1
|
Wang Y, Li C, Zhao W, Dong Y, Wang P. SYNTAX I score is associated with genetically confirmed familial hypercholesterolemia in chinese patients with coronary heart disease. BMC Cardiovasc Disord 2024; 24:737. [PMID: 39709366 DOI: 10.1186/s12872-024-04428-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Familial hypercholesterolemia (FH) is a genetically inherited disorder caused by monogenic mutations or polygenic deleterious variants. Patients with FH innate with significantly elevated risks for coronary heart disease (CHD). FH prevalence based on genetic testing in Chinese CHD patients is missing. Whether classical index of coronary atherosclerosis severity can be used as indicators of FH needs to be explored. To investigate the FH prevalence in Chinese CHD patients and the association of SYNTAX I score with FH genotype. METHODS The monogenic and polygenic FH related genes were genotyped in 400 consecutively enrolled CHD patients. The clinical characteristics and SYNTAX I scores were analyzed in a retrospective nested case-control study. RESULTS The prevalence of genetically confirmed FH in our CHD cohort was 8.75%. The cLDL-C level, SYNTAX I scores and incidences of triple vessel lesions in FH patients were significantly higher, while cLDL-C and SYNTAX I scores were independent risk factors for FH. Furthermore, cLDL-C levels of polygenic FH were significantly lower than monogenic FH, while their severity of coronary atherosclerosis was comparable. CONCLUSIONS Our study revealed that the SYNTAX I score was an independent risk factor for FH. Besides, polygenic origin of FH should be taken into consideration for CHD patients suspected of FH.
Collapse
Affiliation(s)
- Yihan Wang
- School of The Third Clinical Medical College, Capital Medical University, Beijing, People's Republic of China
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Chuang Li
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Wenshu Zhao
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Ying Dong
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, People's Republic of China.
| | - Peijia Wang
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, People's Republic of China.
- Department of General Practice, Beijing Chaoyang District Sunhe Community Health Center, Beijing, People's Republic of China.
| |
Collapse
|
2
|
Nguyen KM, Hoang SV. Prevalence of genetically diagnosed familial hypercholesterolemia in Vietnamese patients with premature acute myocardial infarction. Medicine (Baltimore) 2024; 103:e39939. [PMID: 39331889 PMCID: PMC11441875 DOI: 10.1097/md.0000000000039939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 09/13/2024] [Indexed: 09/29/2024] Open
Abstract
Familial hypercholesterolemia (FH) is a genetic disorder that results in elevated low-density lipoprotein cholesterol (LDL-C) levels, which manifest early in the first decades of life. It is a major cause of premature coronary artery disease worldwide, leading to significant public health challenges. The prevalence of genetically determined FH in patients with premature coronary artery disease remains underestimated, particularly in developing countries. This study aimed to assess the prevalence of genetically defined FH in Vietnamese patients with premature acute myocardial infarction (AMI) in the Vietnamese population. This cross-sectional study enrolled 218 consecutive patients diagnosed with premature AMI who underwent coronary angiography. The low-density lipoprotein receptor (LDLR), apolipoprotein B, and proprotein convertase subtilisin-kexin type 9 genes were analyzed by next-generation sequencing. FH was diagnosed according to Dutch Lipid Clinic Network criteria. Among the patients with premature AMI who underwent coronary angiography, the mean age was 46.9 ± 6.1 years, with a predominance of males (83.9%). The prevalence of potential FH diagnosed using Dutch Lipid Clinic Network criteria was 14.7% (definite FH, 6.0%; probable FH, 8.7%). Pathogenic or likely pathogenic variants in LDLR, apolipoprotein B, and proprotein convertase subtilisin-kexin type 9 were found in 9 of 218 patients (4.1%), all of which were causative mutations in LDLR. Patients with premature AMI and FH had significantly greater LDL-C levels (217.6 vs 125.7 mg/dL) and more severe coronary artery lesions, as assessed by the Gensini score (100.3 vs 60.5), than did those in the No FH group. The prevalence of genetically determined FH among Vietnamese patients with premature AMI is relatively high. Screening and diagnosis of hereditary conditions in patients with premature AMI are essential to improve early detection and management and reduce the burden of coronary artery disease in this population.
Collapse
Affiliation(s)
- Kha Minh Nguyen
- Department of Internal Medicine, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
- Department of Cardiology, Cho Ray Hospital, Ho Chi Minh City, Vietnam
| | - Sy Van Hoang
- Department of Internal Medicine, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
- Department of Cardiology, Cho Ray Hospital, Ho Chi Minh City, Vietnam
| |
Collapse
|
3
|
Liu Q, Shi RJ, Zhang YM, Cheng YH, Yang BS, Zhang YK, Huang BT, Chen M. Risk factors, clinical features, and outcomes of premature acute myocardial infarction. Front Cardiovasc Med 2022; 9:1012095. [PMID: 36531702 PMCID: PMC9747765 DOI: 10.3389/fcvm.2022.1012095] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/07/2022] [Indexed: 12/13/2023] Open
Abstract
AIMS To investigate the risk factors, clinical features, and prognostic factors of patients with premature acute myocardial infarction (AMI). MATERIALS AND METHODS A retrospective cohort study of patients with AMI included in data from the West China Hospital of Sichuan University from 2011 to 2019 was divided into premature AMI (aged < 55 years in men and < 65 years in women) and non-premature AMI. Patients' demographics, laboratory tests, Electrocardiography (ECG), cardiac ultrasound, and coronary angiography reports were collected. All-cause death after incident premature MI was enumerated as the primary endpoint. RESULTS Among all 8,942 AMI cases, 2,513 were premature AMI (79.8% men). Compared to the non-premature AMI group, risk factors such as smoking, dyslipidemia, overweight, obesity, and a family history of coronary heart disease (CHD) were more prevalent in the premature AMI group. The cumulative survival rate of patients in the premature AMI group was significantly better than the non-premature AMI group during a mean follow-up of 4.6 years (HR = 0.27, 95% CI 0.22-0.32, p < 0.001). Low left ventricular ejection fraction (LVEF) (Adjusted HR 3.00, 95% CI 1.85-4.88, P < 0.001), peak N-terminal pro-B-type natriuretic peptide (NT-proBNP) level (Adjusted HR 1.34, 95% CI 1.18-1.52, P < 0.001) and the occurrence of in-hospital major adverse cardiovascular and cerebrovascular events (MACCEs) (Adjusted HR 2.36, 95% CI 1.45-3.85, P = 0.001) were predictors of poor prognosis in premature AMI patients. CONCLUSION AMI in young patients is associated with unhealthy lifestyles such as smoking, dyslipidemia, and obesity. Low LVEF, elevated NT-proBNP peak level, and the occurrence of in-hospital MACCEs were predictors of poor prognosis in premature AMI patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Bao-Tao Huang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Mao Chen
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Genetic Spectrum of Familial Hypercholesterolaemia in the Malaysian Community: Identification of Pathogenic Gene Variants Using Targeted Next-Generation Sequencing. Int J Mol Sci 2022; 23:ijms232314971. [PMID: 36499307 PMCID: PMC9736953 DOI: 10.3390/ijms232314971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 12/02/2022] Open
Abstract
Familial hypercholesterolaemia (FH) is caused by mutations in lipid metabolism genes, predominantly in low-density lipoprotein receptor (LDLR), apolipoprotein B (APOB), proprotein convertase subtilisin/kexin-type 9 (PCSK9) and LDL receptor adaptor protein 1 (LDLRAP1). The prevalence of genetically confirmed FH and the detection rate of pathogenic variants (PV) amongst clinically diagnosed patients is not well established. Targeted next-generation sequencing of LDLR, APOB, PCSK9 and LDLRAP1 was performed on 372 clinically diagnosed Malaysian FH subjects. Out of 361 variants identified, 40 of them were PV (18 = LDLR, 15 = APOB, 5 = PCSK9 and 2 = LDLRAP1). The majority of the PV were LDLR and APOB, where the frequency of both PV were almost similar. About 39% of clinically diagnosed FH have PV in PCSK9 alone and two novel variants of PCSK9 were identified in this study, which have not been described in Malaysia and globally. The prevalence of genetically confirmed potential FH in the community was 1:427, with a detection rate of PV at 0.2% (12/5130). About one-fourth of clinically diagnosed FH in the Malaysian community can be genetically confirmed. The detection rate of genetic confirmation is similar between potential and possible FH groups, suggesting a need for genetic confirmation in index cases from both groups. Clinical and genetic confirmation of FH index cases in the community may enhance the early detection of affected family members through family cascade screening.
Collapse
|
5
|
Schwarz A, Demuth I, Landmesser U, Haghikia A, König M, Steinhagen-Thiessen E. Low-density lipoprotein cholesterol goal attainment in patients with clinical evidence of familial hypercholesterolemia and elevated Lp(a). Lipids Health Dis 2022; 21:114. [PMID: 36324160 PMCID: PMC9628073 DOI: 10.1186/s12944-022-01708-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/26/2022] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Although potent lipid-lowering therapies are available, patients commonly fall short of recommended low-density lipoprotein cholesterol (LDL-C) levels. The aim of this study was to examine the relationship between familial hypercholesterolemia (FH) and elevated lipoprotein(a) [Lp(a)] and LDL-C goal attainment, as well as the prevalence and severity of coronary artery disease (CAD). Moreover, we characterized patients failing to meet recommended LDL-C goals. METHODS We performed a cross-sectional analysis in a cohort of patients undergoing cardiac catheterization. Clinical FH was determined by the Dutch Clinical Lipid Network Score, and Lp(a) ≥ 50 mg/dL (≈ 107 nmol/L) was considered elevated. RESULTS A total of 838 participants were included. Overall, the prevalence of CAD was 72%, and 62% received lipid-lowering treatment. The prevalence of clinical FH (probable and definite FH) was 4%, and 19% had elevated Lp(a) levels. With 35%, LDL-C goal attainment was generally poor. Among the participants with clinical FH, none reached their LDL-C target. Among patients with elevated Lp(a), LDL-C target achievement was only 28%. The prevalence and severity of CAD were higher in participants with clinical FH (86% prevalence) and elevated Lp(a) (80% prevalence). CONCLUSION Most participants failed to meet their individual LDL-C goals according to the ESC 2016 and 2019 guidelines. In particular, high-risk patients with clinical FH or elevated Lp(a) rarely met their target for LDL-C. The identification of these patients and more intense treatment approaches are crucial for the improvement of CAD primary and secondary prevention.
Collapse
Affiliation(s)
- Andrea Schwarz
- Department of Endocrinology and Metabolic Diseases (Including Division of Lipid Metabolism), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Biology of Aging Working Group, Augustenburger Platz 1, 13353, Berlin, Germany. .,Department of Pediatrics, Charité -Universitätsmedizin Berlin, Division of Cardiology, Berlin, Germany.
| | - Ilja Demuth
- Department of Endocrinology and Metabolic Diseases (Including Division of Lipid Metabolism), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Biology of Aging Working Group, Augustenburger Platz 1, 13353, Berlin, Germany.,BCRT - Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany
| | - Ulf Landmesser
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany.,Department of Cardiology, Charité- Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany.,German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Arash Haghikia
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany.,Department of Cardiology, Charité- Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany.,German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Maximilian König
- Department of Endocrinology and Metabolic Diseases (Including Division of Lipid Metabolism), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Biology of Aging Working Group, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Elisabeth Steinhagen-Thiessen
- Department of Endocrinology and Metabolic Diseases (Including Division of Lipid Metabolism), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Biology of Aging Working Group, Augustenburger Platz 1, 13353, Berlin, Germany.,Institute of Clinical Chemistry and Laboratory Medicine, University of Rostock, Rostock, Germany
| |
Collapse
|
6
|
Wang L, Guo J, Tian Z, Seery S, Jin Y, Zhang S. Developing a Hybrid Risk Assessment Tool for Familial Hypercholesterolemia: A Machine Learning Study of Chinese Arteriosclerotic Cardiovascular Disease Patients. Front Cardiovasc Med 2022; 9:893986. [PMID: 35990942 PMCID: PMC9381985 DOI: 10.3389/fcvm.2022.893986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/22/2022] [Indexed: 11/15/2022] Open
Abstract
Background Familial hypercholesterolemia (FH) is an autosomal-dominant genetic disorder with a high risk of premature arteriosclerotic cardiovascular disease (ASCVD). There are many alternative risk assessment tools, for example, DLCN, although their sensitivity and specificity vary among specific populations. We aimed to assess the risk discovery performance of a hybrid model consisting of existing FH risk assessment tools and machine learning (ML) methods, based on the Chinese patients with ASCVD. Materials and Methods In total, 5,597 primary patients with ASCVD were assessed for FH risk using 11 tools. The three best performing tools were hybridized through a voting strategy. ML models were set according to hybrid results to create a hybrid FH risk assessment tool (HFHRAT). PDP and ICE were adopted to interpret black box features. Results After hybridizing the mDLCN, Taiwan criteria, and DLCN, the HFHRAT was taken as a stacking ensemble method (AUC_class[94.85 ± 0.47], AUC_prob[98.66 ± 0.27]). The interpretation of HFHRAT suggests that patients aged <75 years with LDL-c >4 mmol/L were more likely to be at risk of developing FH. Conclusion The HFHRAT has provided a median of the three tools, which could reduce the false-negative rate associated with existing tools and prevent the development of atherosclerosis. The hybrid tool could satisfy the need for a risk assessment tool for specific populations.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jian Guo
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhuang Tian
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Samuel Seery
- Department of Humanities and Social Sciences, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ye Jin
- State Key Laboratory of Complex Severe and Rare Diseases, Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuyang Zhang
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Shuyang Zhang,
| |
Collapse
|
7
|
Diboun I, Al-Sarraj Y, Toor SM, Mohammed S, Qureshi N, Al Hail MSH, Jayyousi A, Al Suwaidi J, Albagha OME. The Prevalence and Genetic Spectrum of Familial Hypercholesterolemia in Qatar Based on Whole Genome Sequencing of 14,000 Subjects. Front Genet 2022; 13:927504. [PMID: 35910211 PMCID: PMC9337875 DOI: 10.3389/fgene.2022.927504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/15/2022] [Indexed: 11/25/2022] Open
Abstract
Familial hypercholesterolemia (FH) is an inherited disease characterized by reduced efficiency of low-density lipoprotein-cholesterol (LDL-C) removal from the blood and, consequently, an increased risk of life-threatening early cardiovascular complications. In Qatar, the prevalence of FH has not been determined and the disease, as in many countries, is largely underdiagnosed. In this study, we combined whole-genome sequencing data from the Qatar Genome Program with deep phenotype data from Qatar Biobank for 14,056 subjects to determine the genetic spectrum and estimate the prevalence of FH in Qatar. We used the Dutch Lipid Clinic Network (DLCN) as a diagnostic tool and scrutinized 11 FH-related genes for known pathogenic and possibly pathogenic mutations. Results revealed an estimated prevalence of 0.8% (1:125) for definite/probable cases of FH in the Qatari population. We detected 16 known pathogenic/likely pathogenic mutations in LDLR and one in PCSK9; all in a heterozygous state with high penetrance. The most common mutation was rs1064793799 (c.313+3A >C) followed by rs771019366 (p.Asp90Gly); both in LDLR. In addition, we identified 18 highly penetrant possibly pathogenic variants, of which 5 were Qatari-specific, in LDLR, APOB, PCSK9 and APOE, which are predicted to be among the top 1% most deleterious mutations in the human genome but further validations are required to confirm their pathogenicity. We did not detect any homozygous FH or autosomal recessive mutations in our study cohort. This pioneering study provides a reliable estimate of FH prevalence in Qatar based on a significantly large population-based cohort, whilst uncovering the spectrum of genetic variants associated with FH.
Collapse
Affiliation(s)
- Ilhame Diboun
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
- Medical and Population Genomics Lab, Sidra Medicine, Doha, Qatar
| | - Yasser Al-Sarraj
- Qatar Genome Program, Qatar Foundation Research, Development and Innovation, Qatar Foundation (QF), Doha, Qatar
| | - Salman M. Toor
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Shaban Mohammed
- Department of Pharmacy, Hamad Medical Corporation, Doha, Qatar
| | - Nadeem Qureshi
- Primary Care Stratified Medicine Research Group, Centre for Academic Primary Care, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | | | - Amin Jayyousi
- Department of Diabetes, Hamad Medical Corporation (HMC), Doha, Qatar
| | - Jassim Al Suwaidi
- Adult Cardiology, Heart Hospital, Hamad Medical Corporation (HMC), Doha, Qatar
| | - Omar M. E. Albagha
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
- *Correspondence: Omar M. E. Albagha,
| |
Collapse
|
8
|
Vikulova DN, Trinder M, Mancini GBJ, Pimstone SN, Brunham LR. Familial Hypercholesterolemia, Familial Combined Hyperlipidemia, and Elevated Lipoprotein(a) in Patients With Premature Coronary Artery Disease. Can J Cardiol 2021; 37:1733-1742. [PMID: 34455025 DOI: 10.1016/j.cjca.2021.08.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Familial hypercholesterolemia (FH), familial combined hyperlipidemia (FCHL), and elevated lipoprotein (a) (Lp[a]) increase risk of premature coronary artery disease (CAD). The objective of this study was to assess the prevalence of FH, FCHL, elevated Lp(a) and their impact on management in patients with premature CAD. METHODS We prospectively recruited men ≤ 50 years and women ≤ 55 with obstructive CAD. FH was defined as Dutch Lipid Clinic Network scores ≥ 6. FCHL was defined as apolipoprotein B > 1.2 g/L, triglyceride and total cholesterol > 90th population percentile, and family history of premature cardiovascular disease. Lp(a) ≥ 50 mg/dL was considered to be elevated. RESULTS Among 263 participants, 9.1% met criteria for FH, 12.5% for FCHL, and 19.4% had elevated Lp(a). Among patients with FH, 37.5% had FH-causing DNA variants. Patients with FH, but not other dyslipidemias, were more likely than nondyslipidemic patients to have received lipid-lowering therapy before presenting with CAD (33.3% vs 12.3%, P = 0.04) and combined lipid-lowering therapy after the presentation (41.7% vs 7.7%, P < 0.001). One year after presentation, 58.3%, 54.5%, and 58.8% of patients with FH, FCHL, and elevated Lp(a) had low-density lipoprotein cholesterol (LDL-C) < 1.8 mmol/L, respectively, compared with 68.0 % in reference group. Patients with FCHL were more likely to have non-high-density lipoprotein (HDL) and apolipoprotein B above recommended lipid goals (70.0% and 87.9%, respectively). CONCLUSIONS FH, FCHL, and elevated Lp(a) are common in patients with premature CAD and have differing impact on treatment and achievement of lipid targets. Assessment for these conditions in patients with premature CAD provides valuable information for individualized management.
Collapse
Affiliation(s)
- Diana N Vikulova
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, British Columbia, Canada; Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mark Trinder
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, British Columbia, Canada; Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - G B John Mancini
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Division of Cardiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Simon N Pimstone
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, British Columbia, Canada; Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Liam R Brunham
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, British Columbia, Canada; Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
9
|
Tung H, Lin HJ, Chen PL, Lu TJ, Jhan PP, Chen JP, Chen YM, Wu CC, Lin YY, Hsiao TH. Characterization of familial hypercholesterolemia in Taiwanese ischemic stroke patients. Aging (Albany NY) 2021; 13:19339-19351. [PMID: 34314377 PMCID: PMC8386562 DOI: 10.18632/aging.203320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 06/29/2021] [Indexed: 11/25/2022]
Abstract
Familial hypercholesterolemia (FH) is a common genetic disorder characterized by a lifelong elevated low-density lipoprotein cholesterol (LDL-C) level. The relationship between FH and ischemic stroke is still controversial. We enrolled ischemic stroke patients prospectively in our neurological ward, and divided them into two groups according to LDL-C levels with a threshold of 130 mg/dl. Targeted sequencing was performed in all stroke patients for LDLR, APOB, and PCSK9 genes. The fifty-eight high-LDL subjects were older, prevalence of previous myocardial infarction/stroke history was lower, and the first stroke age was older compared with values in the sixty-three low-LDL cases. The prevalence of FH in Han-Chinese stroke patients was 5.0%, and was 10.3% in those with a higher LDL-C level. We identified six carriers, who had higher percentages of large vessel stroke subtype (66.7% vs. 15.4%) and transient ischemic attack (33.3% vs. 3.8%), previous myocardial infarction/stroke history (50.0% vs. 11.5%), statin use (50.0% vs. 11.5%), and increased carotid intima-media thickness (IMT) (0.9-1.2mm vs.0.7-9.0mm) compared with the other hypercholesterolemic patients without pathogenic variants. Ischemic stroke patients carrying FH pathogenic variants seemed to have a higher risk for large artery stroke and transient ischemic attack. The IMT exam could be useful to screen for FH in hypercholesterolemic stroke patients.
Collapse
Affiliation(s)
- Hsin Tung
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Center of Faculty Development, Taichung Veterans General Hospital, Taichung, Taiwan.,Division of Epilepsy, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Hsueh-Ju Lin
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Po-Lin Chen
- Division of General Neurology, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan.,School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - Tsai-Jung Lu
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Pei-Pei Jhan
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Jun-Peng Chen
- Biostatistics Task Force of Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yi-Ming Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan.,Division of Allergy, Immunology and Rheumatology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chen-Chin Wu
- Division of Epilepsy, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan.,Division of General Neurology, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yung-Yang Lin
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Critical Care Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tzu-Hung Hsiao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan.,Department of Public Health, Fu Jen Catholic University, New Taipei City, Taiwan.,Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
10
|
Kalra S, Chen Z, Deerochanawong C, Shyu KG, Tan RS, Tomlinson B, Yeh HI. Familial Hypercholesterolemia in Asia Pacific: A Review of Epidemiology, Diagnosis, and Management in the Region. J Atheroscler Thromb 2021; 28:417-434. [PMID: 33746137 PMCID: PMC8193778 DOI: 10.5551/jat.56762] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 12/22/2020] [Indexed: 01/26/2023] Open
Abstract
Familial hypercholesterolemia (FH) is a common genetic disease that is estimated to affect at least 15 million people in the Asia Pacific region. Affected individuals are at significantly increased risk of premature atherosclerotic cardiovascular disease. A literature review was undertaken to provide an overview of the epidemiology, diagnosis, and management of FH across the region.Currently, epidemiological data relating to FH are lacking across the Asia Pacific. Of the 15 countries and regions considered, locally conducted studies to determine FH prevalence were only identified for Australia, China, India, and Japan. Although practically all national clinical guidelines for dyslipidemia include some commentary on FH, specific guidelines on the management of FH are available for only one third of the countries and regions evaluated. Estimates of current FH diagnosis rates suggest that most affected individuals remain undiagnosed and untreated. Although innovative medications such as proprotein convertase subtilisin/kexin type 9 inhibitors have been approved and are available in most countries and regions considered, they are currently reimbursed in only one quarter.Despite these shortcomings, there is cause for optimism. Early experience with cascade screening in Hong Kong, India, and Vietnam has proven an effective means of identifying family members of probands, as has a reverse screening of family members of children with FH in China. FH registries are gaining momentum across the region, with registries now established in almost half of the countries and regions evaluated. This review concludes with a Call to Action on FH for Asia Pacific to engage healthcare professionals, improve public awareness, and form national FH alliances, comprising all relevant healthcare professional organizations, as a platform to expedite national quality improvement programs in the management of FH.
Collapse
Affiliation(s)
- Sanjay Kalra
- Department of Endocrinology, Bharti Hospital, Karnal, India
| | - Zhenyue Chen
- Cardiology Department, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | | | - Kou-Gi Shyu
- Division of Cardiology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Ru San Tan
- National Heart Centre Singapore, Duke-NUS Medical Singapore
| | - Brian Tomlinson
- Faculty of Medicine, Macau University of Science & Technology, Avenida Wai Long, Taipa, Macau, China
| | - Hung-I Yeh
- Departments of Internal Medicine and Medical Research, Mackay Memorial Hospital, Mackay Medical College, New Taipei City, Taiwan
| |
Collapse
|
11
|
Campbell-Salome G, Jones LK, Masnick MF, Walton NA, Ahmed CD, Buchanan AH, Brangan A, Esplin ED, Kann DG, Ladd IG, Kelly MA, Kindt I, Kirchner HL, McGowan MP, McMinn MN, Morales A, Myers KD, Oetjens MT, Rahm AK, Schmidlen TJ, Sheldon A, Simmons E, Snir M, Strande NT, Walters NL, Wilemon K, Williams MS, Gidding SS, Sturm AC. Developing and Optimizing Innovative Tools to Address Familial Hypercholesterolemia Underdiagnosis: Identification Methods, Patient Activation, and Cascade Testing for Familial Hypercholesterolemia. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2021; 14:e003120. [PMID: 33480803 PMCID: PMC7892261 DOI: 10.1161/circgen.120.003120] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background: Familial hypercholesterolemia (FH) is the most common cardiovascular genetic disorder and, if left untreated, is associated with increased risk of premature atherosclerotic cardiovascular disease, the leading cause of preventable death in the United States. Although FH is common, fatal, and treatable, it is underdiagnosed and undertreated due to a lack of systematic methods to identify individuals with FH and limited uptake of cascade testing. Methods and Results: This mixed-method, multi-stage study will optimize, test, and implement innovative approaches for both FH identification and cascade testing in 3 aims. To improve identification of individuals with FH, in Aim 1, we will compare and refine automated phenotype-based and genomic approaches to identify individuals likely to have FH. To improve cascade testing uptake for at-risk individuals, in Aim 2, we will use a patient-centered design thinking process to optimize and develop novel, active family communication methods. Using a prospective, observational pragmatic trial, we will assess uptake and effectiveness of each family communication method on cascade testing. Guided by an implementation science framework, in Aim 3, we will develop a comprehensive guide to identify individuals with FH. Using the Conceptual Model for Implementation Research, we will evaluate implementation outcomes including feasibility, acceptability, and perceived sustainability as well as health outcomes related to the optimized methods and tools developed in Aims 1 and 2. Conclusions: Data generated from this study will address barriers and gaps in care related to underdiagnosis of FH by developing and optimizing tools to improve FH identification and cascade testing.
Collapse
Affiliation(s)
- Gemme Campbell-Salome
- Geisinger, Danville, PA (G.C.-S., L.K.J., M.F.M., A.H.B., A.B., D.G.K., I.G.L., M.A.K., H.L.K., M.N.M., M.T.O., A.K.R., T.J.S., N.T.S., N.L.W., M.S.W., S.S.G., A.C.S.)
| | - Laney K Jones
- Geisinger, Danville, PA (G.C.-S., L.K.J., M.F.M., A.H.B., A.B., D.G.K., I.G.L., M.A.K., H.L.K., M.N.M., M.T.O., A.K.R., T.J.S., N.T.S., N.L.W., M.S.W., S.S.G., A.C.S.)
| | - Max F Masnick
- Geisinger, Danville, PA (G.C.-S., L.K.J., M.F.M., A.H.B., A.B., D.G.K., I.G.L., M.A.K., H.L.K., M.N.M., M.T.O., A.K.R., T.J.S., N.T.S., N.L.W., M.S.W., S.S.G., A.C.S.)
| | - Nephi A Walton
- Intermountain Precision Genomics, Intermountain Healthcare, St. George, UT (N.A.W.)
| | - Catherine D Ahmed
- The Familial Hypercholesterolemia Foundation, Pasadena, CA (C.D.A., M.P.M., K.D.M., A.S., K.W.)
| | - Adam H Buchanan
- Geisinger, Danville, PA (G.C.-S., L.K.J., M.F.M., A.H.B., A.B., D.G.K., I.G.L., M.A.K., H.L.K., M.N.M., M.T.O., A.K.R., T.J.S., N.T.S., N.L.W., M.S.W., S.S.G., A.C.S.)
| | - Andrew Brangan
- Geisinger, Danville, PA (G.C.-S., L.K.J., M.F.M., A.H.B., A.B., D.G.K., I.G.L., M.A.K., H.L.K., M.N.M., M.T.O., A.K.R., T.J.S., N.T.S., N.L.W., M.S.W., S.S.G., A.C.S.)
| | | | - David G Kann
- Geisinger, Danville, PA (G.C.-S., L.K.J., M.F.M., A.H.B., A.B., D.G.K., I.G.L., M.A.K., H.L.K., M.N.M., M.T.O., A.K.R., T.J.S., N.T.S., N.L.W., M.S.W., S.S.G., A.C.S.)
| | - Ilene G Ladd
- Geisinger, Danville, PA (G.C.-S., L.K.J., M.F.M., A.H.B., A.B., D.G.K., I.G.L., M.A.K., H.L.K., M.N.M., M.T.O., A.K.R., T.J.S., N.T.S., N.L.W., M.S.W., S.S.G., A.C.S.)
| | - Melissa A Kelly
- Geisinger, Danville, PA (G.C.-S., L.K.J., M.F.M., A.H.B., A.B., D.G.K., I.G.L., M.A.K., H.L.K., M.N.M., M.T.O., A.K.R., T.J.S., N.T.S., N.L.W., M.S.W., S.S.G., A.C.S.)
| | | | - H Lester Kirchner
- Geisinger, Danville, PA (G.C.-S., L.K.J., M.F.M., A.H.B., A.B., D.G.K., I.G.L., M.A.K., H.L.K., M.N.M., M.T.O., A.K.R., T.J.S., N.T.S., N.L.W., M.S.W., S.S.G., A.C.S.)
| | - Mary P McGowan
- The Familial Hypercholesterolemia Foundation, Pasadena, CA (C.D.A., M.P.M., K.D.M., A.S., K.W.).,Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, Lebanon, NH (M.P.M.)
| | - Megan N McMinn
- Geisinger, Danville, PA (G.C.-S., L.K.J., M.F.M., A.H.B., A.B., D.G.K., I.G.L., M.A.K., H.L.K., M.N.M., M.T.O., A.K.R., T.J.S., N.T.S., N.L.W., M.S.W., S.S.G., A.C.S.)
| | - Ana Morales
- Invitae, San Francisco, CA (E.D.E., A.M., E.S., M.S.)
| | - Kelly D Myers
- The Familial Hypercholesterolemia Foundation, Pasadena, CA (C.D.A., M.P.M., K.D.M., A.S., K.W.)
| | - Matthew T Oetjens
- Geisinger, Danville, PA (G.C.-S., L.K.J., M.F.M., A.H.B., A.B., D.G.K., I.G.L., M.A.K., H.L.K., M.N.M., M.T.O., A.K.R., T.J.S., N.T.S., N.L.W., M.S.W., S.S.G., A.C.S.)
| | - Alanna Kulchak Rahm
- Geisinger, Danville, PA (G.C.-S., L.K.J., M.F.M., A.H.B., A.B., D.G.K., I.G.L., M.A.K., H.L.K., M.N.M., M.T.O., A.K.R., T.J.S., N.T.S., N.L.W., M.S.W., S.S.G., A.C.S.)
| | - Tara J Schmidlen
- Geisinger, Danville, PA (G.C.-S., L.K.J., M.F.M., A.H.B., A.B., D.G.K., I.G.L., M.A.K., H.L.K., M.N.M., M.T.O., A.K.R., T.J.S., N.T.S., N.L.W., M.S.W., S.S.G., A.C.S.)
| | - Amanda Sheldon
- The Familial Hypercholesterolemia Foundation, Pasadena, CA (C.D.A., M.P.M., K.D.M., A.S., K.W.)
| | | | - Moran Snir
- Invitae, San Francisco, CA (E.D.E., A.M., E.S., M.S.)
| | - Natasha T Strande
- Geisinger, Danville, PA (G.C.-S., L.K.J., M.F.M., A.H.B., A.B., D.G.K., I.G.L., M.A.K., H.L.K., M.N.M., M.T.O., A.K.R., T.J.S., N.T.S., N.L.W., M.S.W., S.S.G., A.C.S.)
| | - Nicole L Walters
- Geisinger, Danville, PA (G.C.-S., L.K.J., M.F.M., A.H.B., A.B., D.G.K., I.G.L., M.A.K., H.L.K., M.N.M., M.T.O., A.K.R., T.J.S., N.T.S., N.L.W., M.S.W., S.S.G., A.C.S.)
| | - Katherine Wilemon
- The Familial Hypercholesterolemia Foundation, Pasadena, CA (C.D.A., M.P.M., K.D.M., A.S., K.W.)
| | - Marc S Williams
- Geisinger, Danville, PA (G.C.-S., L.K.J., M.F.M., A.H.B., A.B., D.G.K., I.G.L., M.A.K., H.L.K., M.N.M., M.T.O., A.K.R., T.J.S., N.T.S., N.L.W., M.S.W., S.S.G., A.C.S.)
| | - Samuel S Gidding
- Geisinger, Danville, PA (G.C.-S., L.K.J., M.F.M., A.H.B., A.B., D.G.K., I.G.L., M.A.K., H.L.K., M.N.M., M.T.O., A.K.R., T.J.S., N.T.S., N.L.W., M.S.W., S.S.G., A.C.S.)
| | - Amy C Sturm
- Geisinger, Danville, PA (G.C.-S., L.K.J., M.F.M., A.H.B., A.B., D.G.K., I.G.L., M.A.K., H.L.K., M.N.M., M.T.O., A.K.R., T.J.S., N.T.S., N.L.W., M.S.W., S.S.G., A.C.S.)
| |
Collapse
|
12
|
Lorca R, Aparicio A, Cuesta-Llavona E, Pascual I, Junco A, Hevia S, Villazón F, Hernandez-Vaquero D, Reguero JJR, Moris C, Coto E, Gómez J, Avanzas P. Familial Hypercholesterolemia in Premature Acute Coronary Syndrome. Insights from CholeSTEMI Registry. J Clin Med 2020; 9:E3489. [PMID: 33137929 PMCID: PMC7692119 DOI: 10.3390/jcm9113489] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/16/2020] [Accepted: 10/26/2020] [Indexed: 11/20/2022] Open
Abstract
Familial hypercholesterolemia (FH) is an underdiagnosed genetic inherited condition that may lead to premature coronary artery disease (CAD). FH has an estimated prevalence in the general population of about 1:313. However, its prevalence in patients with premature STEMI (ST-elevation myocardial infarction) has not been widely studied. This study aimed to evaluate the prevalence of FH in patients with premature STEMI. Cardiovascular risk factors, LDLc (low-density lipoprotein cholesterol) evolution, and differences between genders were also evaluated. Consecutive patients were referred for cardiac catheterization to our center due to STEMI suspicion in 2018. From the 80 patients with confirmed premature CAD (men < 55 and women < 60 years old with confirmed CAD), 56 (48 men and eight women) accepted to be NGS sequenced for the main FH genes. Clinical information and DLCN (Dutch Lipid Clinic Network) score were analyzed. Only one male patient had probable FH (6-7 points) and no one reached a clinically definite diagnosis. Genetic testing confirmed that the only patient with a DLCN score ≥6 has HF (1.8%). Smoking and high BMI the most frequent cardiovascular risk factors (>80%). Despite high doses of statins being expected to reduce LDLc levels at STEMI to current dyslipidemia guidelines LDL targets (<55 mg/dL), LDLc control levels were out of range. Although still 5.4 times higher than in general population, the prevalence of FH in premature CAD is still low (1.8%). To improve the genetic yield, genetic screening may be considered among patients with probable or definite FH according to clinical criteria. The classical cardiovascular risk factors prevalence far exceeds FH prevalence in patients with premature STEMI. LDLc control levels after STEMI were out range, despite intensive hypolipemiant treatment. These findings reinforce the need for more aggressive preventive strategies in the young and for intensive lipid-lowering therapy in secondary prevention.
Collapse
Affiliation(s)
- Rebeca Lorca
- Reference Unit of Familiar Cardiomyopathies-HUCA, Área del Corazón y Departamento de Genética Molecular, Hospital Universitario Central Asturias, 33014 Oviedo, Spain; (R.L.); (E.C.-L.); (J.J.R.R.); (C.M.); (E.C.); (J.G.)
- Heart Area, Hospital Universitario Central de Asturias, 33014 Oviedo, Spain; (A.A.); (A.J.); (S.H.); (D.H.-V.); (P.A.)
- Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, 33014 Oviedo, Spain
| | - Andrea Aparicio
- Heart Area, Hospital Universitario Central de Asturias, 33014 Oviedo, Spain; (A.A.); (A.J.); (S.H.); (D.H.-V.); (P.A.)
| | - Elias Cuesta-Llavona
- Reference Unit of Familiar Cardiomyopathies-HUCA, Área del Corazón y Departamento de Genética Molecular, Hospital Universitario Central Asturias, 33014 Oviedo, Spain; (R.L.); (E.C.-L.); (J.J.R.R.); (C.M.); (E.C.); (J.G.)
- Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, 33014 Oviedo, Spain
| | - Isaac Pascual
- Heart Area, Hospital Universitario Central de Asturias, 33014 Oviedo, Spain; (A.A.); (A.J.); (S.H.); (D.H.-V.); (P.A.)
- Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, 33014 Oviedo, Spain
| | - Alejandro Junco
- Heart Area, Hospital Universitario Central de Asturias, 33014 Oviedo, Spain; (A.A.); (A.J.); (S.H.); (D.H.-V.); (P.A.)
| | - Sergio Hevia
- Heart Area, Hospital Universitario Central de Asturias, 33014 Oviedo, Spain; (A.A.); (A.J.); (S.H.); (D.H.-V.); (P.A.)
| | - Francisco Villazón
- Endocrinology Department, Hospital Universitario Central Asturias, 33014 Oviedo, Spain;
| | - Daniel Hernandez-Vaquero
- Heart Area, Hospital Universitario Central de Asturias, 33014 Oviedo, Spain; (A.A.); (A.J.); (S.H.); (D.H.-V.); (P.A.)
- Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, 33014 Oviedo, Spain
| | - Jose Julian Rodríguez Reguero
- Reference Unit of Familiar Cardiomyopathies-HUCA, Área del Corazón y Departamento de Genética Molecular, Hospital Universitario Central Asturias, 33014 Oviedo, Spain; (R.L.); (E.C.-L.); (J.J.R.R.); (C.M.); (E.C.); (J.G.)
- Heart Area, Hospital Universitario Central de Asturias, 33014 Oviedo, Spain; (A.A.); (A.J.); (S.H.); (D.H.-V.); (P.A.)
- Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, 33014 Oviedo, Spain
| | - Cesar Moris
- Reference Unit of Familiar Cardiomyopathies-HUCA, Área del Corazón y Departamento de Genética Molecular, Hospital Universitario Central Asturias, 33014 Oviedo, Spain; (R.L.); (E.C.-L.); (J.J.R.R.); (C.M.); (E.C.); (J.G.)
- Heart Area, Hospital Universitario Central de Asturias, 33014 Oviedo, Spain; (A.A.); (A.J.); (S.H.); (D.H.-V.); (P.A.)
- Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, 33014 Oviedo, Spain
| | - Eliecer Coto
- Reference Unit of Familiar Cardiomyopathies-HUCA, Área del Corazón y Departamento de Genética Molecular, Hospital Universitario Central Asturias, 33014 Oviedo, Spain; (R.L.); (E.C.-L.); (J.J.R.R.); (C.M.); (E.C.); (J.G.)
- Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, 33014 Oviedo, Spain
| | - Juan Gómez
- Reference Unit of Familiar Cardiomyopathies-HUCA, Área del Corazón y Departamento de Genética Molecular, Hospital Universitario Central Asturias, 33014 Oviedo, Spain; (R.L.); (E.C.-L.); (J.J.R.R.); (C.M.); (E.C.); (J.G.)
- Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, 33014 Oviedo, Spain
| | - Pablo Avanzas
- Heart Area, Hospital Universitario Central de Asturias, 33014 Oviedo, Spain; (A.A.); (A.J.); (S.H.); (D.H.-V.); (P.A.)
- Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, 33014 Oviedo, Spain
| |
Collapse
|
13
|
Hendricks-Sturrup RM, Clark-LoCascio J, Lu CY. A Global Review on the Utility of Genetic Testing for Familial Hypercholesterolemia. J Pers Med 2020; 10:E23. [PMID: 32295171 PMCID: PMC7354443 DOI: 10.3390/jpm10020023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 12/14/2022] Open
Abstract
Familial hypercholesterolemia (FH) is a genetic disorder of cholesterol metabolism that affects an estimated 1/250 persons in the United States and abroad. FH is hallmarked by high low-density lipoprotein (LDL) cholesterol and an increased risk of premature atherosclerotic cardiovascular disease. This review summarizes recent global evidence showing the utility of FH genetic testing across diverse populations. Clinical and other qualitative outcomes following FH genetic testing were improved FH diagnosis, treatment initiation or continued treatment, treatment modification, improved total or LDL cholesterol levels, education on lifestyle management, and genetic counseling. This summary of evidence should be considered by those seeking overall evidence and knowledge gaps on the utility of FH genetic testing from a global perspective and for certain ethnic and age populations. These findings can be used to inform insurance policies and coverage decisions for FH genetic testing, policy recommendations to reduce the clinical and public health burden of FH, clinical practice and guidelines to improve the management of FH populations, and ongoing research involving FH genetic testing. We conclude that further investigations are needed to examine: (1) non-clinical outcomes following FH genetic testing; (2) patient-reported outcomes following FH genetic testing to convey patient experiences, values, and goals; and (3) clinical outcomes following FH genetic testing in non-Caucasian and pediatric populations in the United States and abroad.
Collapse
Affiliation(s)
- Rachele M. Hendricks-Sturrup
- Department of Population Medicine, Harvard Pilgrim Health Care Institute and Harvard Medical School, Boston, MA 02215, USA;
| | - Jodi Clark-LoCascio
- Pallavi Patel College of Health Care Sciences, Nova Southeastern University, Fort Lauderdale, FL 33314, USA;
| | - Christine Y. Lu
- Department of Population Medicine, Harvard Pilgrim Health Care Institute and Harvard Medical School, Boston, MA 02215, USA;
| |
Collapse
|
14
|
Lee C, Cui Y, Song J, Li S, Zhang F, Wu M, Li L, Hu D, Chen H. Effects of familial hypercholesterolemia-associated genes on the phenotype of premature myocardial infarction. Lipids Health Dis 2019; 18:95. [PMID: 30971288 PMCID: PMC6458678 DOI: 10.1186/s12944-019-1042-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/01/2019] [Indexed: 01/08/2023] Open
Abstract
Background The incidence of premature myocardial infarction (PMI) has gradually increased in recent years. Genetics plays a central role in the development of PMI. Familial hypercholesterolemia (FH) is one of the most common genetic disorders of cholesterol metabolism leading to PMI. Objective This study investigated the relationship between FH-associated genes and the phenotype of PMI to clarify the genetic spectrum of PMI diseases. Method This study enrolled PMI patients (n = 225) and detected the mutations in their FH-associated genes (LDLR, APOB, PCSK9, LDLRAP1) by Sanger sequencing. At the same time, patients free of PMI (non-FH patients, n = 56) were enrolled as control, and a logistic regression analysis was used to identify risk factors associated with PMI. The diagnosis of FH was confirmed using “2018 Chinese expert consensus of FH screening and diagnosis” before the prevalence and clinical features of FH were analyzed. Results Pathogenic mutations in LDLR, APOB, PCSK9 and LDLRAP1 genes were found in 17 of 225 subjects (7.6%), and all mutations were loss of function (LOF) and heterozygous. The genotype-phenotype relationship of patients carrying FH-associated mutations showed high heterogeneity. The logistic regression analysis showed that the smoking history, obesity and the family history of premature CHD were independent risk factors of PMI. In this study, a total of 19 patients (8.4%) were diagnosed as FH, and the proportion of smoking subjects in FH patients was higher than that in non-FH patients. Conclusions FH-associated gene mutations were present in about 7.6% of Chinese patients with PMI. In addition to genetic factors, smoking history, lifestyle and other environmental factors may play a synergistic role in determining the phenotype of PMI. Trial registration Essential gene mutation of cholesterol metabolism in patients with premature myocardial infarction. ChiCTR-OCH-12002349.Registered 26 December 2014, http://www.chictr.org.cn/showproj.aspx?proj=7201.
Collapse
Affiliation(s)
- Chongyou Lee
- Department of Cardiology, Peking University People's Hospital, Xizhimen South Rd. No.11, Xicheng district, Beijing, 100044, China.,Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's Hospital, Beijing, China.,Center for Cardiovascular Translational Research, Peking University People's Hospital, Beijing, China
| | - Yuxia Cui
- Department of Cardiology, Peking University People's Hospital, Xizhimen South Rd. No.11, Xicheng district, Beijing, 100044, China.,Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's Hospital, Beijing, China.,Center for Cardiovascular Translational Research, Peking University People's Hospital, Beijing, China
| | - Junxian Song
- Department of Cardiology, Peking University People's Hospital, Xizhimen South Rd. No.11, Xicheng district, Beijing, 100044, China.,Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's Hospital, Beijing, China.,Center for Cardiovascular Translational Research, Peking University People's Hospital, Beijing, China
| | - Sufang Li
- Department of Cardiology, Peking University People's Hospital, Xizhimen South Rd. No.11, Xicheng district, Beijing, 100044, China.,Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's Hospital, Beijing, China.,Center for Cardiovascular Translational Research, Peking University People's Hospital, Beijing, China
| | - Feng Zhang
- Department of Cardiology, Peking University People's Hospital, Xizhimen South Rd. No.11, Xicheng district, Beijing, 100044, China.,Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's Hospital, Beijing, China.,Center for Cardiovascular Translational Research, Peking University People's Hospital, Beijing, China
| | - Manyan Wu
- Department of Cardiology, Peking University People's Hospital, Xizhimen South Rd. No.11, Xicheng district, Beijing, 100044, China.,Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's Hospital, Beijing, China.,Center for Cardiovascular Translational Research, Peking University People's Hospital, Beijing, China
| | - Long Li
- Department of Cardiology, Peking University People's Hospital, Xizhimen South Rd. No.11, Xicheng district, Beijing, 100044, China.,Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's Hospital, Beijing, China.,Center for Cardiovascular Translational Research, Peking University People's Hospital, Beijing, China
| | - Dan Hu
- Department of Cardiology, Peking University People's Hospital, Xizhimen South Rd. No.11, Xicheng district, Beijing, 100044, China.,Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's Hospital, Beijing, China.,Center for Cardiovascular Translational Research, Peking University People's Hospital, Beijing, China
| | - Hong Chen
- Department of Cardiology, Peking University People's Hospital, Xizhimen South Rd. No.11, Xicheng district, Beijing, 100044, China. .,Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's Hospital, Beijing, China. .,Center for Cardiovascular Translational Research, Peking University People's Hospital, Beijing, China.
| |
Collapse
|
15
|
Cui Y, Li S, Zhang F, Song J, Lee C, Wu M, Chen H. Prevalence of familial hypercholesterolemia in patients with premature myocardial infarction. Clin Cardiol 2019; 42:385-390. [PMID: 30637778 PMCID: PMC6712327 DOI: 10.1002/clc.23154] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/10/2019] [Accepted: 01/11/2019] [Indexed: 12/12/2022] Open
Abstract
Background Familial hypercholesterolemia (FH) is a genetic cause of premature myocardial infarction (PMI). Early diagnosis of FH is critical for prognosis. Hypothesis To investigate the prevalence of FH among a cohort of Chinese patients with PMI using genetic testing, and to evaluate different diagnostic criteria. Methods A total of 225 consecutive PMI patients were recruited. Low‐density lipoprotein receptor (LDLR), apolipoprotein B (APOB), proprotein convertase subtilisin‐kexin type 9 (PCSK9) and low‐density lipoprotein receptor adaptor protein 1 (LDLRAP1) genes were detected by Sanger sequencing. FH was diagnosed using the Dutch Lipid Clinic Network (DLCN) criteria and modified DLCN criteria, respectively. The prevalence and clinical features of FH were analyzed. Results In all PMI patients, pathogenic mutations of LDLR, APOB, PCSK9 and LDLRAP1 genes were found in 10 of 225 patients. Among all mutations, four mutations (LDLR c.129G>C, LDLR c.1867A>T, LDLRAP1 c.65G>C, and LDLRAP1 c.274G>A) were newly discovered. The prevalence of FH diagnosed by genetic testing was 4.4%. The prevalence of definite/probable FH diagnosed by DLCN and modified DLCN criteria reached 8.0% and 23.6%, respectively, and the mutation rates were 33.3% and 12.2%, respectively. The low‐density lipo‐protein cholesterol (LDL‐C) levels in PMI patients with FH were far from goal attainment. Only one of the FH patients had LDL‐C <2.5 mmol/L, and none of them had LDL‐C <1.8 mmol/L. Conclusions The prevalence of FH among Chinese patients with PMI appeared relatively common. Underdiagnosis and undertreatment of FH are still a big problem, which should arouse a widespread concern.
Collapse
Affiliation(s)
- Yuxia Cui
- Department of Cardiology, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's Hospital, Beijing, China.,Center for Cardiovascular Translational Research, Peking University People's Hospital, Beijing, China
| | - Sufang Li
- Department of Cardiology, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's Hospital, Beijing, China.,Center for Cardiovascular Translational Research, Peking University People's Hospital, Beijing, China
| | - Feng Zhang
- Department of Cardiology, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's Hospital, Beijing, China.,Center for Cardiovascular Translational Research, Peking University People's Hospital, Beijing, China
| | - Junxian Song
- Department of Cardiology, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's Hospital, Beijing, China.,Center for Cardiovascular Translational Research, Peking University People's Hospital, Beijing, China
| | - Chongyou Lee
- Department of Cardiology, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's Hospital, Beijing, China.,Center for Cardiovascular Translational Research, Peking University People's Hospital, Beijing, China
| | - Manyan Wu
- Department of Cardiology, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's Hospital, Beijing, China.,Center for Cardiovascular Translational Research, Peking University People's Hospital, Beijing, China
| | - Hong Chen
- Department of Cardiology, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's Hospital, Beijing, China.,Center for Cardiovascular Translational Research, Peking University People's Hospital, Beijing, China
| |
Collapse
|