and a novel TACC1::FGFR1 fusion together with FGFR1,2 variants of uncertain significance not previously reported in Sq-NSCLC. These findings expand our knowledge of the Sq-NSCLC molecular background and show that combining different methods increases the rate of FGFR aberrations detection, which may improve patient selection for FGFRi treatment.
Collapse
MESH Headings
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/pathology
- Humans
- Lung Neoplasms/genetics
- Lung Neoplasms/pathology
- Microtubule-Associated Proteins
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Receptor, Fibroblast Growth Factor, Type 2/genetics
- Receptor, Fibroblast Growth Factor, Type 3/genetics
- Receptor, Fibroblast Growth Factor, Type 4/genetics
Collapse
Affiliation(s)
- Joanna Moes-Sosnowska
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland or
| | - Monika Skupinska
- Preclinical Development Department, Celon Pharma S.A, Research & Development Centre, 05-152 Kazun Nowy, Poland
| | - Urszula Lechowicz
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland or
| | - Ewa Szczepulska-Wojcik
- Department of Pathology, National Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland
| | - Paulina Skronska
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland or
| | - Adriana Rozy
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland or
| | - Aneta Stepniewska
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland or
| | - Renata Langfort
- Department of Pathology, National Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland
| | - Piotr Rudzinski
- Department of Surgery, National Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland
| | - Tadeusz Orlowski
- Department of Surgery, National Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland
| | - Delfina Popiel
- Preclinical Development Department, Celon Pharma S.A, Research & Development Centre, 05-152 Kazun Nowy, Poland
| | - Aleksandra Stanczak
- Clinical Development Department, Celon Pharma S.A., Research & Development Centre, 05-152 Kazun Nowy, Poland
| | - Maciej Wieczorek
- Preclinical Development Department, Celon Pharma S.A, Research & Development Centre, 05-152 Kazun Nowy, Poland
- Clinical Development Department, Celon Pharma S.A., Research & Development Centre, 05-152 Kazun Nowy, Poland
| | - Joanna Chorostowska-Wynimko
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland or
- Correspondence: or
| |
Collapse
|
10
|
Jia X, Xin M, Xu J, Xiang X, Li X, Jiao Y, Wang L, Jiang J, Pang F, Zhang X, Zhang J. Inhibition of autophagy potentiates the cytotoxicity of the irreversible FGFR1-4 inhibitor FIIN-2 on lung adenocarcinoma. Cell Death Dis 2022; 13:750. [PMID: 36042213 PMCID: PMC9428205 DOI: 10.1038/s41419-022-05201-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 01/21/2023]
Abstract
For patients with platinum-resistant lung adenocarcinoma (LUAD), the exploration of new effective drug candidates is urgently needed. Fibroblast growth factor receptors (FGFRs) have been identified as promising targets for LUAD therapy. The purpose of this study was to determine the exact role of the irreversible FGFR1-4 inhibitor FIIN-2 in LUAD and to clarify its underlying molecular mechanisms. Our results demonstrated that FIIN-2 significantly inhibited the proliferation, colony formation, and migration of A549 and A549/DDP cells but induced the mitochondria-mediated apoptosis of these cells. Meanwhile, FIIN-2 increased the autophagy flux of A549 and A549/DDP cells by inhibiting the mammalian target of rapamycin (mTOR) and further activating the class III PI3K complex pathway. More importantly, in vivo and in vitro experiments showed that autophagy inhibitors could enhance the cytotoxicity of FIIN-2 on A549 and A549/DDP cells, confirming that FIIN-2 induced protective autophagy. These findings indicated that FIIN-2 is a potential drug candidate for LUAD treatment, and its use in combination with autophagy inhibitors might be an efficient treatment strategy, especially for patients with cisplatin resistance.
Collapse
Affiliation(s)
- Xiuqin Jia
- grid.27255.370000 0004 1761 1174Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012 Shandong Province China ,grid.415912.a0000 0004 4903 149XThe Key Laboratory of Molecular Pharmacology, Liaocheng People’s Hospital, Liaocheng, 252000 Shandong Province China
| | - Ming Xin
- grid.415912.a0000 0004 4903 149XThe Key Laboratory of Molecular Pharmacology, Liaocheng People’s Hospital, Liaocheng, 252000 Shandong Province China
| | - Juanjuan Xu
- grid.415912.a0000 0004 4903 149XThe Key Laboratory of Molecular Pharmacology, Liaocheng People’s Hospital, Liaocheng, 252000 Shandong Province China
| | - Xindong Xiang
- grid.415912.a0000 0004 4903 149XThe Key Laboratory of Molecular Pharmacology, Liaocheng People’s Hospital, Liaocheng, 252000 Shandong Province China
| | - Xuan Li
- grid.415912.a0000 0004 4903 149XThe Key Laboratory of Molecular Pharmacology, Liaocheng People’s Hospital, Liaocheng, 252000 Shandong Province China
| | - Yuhan Jiao
- grid.415912.a0000 0004 4903 149XThe Key Laboratory of Molecular Pharmacology, Liaocheng People’s Hospital, Liaocheng, 252000 Shandong Province China
| | - Lulin Wang
- grid.415912.a0000 0004 4903 149XThe Key Laboratory of Molecular Pharmacology, Liaocheng People’s Hospital, Liaocheng, 252000 Shandong Province China
| | - Jingjing Jiang
- grid.415912.a0000 0004 4903 149XThe Key Laboratory of Molecular Pharmacology, Liaocheng People’s Hospital, Liaocheng, 252000 Shandong Province China
| | - Feng Pang
- grid.415912.a0000 0004 4903 149XDepartment of Clinical Laboratory, Liaocheng People’s Hospital, Liaocheng, 252000 Shandong Province China
| | - Xianzhen Zhang
- grid.415912.a0000 0004 4903 149XDepartment of Oncology, Liaocheng People’s Hospital, Liaocheng, 252000 Shandong Province China
| | - Jian Zhang
- grid.27255.370000 0004 1761 1174Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012 Shandong Province China
| |
Collapse
|
11
|
Hong C, Wei J, Zhou T, Wang X, Cai J. FGFR2-ERC1: A Subtype of FGFR2 Oncogenic Fusion Variant in Lung Adenocarcinoma and the Response to Anlotinib. Onco Targets Ther 2022; 15:651-657. [PMID: 35712652 PMCID: PMC9196998 DOI: 10.2147/ott.s364566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/25/2022] [Indexed: 11/23/2022] Open
Abstract
Background Fibroblast growth factor receptor (FGFR) fusions in non-small cell lung cancer (NSCLC) are small genomic events. At present, there is no standard treatment strategy for patients with NSCLC carrying an FGFR fusion. Case Presentation We report the case of a 45-year-old female patient who was diagnosed with lung adenocarcinoma and underwent right upper lobectomy and postoperative adjuvant chemotherapy. After 13 months, the patient’s lung lesions progressed. Next-generation sequencing of venous blood and lung tissues confirmed an FGFR2-ERC1 fusion, and she received chemotherapy and immunotherapy. Two months later, the patient’s lung lesions progressed again. Based on the target effect of anlotinib on FGFR, the patient was subsequently treated with anlotinib, and the progression-free survival interval exceeded 8.0 months. Conclusion These findings showed that patients with lung adenocarcinoma carrying an FGFR2-ERC1 fusion gene may benefit from anlotinib. This case provided evidence to support the use of anlotinib in the treatment of NSCLC patients with FGFR fusion gene subtypes.
Collapse
Affiliation(s)
- Chen Hong
- Department of Oncology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Jianping Wei
- Department of Oncology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Tao Zhou
- Department of Oncology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Xia Wang
- Department of Oncology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Jing Cai
- Department of Oncology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| |
Collapse
|
12
|
Moes-Sosnowska J, Chorostowska-Wynimko J. Fibroblast Growth Factor Receptor 1-4 Genetic Aberrations as Clinically Relevant Biomarkers in Squamous Cell Lung Cancer. Front Oncol 2022; 12:780650. [PMID: 35402233 PMCID: PMC8991910 DOI: 10.3389/fonc.2022.780650] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 03/04/2022] [Indexed: 12/13/2022] Open
Abstract
Fibroblast growth factor receptor (FGFR) inhibitors (FGFRis) are a potential therapeutic option for squamous non-small cell lung cancer (Sq-NSCLC). Because appropriate patient selection is needed for targeted therapy, molecular profiling is key to discovering candidate biomarker(s). Multiple FGFR aberrations are present in Sq-NSCLC tumors-alterations (mutations and fusions), amplification and mRNA/protein overexpression-but their predictive potential is unclear. Although FGFR1 amplification reliability was unsatisfactory, FGFR mRNA overexpression, mutations, and fusions are promising. However, currently their discriminatory power is insufficient, and the available clinical data are from small groups of Sq-NSCLC patients. Here, we focus on FGFR aberrations as predictive biomarkers for FGFR-targeting agents in Sq-NSCLC. Known and suggested molecular determinants of FGFRi resistance are also discussed.
Collapse
Affiliation(s)
- Joanna Moes-Sosnowska
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| | - Joanna Chorostowska-Wynimko
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| |
Collapse
|
13
|
Chen TC, Chang SW. Repeated cell sorting ensures the homogeneity of ocular cell populations expressing a transgenic protein. PLoS One 2022; 17:e0265183. [PMID: 35333876 PMCID: PMC8956163 DOI: 10.1371/journal.pone.0265183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 02/25/2022] [Indexed: 11/19/2022] Open
Abstract
Transgenic proteins can be routinely expressed in various mammalian cell types via different transgenic systems, but the efficiency of transgene expression is constrained by the complex interplay among factors such as the temporal consistency of expression and compatibility with specific cell types, including ocular cells. Here, we report a more efficient way to express an enhanced green fluorescent protein (EGFP) in human corneal fibroblasts, corneal epithelial cells, and conjunctival epithelial cells through a lentiviral expression system. The relative transducing unit criterion for EGFP-expressing pseudovirions was first determined in HEK-293T cells. Homogeneous populations of EGFP-positive and EGFP-negative cells could be isolated by cell sorting. The half-maximal inhibitory concentration (IC50) value for puromycin was calculated according to viability curves for each cell type. The results revealed that cell types differed with respect to EGFP expression efficiency after transduction with the same amount of EGFP-encoding pseudovirions. Using a cell sorter, the homogeneity of EGFP-positive cells reached >95%. In the initial sorting stage, however, the efficiency of EGFP expression in the sorted cells was noticeably reduced after two rounds of sequential culture, but repeated sorting for up to four rounds yielded homogeneous EGFP-positive human corneal fibroblasts that could be maintained in continuous culture in vitro. The sorted EGFP-positive cells retained their proper morphology and cell type-specific protein expression patterns. Puromycin resistance was found to depend on cell type, indicating that the IC50 for puromycin must be determined for each cell type to ensure the isolation of homogeneous EGFP-positive cells. Taken together, repeated cell sorting is an efficient means of obtaining homogeneous populations of ocular cells expressing a transgenic protein during continuous culture without the potential confounding effects of antibiotics.
Collapse
Affiliation(s)
- Tsan-Chi Chen
- Department of Ophthalmology, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Shu-Wen Chang
- Department of Ophthalmology, Far Eastern Memorial Hospital, New Taipei City, Taiwan
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
14
|
Ceci C, Lacal PM, Graziani G. Antibody-drug conjugates: Resurgent anticancer agents with multi-targeted therapeutic potential. Pharmacol Ther 2022; 236:108106. [PMID: 34990642 DOI: 10.1016/j.pharmthera.2021.108106] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/23/2021] [Accepted: 12/29/2021] [Indexed: 12/18/2022]
Abstract
Antibody-drug conjugates (ADCs) constitute a relatively new group of anticancer agents, whose first appearance took place about two decades ago, but a renewed interest occurred in recent years, following the success of anti-cancer immunotherapy with monoclonal antibodies. Indeed, an ADC combines the selectivity of a monoclonal antibody with the cell killing properties of a chemotherapeutic agent (payload), joined together through an appropriate linker. The antibody moiety targets a specific cell surface antigen expressed by tumor cells and/or cells of the tumor microenvironment and acts as a carrier that delivers the cytotoxic payload within the tumor mass. Despite advantages in terms of selectivity and potency, the development of ADCs is not devoid of challenges, due to: i) low tumor selectivity when the target antigens are not exclusively expressed by cancer cells; ii) premature release of the cytotoxic drug into the bloodstream as a consequence of linker instability; iii) development of tumor resistance mechanisms to the payload. All these factors may result in lack of efficacy and/or in no safety improvement compared to unconjugated cytotoxic agents. Nevertheless, the development of antibodies engineered to remain inert until activated in the tumor (e.g., antibodies activated proteolytically after internalization or by the acidic conditions of the tumor microenvironment) together with the discovery of innovative targets and cytotoxic or immunomodulatory payloads, have allowed the design of next-generation ADCs that are expected to possess improved therapeutic properties. This review provides an overview of approved ADCs, with related advantages and limitations, and of novel targets exploited by ADCs that are presently under clinical investigation.
Collapse
Affiliation(s)
- Claudia Ceci
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | | | - Grazia Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; IDI-IRCCS, Via Monti di Creta 104, 00167 Rome, Italy.
| |
Collapse
|
15
|
Yang L, Zhou F, Zheng D, Wang D, Li X, Zhao C, Huang X. FGF/FGFR signaling: From lung development to respiratory diseases. Cytokine Growth Factor Rev 2021; 62:94-104. [PMID: 34593304 DOI: 10.1016/j.cytogfr.2021.09.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/31/2021] [Accepted: 09/10/2021] [Indexed: 02/06/2023]
Abstract
The fibroblast growth factor/fibroblast growth factor receptor (FGF/FGFR) signaling system regulates a variety of biological processes, including embryogenesis, angiogenesis, wound repair, tissue homeostasis, and cancer. It exerts these regulatory functions by controlling proliferation, differentiation, migration, survival, and metabolism of target cells. The morphological structure of the lung is a complex tree-like network for effective oxygen exchange, and the airway terminates in the middle and distal ends of many alveoli. FGF/FGFR signaling plays an important role in the pathophysiology of lung development and pathogenesis of various human respiratory diseases. Here, we mainly review recent advances in FGF/FGFR signaling during human lung development and respiratory diseases, including lung cancer, acute lung injury (ALI), pulmonary arterial hypertension (PAH), chronic obstructive pulmonary disease (COPD), asthma, and pulmonary fibrosis.
Collapse
Affiliation(s)
- Lehe Yang
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, China
| | - Feng Zhou
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, China
| | - Dandan Zheng
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, China
| | - Dandan Wang
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, China; School of Pharmaceutical Sciences, Wenzhou Medical University, University Town, Wenzhou, Zhejiang 325035, China
| | - Xiaokun Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, University Town, Wenzhou, Zhejiang 325035, China.
| | - Chengguang Zhao
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, China; School of Pharmaceutical Sciences, Wenzhou Medical University, University Town, Wenzhou, Zhejiang 325035, China.
| | - Xiaoying Huang
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
16
|
Lindsay CR, Garassino MC, Nadal E, Öhrling K, Scheffler M, Mazières J. On target: Rational approaches to KRAS inhibition for treatment of non-small cell lung carcinoma. Lung Cancer 2021; 160:152-165. [PMID: 34417059 DOI: 10.1016/j.lungcan.2021.07.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/07/2021] [Accepted: 07/10/2021] [Indexed: 12/25/2022]
Abstract
Non-small cell lung carcinoma (NSCLC) is a leading cause of cancer death. Approximately one-third of patients with NSCLC have a KRAS mutation. KRASG12C, the most common mutation, is found in ~13% of patients. While KRAS was long considered 'undruggable', several novel direct KRASG12C inhibitors have shown encouraging signs of efficacy in phase I/II trials and one of these (sotorasib) has recently been approved by the US Food and Drug Administration. This review examines the role of KRAS mutations in NSCLC and the challenges in targeting KRAS. Based on specific KRAS biology, it reports exciting progress, exploring the use of novel direct KRAS inhibitors as monotherapy or in combination with other targeted therapies, chemotherapy, and immunotherapy.
Collapse
Affiliation(s)
- Colin R Lindsay
- Division of Cancer Sciences, University of Manchester, Manchester, UK; Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK; Cancer Research UK Lung Cancer Centre of Excellence, Manchester and London, UK.
| | | | - Ernest Nadal
- Department of Medical Oncology, Catalan Institute of Oncology, Duran i Reynals Hospital, Barcelona, Spain
| | | | - Matthias Scheffler
- Department I of Internal Medicine, Center for Integrated Oncology, and Lung Cancer Group, University Hospital of Cologne, Cologne, Germany
| | - Julien Mazières
- Service de Pneumologie, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| |
Collapse
|
17
|
Comprehensive functional evaluation of variants of fibroblast growth factor receptor genes in cancer. NPJ Precis Oncol 2021; 5:66. [PMID: 34272467 PMCID: PMC8285406 DOI: 10.1038/s41698-021-00204-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 06/08/2021] [Indexed: 01/16/2023] Open
Abstract
Various genetic alterations of the fibroblast growth factor receptor (FGFR) family have been detected across a wide range of cancers. However, inhibition of FGFR signaling by kinase inhibitors demonstrated limited clinical effectiveness. Herein, we evaluated the transforming activity and sensitivity of 160 nonsynonymous FGFR mutations and ten fusion genes to seven FGFR tyrosine kinase inhibitors (TKI) using the mixed-all-nominated-in-one (MANO) method, a high-throughput functional assay. The oncogenicity of 71 mutants was newly discovered in this study. The FGFR TKIs showed anti-proliferative activities against the wild-type FGFRs and their fusions, while several hotspot mutants were relatively resistant to those TKIs. The drug sensitivities assessed with the MANO method were well concordant with those evaluated using in vitro and in vivo assays. Comprehensive analysis of published FGFR structures revealed a possible mechanism through which oncogenic FGFR mutations reduce sensitivity to TKIs. It was further revealed that recurrent compound mutations within FGFRs affect the transforming potential and TKI-sensitivity of corresponding kinases. In conclusion, our study suggests the importance of selecting suitable inhibitors against individual FGFR variants. Moreover, it reveals the necessity to develop next-generation FGFR inhibitors, which are effective against all oncogenic FGFR variants.
Collapse
|
18
|
Kolobaric A, Vukojevic K, Brekalo S, Misković J, Ries M, Lasic Arapovic L, Soljic V. Expression and localization of FGFR1, FGFR2 and CTGF during normal human lung development. Acta Histochem 2021; 123:151719. [PMID: 33962151 DOI: 10.1016/j.acthis.2021.151719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 12/20/2022]
Abstract
Aim of our study was to provide insight into the temporal and spatial expression of FGFR1, FGFR2 and CTGF during normal human lung development which may have an important impact on understanding occurrence of developmental lung anomalies. Morphological parameters were analysed using double immunofluorescence on human embryonal (6th and 7th developmental week-dw) and foetal (8th, 9th and 16th developmental week) human lung samples. FGFR1 and FGFR2 was positive during all the dw in both the epithelium and mesenchyme. The highest number of FGFR1 positive cells was observed during the 6th dw (112/mm2) and 9th dw (87/mm2) in the epithelium compared to the 7th, 8th and 16th dw (Kruskal-Wallis test, p < 0.001, p < 0.0001). The highest number of FGFR1 positive cells in the mesenchyme was observed during the 8th dw (19/mm2) and 16th dw (13/mm2) compared to the 6th, 7th, and 9th dw (Kruskal-Wallis test, p < 0.001, p < 0.0001). The number of FGFR1 positive cells in the epithelium was higher for FGFR2 compared to number of positive cells (Mann-Whitney test, p < 0.0001). FGFR2 showed the highest number in the epithelium during the 7th dw (111/mm2) and 9th dw (87/mm2) compared to 6th, 8th and 16th dw (Kruskal-Wallis test, p < 0.001, p < 0.0001, p < 0.01 respectively). The highest number of FGFR2 positive cells in the mesenchyme was observed during the 9th dw (26/mm2), compared to the 6th, 7th,8th and 16th dw (Kruskal-Wallis test, p < 0.0001), while the number of FGFR2 positive cells in the epithelium was significantly higher than in the mesenchyme (Mann-Whitney test, p < 0.0001). CTGF was negative in both epithelium and mesenchyme during all except the 16th dw in the mesenchyme where it co-localized with FGFR2. FGFR1 and FGFR2 might be essential for epithelial-mesenchymal interactions that determine epithelial branching and mesenchymal growth during early lung development. Sudden increase in FGF1 in the epithelium and FGF2 in the mesenchyme in the foetus at 9th dw could be associated with the onset of foetal breathing movements. CTGF first appear during the foetal lung development.
Collapse
|
19
|
Ishioka K, Yasuda H, Hamamoto J, Terai H, Emoto K, Kim TJ, Hirose S, Kamatani T, Mimaki S, Arai D, Ohgino K, Tani T, Masuzawa K, Manabe T, Shinozaki T, Mitsuishi A, Ebisudani T, Fukushima T, Ozaki M, Ikemura S, Kawada I, Naoki K, Nakamura M, Ohtsuka T, Asamura H, Tsuchihara K, Hayashi Y, Hegab AE, Kobayashi SS, Kohno T, Watanabe H, Ornitz DM, Betsuyaku T, Soejima K, Fukunaga K. Upregulation of FGF9 in Lung Adenocarcinoma Transdifferentiation to Small Cell Lung Cancer. Cancer Res 2021; 81:3916-3929. [PMID: 34083250 DOI: 10.1158/0008-5472.can-20-4048] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 04/01/2021] [Accepted: 06/01/2021] [Indexed: 11/16/2022]
Abstract
Transdifferentiation of lung adenocarcinoma to small cell lung cancer (SCLC) has been reported in a subset of lung cancer cases that bear EGFR mutations. Several studies have reported the prerequisite role of TP53 and RB1 alterations in transdifferentiation. However, the mechanism underlying transdifferentiation remains understudied, and definitive additional events, the third hit, for transdifferentiation have not yet been identified. In addition, no prospective experiments provide direct evidence for transdifferentiation. In this study, we show that FGF9 upregulation plays an essential role in transdifferentiation. An integrative omics analysis of paired tumor samples from a patient with transdifferentiated SCLC exhibited robust upregulation of FGF9. Furthermore, FGF9 upregulation was confirmed at the protein level in four of six (66.7%) paired samples. FGF9 induction transformed mouse lung adenocarcinoma-derived cells to SCLC-like tumors in vivo through cell autonomous activation of the FGFR pathway. In vivo treatment of transdifferentiated SCLC-like tumors with the pan-FGFR inhibitor AZD4547 inhibited growth. In addition, FGF9 induced neuroendocrine differentiation, a pathologic characteristic of SCLC, in established human lung adenocarcinoma cells. Thus, the findings provide direct evidence for FGF9-mediated SCLC transdifferentiation and propose the FGF9-FGFR axis as a therapeutic target for transdifferentiated SCLC. SIGNIFICANCE: This study demonstrates that FGF9 plays a role in the transdifferentiation of lung adenocarcinoma to small cell lung cancer.
Collapse
Affiliation(s)
- Kota Ishioka
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Shinjuku-ku, Tokyo, Japan.,Department of Pulmonary Medicine, Tokyo Saiseikai Central Hospital, Minato-ku, Tokyo, Japan
| | - Hiroyuki Yasuda
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Shinjuku-ku, Tokyo, Japan.
| | - Junko Hamamoto
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Hideki Terai
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Shinjuku-ku, Tokyo, Japan.,Clinical and Translational Research Center, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Katsura Emoto
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Tae-Jung Kim
- Department of Hospital Pathology, Yeouido St. Mary Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Shigemichi Hirose
- Department of Pathology, Tokyo Saiseikai Central Hospital, Minato-ku, Tokyo, Tokyo, Japan
| | - Takashi Kamatani
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Shinjuku-ku, Tokyo, Japan.,Department of Medical Science Mathematics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.,Laboratory for Medical Science Mathematics, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Sachiyo Mimaki
- Division of Translational Genomics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Daisuke Arai
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Keiko Ohgino
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Tetsuo Tani
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Keita Masuzawa
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Tadashi Manabe
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Taro Shinozaki
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Akifumi Mitsuishi
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Toshiki Ebisudani
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Takahiro Fukushima
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Mari Ozaki
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Shinnosuke Ikemura
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Shinjuku-ku, Tokyo, Japan.,Keio Cancer Center, School of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Ichiro Kawada
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Katsuhiko Naoki
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Shinjuku-ku, Tokyo, Japan.,Keio Cancer Center, School of Medicine, Keio University School of Medicine, Tokyo, Japan.,Department of Respiratory Medicine, Kitasato University School of Medicine, Japan
| | - Morio Nakamura
- Department of Pulmonary Medicine, Tokyo Saiseikai Central Hospital, Minato-ku, Tokyo, Japan
| | - Takashi Ohtsuka
- Division of Thoracic Surgery, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hisao Asamura
- Division of Thoracic Surgery, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Katsuya Tsuchihara
- Division of Translational Genomics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Yuichiro Hayashi
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Ahmed E Hegab
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Susumu S Kobayashi
- Division of Translational Genomics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan.,Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Takashi Kohno
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo, Japan
| | - Hideo Watanabe
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri
| | - Tomoko Betsuyaku
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Kenzo Soejima
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Shinjuku-ku, Tokyo, Japan.,Clinical and Translational Research Center, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Koichi Fukunaga
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
20
|
Li X, Zhou G, Tian X, Chen F, Li G, Ding Y. The polymorphisms of FGFR2 and MGAT5 affect the susceptibility to COPD in the Chinese people. BMC Pulm Med 2021; 21:129. [PMID: 33879098 PMCID: PMC8058990 DOI: 10.1186/s12890-021-01498-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/31/2021] [Indexed: 11/24/2022] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) is characterized by incomplete reversible airflow limitation and chronic inflammatory response lesions. This study mainly explored whether FGFR2 and MGAT5 polymorphisms affected the risk of COPD in the Chinese people. Methods Five variants in FGFR2 and MGAT5 were chosen and genotyped using Agena MassARRAY platform from 315 COPD patients and 314 healthy controls. The correlation of FGFR2 and MGAT5 with COPD susceptibility was evaluated with odds ratio (OR) and 95% confidence interval (CI) via logistic regression. Results We found rs2420915 enhanced the risk of COPD, while rs6430491, rs2593704 reduced the susceptibility of COPD (p < 0.05). Rs2420915 could promote the incidence of COPD in the elderly and nonsmokers. Rs1907240 and rs2257129 also increased the susceptibility to COPD in nonsmokers (p < 0.05). MGAT5-rs2593704 played a protective role in COPD development in different subgroups (age ≤ 70, male, smokers, and individuals with BMI ≤ 24 kg/m2). Meanwhile, rs6430491 was linked with a lower risk of COPD in nonsmoking and BMI ≤ 24 kg/m2 subgroups. Conclusions We concluded that FGFR2 and MGAT5 genetic polymorphisms are correlated with the risk of COPD in the Chinese people. These data underscored the important role of FGFR2 and MGAT5 gene in the occurrence of COPD and provided new biomarkers for COPD treatment. Trial registration: NA. Supplementary Information The online version contains supplementary material available at 10.1186/s12890-021-01498-3.
Collapse
Affiliation(s)
- Xiaobo Li
- Department of General Practice, People's Hospital of Wanning, Wanning, 571500, Hainan, China
| | - Guangyu Zhou
- Department of Nursing, People's Hospital of Wanning, Wanning, 571500, Hainan, China
| | - Xiaobo Tian
- Department of Medical, People's Hospital of Wanning, Wanning, 571500, Hainan, China
| | - Fei Chen
- Nanyang Branch of Wencheng Health Center of Wenchang City, Wenchang, 571399, Hainan, China.,Department of Science and Education Department, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan, China
| | - Guoyao Li
- Department of General Practice, People's Hospital of Wanning, Wanning, 571500, Hainan, China
| | - Yipeng Ding
- Department of General Practice, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, No. 19, Xinhua Road, Xiuying District, Haikou, 570311, Hainan, China.
| |
Collapse
|
21
|
Sheng L, Li J, Li N, Gong L, Liu L, Zhang Q, Li X, Luo H, Chen Z. Atractylenolide III predisposes miR-195-5p/FGFR1 signaling axis to exert tumor-suppressive functions in liver cancer. J Food Biochem 2021; 45:e13582. [PMID: 33768570 DOI: 10.1111/jfbc.13582] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/30/2020] [Accepted: 11/26/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Antineoplastic activity of atractylenolide III (ATL) has been reported in several malignant tumors. However, its activity has not been completely clarified in hepatocellular carcinoma (HCC). Herein, anticancer effects and underlying molecular mechanisms of ATL were investigated in HCC cells in vitro. METHODS Cell viability was evaluated by CCK-8 assay. Cell migration and invasion were evaluated using the transwell assay. TUNEL staining was performed to evaluate cell apoptosis. Protein expression was measured by western blotting analysis. Online database TargetScan and luciferase reporter gene analysis were performed to validate FGFR1 as a target of miR-195-5p. RESULTS HepG2 and SMMC7721 cell growth, migration, and invasion were inhibited by ATL treatment in a dose-dependent pattern. ATL treatment-induced apoptosis of HepG2 and SMMC7721 cells. Intriguingly, ATL treatment unexpectedly inhibited FGFR1 protein expression in HepG2 and SMMC7721 cells. Knockdown of FGFR1 inhibited proliferation, migration, and invasion, and evoked apoptosis of HepG2 and SMMC7721 cells. We also found that ATL treatment could increase the expression of miR-195-5p, which as a posttranscriptional targeted FGFR1. In HCC tissues, miR-195-5p expression is negatively correlated with FGFR1. Furthermore, the antiproliferative and proapoptotic roles of miR-195-5p were neutralized by overexpressed FGFR1 in HCC cells. CONCLUSION ATL effectively repressed growth and induced apoptosis of human HCC cells through the upregulation of miR-195-5p to downregulate FGFR1 expression. PRACTICAL APPLICATIONS Atractylenolide III as a bioactive anticancer adjuvant medication will provide chemosensitization strategy for reversing the drug resistance of HCC.
Collapse
Affiliation(s)
- Langqing Sheng
- Department of Hepatobiliary and Pancreatic Surgery, Xiangya Hospital of Central South University, Changsha, China
| | - Jiarong Li
- Department of Hepatobiliary and Pancreatic Surgery, Xiangya Hospital of Central South University, Changsha, China
| | - Nianfeng Li
- Department of Hepatobiliary and Pancreatic Surgery, Xiangya Hospital of Central South University, Changsha, China
| | - Liansheng Gong
- Department of Hepatobiliary and Pancreatic Surgery, Xiangya Hospital of Central South University, Changsha, China
| | - Ling Liu
- Department of Hepatobiliary and Pancreatic Surgery, Xiangya Hospital of Central South University, Changsha, China
| | - Qi Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Xiangya Hospital of Central South University, Changsha, China
| | - Xiaoli Li
- Department of Hepatobiliary and Pancreatic Surgery, Xiangya Hospital of Central South University, Changsha, China
| | - Hui Luo
- Department of Hepatobiliary and Pancreatic Surgery, Xiangya Hospital of Central South University, Changsha, China
| | - Zeguo Chen
- Department of Hepatobiliary and Pancreatic Surgery, Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
22
|
The evolving landscape of biomarker testing for non-small cell lung cancer in Europe. Lung Cancer 2021; 154:161-175. [PMID: 33690091 DOI: 10.1016/j.lungcan.2021.02.026] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/18/2021] [Accepted: 02/21/2021] [Indexed: 12/31/2022]
Abstract
The discovery of oncogenic driver mutations rendering non-small cell lung cancer (NSCLC) targetable by small-molecule inhibitors, and the development of immunotherapies, have revolutionised NSCLC treatment. Today, instead of non-selective chemotherapies, all patients with advanced NSCLC eligible for treatment (and increasing numbers with earlier, less extensive disease) require fast and comprehensive screening of biomarkers for first-line patient selection for targeted therapy, chemotherapy, or immunotherapy (with or without chemotherapy). To avoid unnecessary re-biopsies, biomarker screening before first-line treatment should also include markers that are actionable from second-line onwards; PD-L1 expression testing is also mandatory before initiating treatment. Population differences exist in the frequency of oncogenic driver mutations: EGFR mutations are more frequent in Asia than Europe, whereas the converse is true for KRAS mutations. In addition to approved first-line therapies, a number of emerging therapies are being investigated in clinical trials. Guidelines for biomarker testing vary by country, with the number of actionable targets and the requirement for extensive molecular screening strategies expected to increase. To meet diagnostic demands, rapid screening technologies for single-driver mutations have been implemented. Improvements in DNA- and RNA-based next-generation sequencing technologies enable analysis of a group of genes in one assay; however, turnaround times remain relatively long. Consequently, rapid screening technologies are being implemented alongside next-generation sequencing. Further challenges in the evolving landscape of biomarker testing in NSCLC are actionable primary and secondary resistance mechanisms to targeted therapies. Therefore, comprehensive testing on re-biopsies, collected at the time of disease progression, in combination with testing of circulating tumour DNA may provide important information to guide second- or third-line therapies. Furthermore, longitudinal biomarker testing can provide insights into tumour evolution and heterogeneity during the course of the disease. We summarise best practice strategies for Europe in the changing landscape of biomarker testing at diagnosis and during treatment.
Collapse
|
23
|
Matter MS, Chijioke O, Savic S, Bubendorf L. Narrative review of molecular pathways of kinase fusions and diagnostic approaches for their detection in non-small cell lung carcinomas. Transl Lung Cancer Res 2020; 9:2645-2655. [PMID: 33489824 PMCID: PMC7815372 DOI: 10.21037/tlcr-20-676] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022]
Abstract
The discovery of actionable oncogenic driver alterations has significantly improved treatment options for patients with advanced non-small cell lung cancer (NSCLC). In lung adenocarcinoma (LUAD), approved drugs or drugs in clinical development can target more than half of these altered oncogenic driver genes. In particular, several gene fusions have been discovered in LUAD, including ALK, ROS1, NTRK, RET, NRG1 and FGFR. All these fusions involve tyrosine kinases (TK), which are activated due to structural rearrangements on the DNA level. Although the overall prevalence of these fusions in LUAD is rare, their detection is extremely important, as they are linked to an excellent response to TK inhibitors. Therefore, reliable screening methods applicable to small tumor samples (biopsies and cytology specimens) are required in the diagnostic workup of advanced NSCLC. Several methods are at disposal in a routine laboratory to demonstrate, directly or indirectly, the presence of a gene fusion. These methods include immunohistochemistry (IHC), fluorescence in-situ hybridization (FISH), reverse transcriptase-polymerase chain reaction (RT-PCR), multiplex digital color-coded barcode technology or next-generation sequencing (NGS) either on DNA or RNA level. In our review, we will summarize the increasing number of relevant fusion genes in NSCLC, point out their underlining molecular mechanisms and discuss different methods for the detection of fusion genes.
Collapse
Affiliation(s)
| | - Obinna Chijioke
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Spasenija Savic
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Lukas Bubendorf
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| |
Collapse
|
24
|
Anti-Cancer Effect of Cordycepin on FGF9-Induced Testicular Tumorigenesis. Int J Mol Sci 2020; 21:ijms21218336. [PMID: 33172093 PMCID: PMC7672634 DOI: 10.3390/ijms21218336] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/09/2020] [Accepted: 11/03/2020] [Indexed: 12/11/2022] Open
Abstract
Cordycepin, a bioactive constituent from the fungus Cordyceps sinensis, could inhibit cancer cell proliferation and promote cell death via induction of cell cycle arrest, apoptosis and autophagy. Our novel finding from microarray analysis of cordycepin-treated MA-10 mouse Leydig tumor cells is that cordycepin down-regulated the mRNA levels of FGF9, FGF18, FGFR2 and FGFR3 genes in MA-10 cells. Meanwhile, the IPA-MAP pathway prediction result showed that cordycepin inhibited MA-10 cell proliferation by suppressing FGFs/FGFRs pathways. The in vitro study further revealed that cordycepin decreased FGF9-induced MA-10 cell proliferation by inhibiting the expressions of p-ERK1/2, p-Rb and E2F1, and subsequently reducing the expressions of cyclins and CDKs. In addition, a mouse allograft model was performed by intratumoral injection of FGF9 and/or intraperitoneal injection of cordycepin to MA-10-tumor bearing C57BL/6J mice. Results showed that FGF9-induced tumor growth in cordycepin-treated mice was significantly smaller than that in a PBS-treated control group. Furthermore, cordycepin decreased FGF9-induced FGFR1-4 protein expressions in vitro and in vivo. In summary, cordycepin inhibited FGF9-induced testicular tumor growth by suppressing the ERK1/2, Rb/E2F1, cell cycle pathways, and the expressions of FGFR1-4 proteins, suggesting that cordycepin can be used as a novel anticancer drug for testicular cancers.
Collapse
|
25
|
Sarkisian S, McIntosh A, Nair S, Shoushtari AN, Callahan M. Fibroblast Growth Factor Receptor 3 Amplified Metastatic Melanoma Treated With Erdafitinib. Cureus 2020; 12:e11231. [PMID: 33269159 PMCID: PMC7704269 DOI: 10.7759/cureus.11231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The treatment of metastatic melanoma has changed dramatically in the last decade with the introduction of immunotherapy and targeted therapy. A futile disease in the past is now treated with various options, resulting in improvement in progression-free and overall survivals, along with improvement in the quality of life. Having said that, the majority of patients with metastatic melanoma eventually succumb to the disease. Molecular profiling of each tumor in the advanced stage is standard of care now, as this would lead to individualized treatment options for each patient. Here, we present a rare case of fibroblast growth factor receptor 3 (FGFR 3) amplified metastatic melanoma, treated rather unconventionally with FGFR 3 inhibitor erdafitinib.
Collapse
|
26
|
Elakad O, Lois AM, Schmitz K, Yao S, Hugo S, Lukat L, Hinterthaner M, Danner BC, von Hammerstein-Equord A, Reuter-Jessen K, Schildhaus HU, Ströbel P, Bohnenberger H. Fibroblast growth factor receptor 1 gene amplification and protein expression in human lung cancer. Cancer Med 2020; 9:3574-3583. [PMID: 32207251 PMCID: PMC7288860 DOI: 10.1002/cam4.2994] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/18/2020] [Accepted: 03/02/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Targeting fibroblast growth factor receptor 1 (FGFR1) is a potential treatment for squamous cell lung cancer (SQCLC). So far, treatment decision in clinical studies is based on gene amplification. However, only a minority of patients have shown durable response. Furthermore, former studies have revealed contrasting results regarding the impact of FGFR1 amplification and expression on patient's prognosis. AIMS Here, we analyzed prevalence and correlation of FGFR1 gene amplification and protein expression in human lung cancer and their impact on overall survival. MATERIALS & METHODS: FGFR1 gene amplification and protein expression were analyzed by fluorescence in situ hybridization and immunohistochemistry (IHC) in 208 SQCLC and 45 small cell lung cancers (SCLC). Furthermore, FGFR1 protein expression was analyzed in 121 pulmonary adenocarcinomas (ACs). Amplification and expression were correlated to each other, clinicopathological characteristics, and overall survival. RESULTS FGFR1 was amplified in 23% of SQCLC and 8% of SCLC. Amplification was correlated to males (P = .027) but not to overall survival. Specificity of immunostaining was verified by cellular CRISPR/Cas9 FGFR1 knockout. FGFR1 was strongly expressed in 9% of SQCLC, 35% of AC, and 4% of SCLC. Expression was correlated to females (P = .0187) and to the absence of lymph node metastasis in SQCLC (P = .018) with no significant correlation to overall survival. Interestingly, no significant correlation between amplification and expression was detected. DISCUSSION FGFR1 gene amplification does not seem to correlate to protein expression. CONCLUSION We believe that patient selection for FGFR1 inhibitors in clinical studies should be reconsidered. Neither FGFR1 amplification nor expression influences patient's prognosis.
Collapse
MESH Headings
- Adenocarcinoma of Lung/drug therapy
- Adenocarcinoma of Lung/genetics
- Adenocarcinoma of Lung/metabolism
- Adenocarcinoma of Lung/pathology
- Adult
- Aged
- Aged, 80 and over
- Carcinoma, Squamous Cell/drug therapy
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Female
- Gene Amplification
- Humans
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Male
- Middle Aged
- Neoplasm Staging
- Prognosis
- Protein Kinase Inhibitors/therapeutic use
- Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Receptor, Fibroblast Growth Factor, Type 1/metabolism
- Small Cell Lung Carcinoma/drug therapy
- Small Cell Lung Carcinoma/genetics
- Small Cell Lung Carcinoma/metabolism
- Small Cell Lung Carcinoma/pathology
Collapse
Affiliation(s)
- Omar Elakad
- Institute of Pathology, University Medical Center, Göttingen, Germany
| | - Anna-Maria Lois
- Institute of Pathology, University Medical Center, Göttingen, Germany
| | - Katja Schmitz
- Institute of Pathology, University Medical Center, Göttingen, Germany
| | - Sha Yao
- Institute of Pathology, University Medical Center, Göttingen, Germany
| | - Sara Hugo
- Institute of Pathology, University Medical Center, Göttingen, Germany
| | - Laura Lukat
- Institute of Pathology, University Medical Center, Göttingen, Germany
| | - Marc Hinterthaner
- Department of Thoracic and Cardiovascular Surgery, University Medical Center, Göttingen, Germany
| | - Bernhard C Danner
- Department of Thoracic and Cardiovascular Surgery, University Medical Center, Göttingen, Germany
| | | | | | | | - Philipp Ströbel
- Institute of Pathology, University Medical Center, Göttingen, Germany
| | | |
Collapse
|
27
|
Yuan T, Klinkhammer K, Lyu H, Gao S, Yuan J, Hopkins S, Zhang JS, De Langhe SP. Temporospatial Expression of Fgfr1 and 2 During Lung Development, Homeostasis, and Regeneration. Front Pharmacol 2020; 11:120. [PMID: 32194398 PMCID: PMC7061767 DOI: 10.3389/fphar.2020.00120] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/28/2020] [Indexed: 12/03/2022] Open
Abstract
Fgfr1 (Fibroblast growth factor receptor 1) and Fgfr2 are dynamically expressed during lung development, homeostasis, and regeneration. Our current analysis indicates that Fgfr2 is expressed in distal epithelial progenitors AT2, AT1, club, and basal cells but not in ciliated or neuroendocrine cells during lung development and homeostasis. However, after injury, Fgfr2 becomes upregulated in neuroendocrine cells and distal club cells. Epithelial Fgfr1 expression is minimal throughout lung development, homeostasis, and regeneration. We further find both Fgfr1 and Fgfr2 strongly expressed in cartilage progenitors and airway smooth muscle cells during lung development, whereas Fgfr1 but not Fgfr2 was expressed in lipofibroblasts and vascular smooth muscle cells. In the adult lung, Fgfr1 and Fgfr2 were mostly downregulated in smooth muscle cells but became upregulated after injury. Fgfr1 remained expressed in mesenchymal alveolar niche cells or lipofibroblasts with lower levels of expression in their descendant (alveolar) myofibroblasts during alveologenesis.
Collapse
Affiliation(s)
- Tingting Yuan
- Department of Medicine, Division of Pulmonary, Allergy & Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Kylie Klinkhammer
- Department of Medicine, Division of Pulmonary, Allergy & Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Handeng Lyu
- Department of Medicine, Division of Pulmonary, Allergy & Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Shan Gao
- Department of Medicine, Division of Pulmonary, Allergy & Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jie Yuan
- Department of Medicine, Division of Pulmonary, Allergy & Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Seantel Hopkins
- Department of Medicine, Division of Pulmonary, Allergy & Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jin-San Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Stijn P. De Langhe
- Department of Medicine, Division of Pulmonary, Allergy & Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
28
|
Li L, Zhang S, Li H, Chou H. FGFR3 promotes the growth and malignancy of melanoma by influencing EMT and the phosphorylation of ERK, AKT, and EGFR. BMC Cancer 2019; 19:963. [PMID: 31619201 PMCID: PMC6796326 DOI: 10.1186/s12885-019-6161-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 09/13/2019] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Overexpression of fibroblast growth factor receptor 3 (FGFR3) has been linked to tumor progression in many types of cancer. The role of FGFR3 in melanoma remains unclear. In this study, we aimed to uncover the role of FGFR3 in the growth and metastasis of melanoma. METHODS FGFR3 knockdown and overexpression strategies were employed to investigate the effects of FGFR3 on colony formation, cell apoptosis, proliferation, migration, and in vitro invasion, along with the growth and metastasis of melanoma in a xenografts mouse model. The protein expression levels of extracellular signal-regulated kinase (ERK), protein kinase B (AKT), epidermal growth factor receptor (EGFR), and epithelial-mesenchymal transition (EMT) markers were determined by Western blot analysis. RESULTS The mRNA expression of FGFR3 was higher in melanoma tissues than normal healthy tissues. FGFR3 expression in cutaneous malignant melanoma (CMM) tissues was positively correlated with the Breslow thickness and lymph node metastasis. In A357 cells, knockdown of the FGFR3 gene decreased the colony formation ability, cell proliferation, invasion, and migration, but increased the caspase 3 activity and the apoptosis rate; overexpression of FGFR3 increased the colony formation ability, cell proliferation, invasion, and migration, but decreased the caspase 3 activity and apoptosis rates. FGFR3 knockdown also upregulated E-cadherin, downregulated N-cadherin and vimentin, and decreased the phosphorylation levels of ERK, AKT, and EGFR. In the MCC xenografts mice, knockdown of FGFR3 decreased tumor growth and metastasis. CONCLUSIONS FGFR3, which is highly expressed in CMM tissues, is correlated with increased Breslow thickness and lymph node metastasis. FGFR3 promotes melanoma growth, metastasis, and EMT behaviors, likely by affecting the phosphorylation levels of ERK, AKT, and EGFR.
Collapse
MESH Headings
- Animals
- Antigens, CD/metabolism
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Cadherins/metabolism
- Cell Line, Tumor
- Cell Movement/genetics
- Cell Proliferation/genetics
- Epithelial-Mesenchymal Transition/genetics
- ErbB Receptors/metabolism
- Heterografts
- Humans
- MAP Kinase Signaling System
- Male
- Melanoma/metabolism
- Melanoma/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Neoplasm Invasiveness/genetics
- Phosphorylation
- Proto-Oncogene Proteins c-akt/metabolism
- Receptor, Fibroblast Growth Factor, Type 3/genetics
- Receptor, Fibroblast Growth Factor, Type 3/metabolism
- Skin Neoplasms/metabolism
- Skin Neoplasms/pathology
- Transfection
- Vimentin/metabolism
- Melanoma, Cutaneous Malignant
Collapse
Affiliation(s)
- Lei Li
- Department of Plastic and Cosmetic Surgery, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, 450003 Henan China
| | - Shuai Zhang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan China
| | - Hao Li
- Department of Plastic and Cosmetic Surgery, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, 450003 Henan China
| | - Haiyan Chou
- Department of Plastic and Cosmetic Surgery, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, 450003 Henan China
| |
Collapse
|
29
|
Huang Q, Li H, Dai X, Zhao D, Guan B, Xia W. miR‑497 inhibits the proliferation and migration of A549 non‑small‑cell lung cancer cells by targeting FGFR1. Mol Med Rep 2019; 20:3959-3967. [PMID: 31485617 DOI: 10.3892/mmr.2019.10611] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 11/14/2018] [Indexed: 11/05/2022] Open
Abstract
Fibroblast growth factor receptor 1 (FGFR1) signaling has been reported to contribute to the carcinogenic progression of various cancer types. Previous studies have demonstrated that FGFR1 expression is increased in non‑small cell lung cancer (NSCLC) and promotes cancer cell metastasis. However, the molecular mechanisms underlying increased FGFR1 expression in NSCLC remains largely unknown. In the current study, microRNA (miR)‑497 levels were observed to be inversely correlated with FGFR1 expression in tumor samples from patients with NSCLC. In the NSCLC cell line A549, miR‑497 overexpression inhibited cell proliferation and migration. Increased expression of miR‑497 led to a reduction in FGFR1 expression, at the mRNA and protein levels. In addition, transfection of miR‑497 mimics inactivated the protein kinase B (AKT) and c‑Jun N‑terminal kinase (JNK) signaling pathways, as reduced matrix metallopeptidase 26 expression; all of which are regulated by FGFR1. Using TargetScan software, FGFR1 was also identified as a predicted target gene of miR‑497, and a dual luciferase reporter assay confirmed that miR‑497 directly regulated FGFR1. Transfection of a recombinant FGFR1 overexpression vector reversed miR‑497 mimic‑induced arrest of cell growth and migration in A549 cells. In conclusion, the results of the present study identified miR‑497 as a potential tumor suppressor gene in NSCLC that may function via repressing FGFR1 expression, and AKT and JNK signaling.
Collapse
Affiliation(s)
- Qibin Huang
- Department of Cardiothoracic Surgery, Jingzhou First People's Hospital, Jingzhou, Hubei 434000, P.R. China
| | - Hongtao Li
- Department of Oncology, Jingzhou First People's Hospital, Jingzhou, Hubei 434000, P.R. China
| | - Xiaofeng Dai
- Department of Cardiothoracic Surgery, Jingzhou First People's Hospital, Jingzhou, Hubei 434000, P.R. China
| | - Di Zhao
- Department of Cardiothoracic Surgery, Jingzhou First People's Hospital, Jingzhou, Hubei 434000, P.R. China
| | - Bingfeng Guan
- Department of Cardiothoracic Surgery, Jingzhou First People's Hospital, Jingzhou, Hubei 434000, P.R. China
| | - Wen Xia
- Department of Anesthesiology, Jingzhou First People's Hospital, Jingzhou, Hubei 434000, P.R. China
| |
Collapse
|
30
|
Porębska N, Latko M, Kucińska M, Zakrzewska M, Otlewski J, Opaliński Ł. Targeting Cellular Trafficking of Fibroblast Growth Factor Receptors as a Strategy for Selective Cancer Treatment. J Clin Med 2018; 8:jcm8010007. [PMID: 30577533 PMCID: PMC6352210 DOI: 10.3390/jcm8010007] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 12/17/2018] [Accepted: 12/17/2018] [Indexed: 12/13/2022] Open
Abstract
Fibroblast growth factor receptors (FGFRs) in response to fibroblast growth factors (FGFs) transmit signals across the cell membrane, regulating important cellular processes, like differentiation, division, motility, and death. The aberrant activity of FGFRs is often observed in various diseases, especially in cancer. The uncontrolled FGFRs' function may result from their overproduction, activating mutations, or generation of FGFRs' fusion proteins. Besides their typical subcellular localization on the cell surface, FGFRs are often found inside the cells, in the nucleus and mitochondria. The intracellular pool of FGFRs utilizes different mechanisms to facilitate cancer cell survival and expansion. In this review, we summarize the current stage of knowledge about the role of FGFRs in oncogenic processes. We focused on the mechanisms of FGFRs' cellular trafficking-internalization, nuclear translocation, and mitochondrial targeting, as well as their role in carcinogenesis. The subcellular sorting of FGFRs constitutes an attractive target for anti-cancer therapies. The blocking of FGFRs' nuclear and mitochondrial translocation can lead to the inhibition of cancer invasion. Moreover, the endocytosis of FGFRs can serve as a tool for the efficient and highly selective delivery of drugs into cancer cells overproducing these receptors. Here, we provide up to date examples how the cellular sorting of FGFRs can be hijacked for selective cancer treatment.
Collapse
Affiliation(s)
- Natalia Porębska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| | - Marta Latko
- Department of Protein Engineering, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| | - Marika Kucińska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| | - Małgorzata Zakrzewska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| | - Jacek Otlewski
- Department of Protein Engineering, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| | - Łukasz Opaliński
- Department of Protein Engineering, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| |
Collapse
|
31
|
Cen M, Yao Y, Cui L, Yang G, Lu G, Fang L, Bao Z, Zhou J. Honokiol induces apoptosis of lung squamous cell carcinoma by targeting FGF2-FGFR1 autocrine loop. Cancer Med 2018; 7:6205-6218. [PMID: 30515999 PMCID: PMC6308115 DOI: 10.1002/cam4.1846] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 08/24/2018] [Accepted: 09/28/2018] [Indexed: 12/27/2022] Open
Abstract
Lung squamous cell carcinoma (SCC) accounts for a considerable proportion of lung cancer cases, but there is still a lack of effective therapies. FGFR1 amplification is generally considered a promising therapeutic target. Honokiol is a chemical compound that has been proven to be effective against various malignancies and whose analog has been reported to target the mitogen‐activated protein kinase family, members of a downstream signaling pathway of FGFR1. This was an explorative study to determine the mechanism of honokiol in lung SCC. We found that honokiol induced apoptosis and cell cycle arrest in lung SCC cell lines in a time‐ and dose‐dependent manner. Honokiol also restricted cell migration in lung SCC cell lines. Moreover, the expression of FGF2 and the activation of FGFR1 were both downregulated by honokiol. Pharmacological inhibition and siRNA knockdown of FGFR1 induced apoptosis in lung SCC cells. Our in vivo study indicated that honokiol could suppress the growth of xenograft tumors, and this effect was associated with the inhibition of the FGF2‐FGFR1 signaling pathway. In conclusion, honokiol induced cell apoptosis in lung SCC by targeting the FGF2‐FGFR1 autocrine loop.
Collapse
Affiliation(s)
- Mengyuan Cen
- Department of Respiratory Diseases, First Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Yinan Yao
- Department of Respiratory Diseases, First Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Luyun Cui
- Department of Respiratory Diseases, First Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Guangdie Yang
- Department of Respiratory Diseases, First Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Guohua Lu
- Department of Respiratory Diseases, First Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Liangjie Fang
- Department of Respiratory Diseases, First Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhang Bao
- Department of Respiratory Diseases, First Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianying Zhou
- Department of Respiratory Diseases, First Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
32
|
Hu P, Chen H, McGowan EM, Ren N, Xu M, Lin Y. Assessment of FGFR1 Over-Expression and Over-Activity in Lung Cancer Cells: A Toolkit for Anti-FGFR1 Drug Screening. Hum Gene Ther Methods 2018; 29:30-43. [PMID: 29281903 DOI: 10.1089/hgtb.2017.104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Penghui Hu
- Department of Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Hongjie Chen
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Eileen M McGowan
- School of Life Sciences, University of Technology Sydney, Sydney, Australia
| | - Nina Ren
- Guangdong Online Hospital Clinic, Guangdong 2nd Provincial People's Hospital, Guangzhou, China
| | - Meng Xu
- Department of Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yiguang Lin
- School of Life Sciences, University of Technology Sydney, Sydney, Australia
| |
Collapse
|
33
|
Z OA, J TB, Sa S, Mr P, F M, R M, G P. Differential Expression of FGFRs Signaling Pathway Components in Bladder Cancer: A Step Toward Personalized Medicine. Balkan J Med Genet 2017; 20:75-82. [PMID: 29876236 PMCID: PMC5972506 DOI: 10.1515/bjmg-2017-0026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Variations Improper activation and inappropriate expression of fibroblast growth factor receptors (FGFRs) in cancer suggests that they can act as therapeutic targets. Fibroblast growth factor receptor inhibitors are currently employed in clinical trials of different cancers. Regarding the essence and the importance of the personalized medicine, mainly mirrored by remarkable inter-individual variations in different populations, we aimed to perform a pilot study to address FGFR1 and FGFR3 expression levels and their correlation with the clinicopathological features in Iranian patients with bladder cancer (BC). Paired tumor and adjacent non tumor tissue samples along with their clinico-pathological parameters were obtained from 50 cases diagnosed with BC in different stages and grades. The mRNA expressions of FGFR1 and FGFR3 in tissue samples were determined by real-time polymerase chain reaction (real-time PCR). The expression levels of FGFR3 were significantly higher in tumor tissues when compared to adjacent normal tissues (p = 0.007), regardless of the stages and grades of the tumor. Over expression was associated with cigarette smoking (p = 0.037) and family history for cancer (p = 0.004). Decreased expression of FGFR1 was observed, remarkably evident in high-grade tumors (p = 0.047), while over expression was detected in low-grade samples. This pilot study clearly suggests that in Iranian BC patients FGFR1 and FGFR3 expression patterns are different, and also highly distinctive with regard to the tumor’s stage and grade. Such particular expression patterns may indicate their special values to be employed for interventional studies aiming targeted therapy. Further studies with a larger sample size are needed to validate our results.
Collapse
Affiliation(s)
- Ousati Ashtiani Z
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Tavakkoly-Bazzaz J
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Salami Sa
- Department of Biotechnology, University of Tehran, Tehran, Iran
| | - Pourmand Mr
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mansouri F
- Department of Medical Immunology and Genetics, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.,Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Mashahdi R
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Pourmand G
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
34
|
Baby B, Antony P, Vijayan R. Interactions of quercetin with receptor tyrosine kinases associated with human lung carcinoma. Nat Prod Res 2017; 32:2928-2931. [PMID: 29022361 DOI: 10.1080/14786419.2017.1385015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Lung cancer is a deadly form of cancer with high morbidity and mortality rates. Deregulated receptor tyrosine kinases (RTKs) are frequently associated with the formation and development of lung carcinoma. Quercetin is a major dietary flavonoid that has been shown to induce cell growth inhibition and apoptosis in human lung cancer cell lines. In the current study, four major overexpressed RTKs - EGFR, FGFR1, IGF1R and c-Met - involved in human lung cancer were investigated. Molecular docking was employed to identify the binding orientation and inhibitory potential of quercetin in these RTKs. Quercetin bound to the ATP binding pocket of these kinases exhibited good binding scores and interactions by establishing hydrogen, hydrophobic and π-π interactions with the hinge region and the DFG motif in the activation loop. Thus, quercetin could be further explored as a platform for developing specific or polypharmacological compounds targeting overexpressed RTKs in lung cancer.
Collapse
Affiliation(s)
- Bincy Baby
- a Department of Biology, College of Science , United Arab Emirates University , Al Ain , United Arab Emirates
| | - Priya Antony
- a Department of Biology, College of Science , United Arab Emirates University , Al Ain , United Arab Emirates
| | - Ranjit Vijayan
- a Department of Biology, College of Science , United Arab Emirates University , Al Ain , United Arab Emirates
| |
Collapse
|
35
|
Lee H, Ross JS. The potential role of comprehensive genomic profiling to guide targeted therapy for patients with biliary cancer. Therap Adv Gastroenterol 2017; 10:507-520. [PMID: 28567120 PMCID: PMC5424872 DOI: 10.1177/1756283x17698090] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Remarkable advancements in techniques of genomic profiling and bioinformatics have led to the accumulation of vast amounts of knowledge on the genomic profiles of biliary tract cancer (BTC). Recent largescale molecular profiling studies have not only highlighted genomic differences characterizing tumors of the intrahepatic and extrahepatic bile ducts and gallbladder, but have also revealed differences in genomic profiles pertaining to associated risk factors. Novel genomic alterations such as FGFR2 fusions and IDH1/2 mutations in intrahepatic cholangiocarcinoma (ICC) and ERBB2 alterations in gallbladder cancer (GBCA) are emerging as targeted therapy options capable of advancing precision medicine for the care of these patients. Moreover, variable genomic alterations also appear to impact prognosis and overall disease outcome independent from their therapy selection value. High mutational burden and increased expression of immune checkpoint-related proteins observed in a subset of BTC also show a potential for guidance of immunotherapy. Thus, comprehensive genomic profiling (CGP) is rapidly achieving status as an integral component of precision medicine and is starting to become invaluable in guiding the management of patients with BTC, a rare disease with dismal outcome.
Collapse
Affiliation(s)
| | - Jeffrey S. Ross
- Department of Pathology and Laboratory Medicine, Albany Medical College, Albany, NY, USA Foundation Medicine, Cambridge, MA, USA
| |
Collapse
|