1
|
Identification and characterization of profilin gene family in rice. ELECTRON J BIOTECHN 2021. [DOI: 10.1016/j.ejbt.2021.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
2
|
García-González J, van Gelderen K. Bundling up the Role of the Actin Cytoskeleton in Primary Root Growth. FRONTIERS IN PLANT SCIENCE 2021; 12:777119. [PMID: 34975959 PMCID: PMC8716943 DOI: 10.3389/fpls.2021.777119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/11/2021] [Indexed: 05/19/2023]
Abstract
Primary root growth is required by the plant to anchor in the soil and reach out for nutrients and water, while dealing with obstacles. Efficient root elongation and bending depends upon the coordinated action of environmental sensing, signal transduction, and growth responses. The actin cytoskeleton is a highly plastic network that constitutes a point of integration for environmental stimuli and hormonal pathways. In this review, we present a detailed compilation highlighting the importance of the actin cytoskeleton during primary root growth and we describe how actin-binding proteins, plant hormones, and actin-disrupting drugs affect root growth and root actin. We also discuss the feedback loop between actin and root responses to light and gravity. Actin affects cell division and elongation through the control of its own organization. We remark upon the importance of longitudinally oriented actin bundles as a hallmark of cell elongation as well as the role of the actin cytoskeleton in protein trafficking and vacuolar reshaping during this process. The actin network is shaped by a plethora of actin-binding proteins; however, there is still a large gap in connecting the molecular function of these proteins with their developmental effects. Here, we summarize their function and known effects on primary root growth with a focus on their high level of specialization. Light and gravity are key factors that help us understand root growth directionality. The response of the root to gravity relies on hormonal, particularly auxin, homeostasis, and the actin cytoskeleton. Actin is necessary for the perception of the gravity stimulus via the repositioning of sedimenting statoliths, but it is also involved in mediating the growth response via the trafficking of auxin transporters and cell elongation. Furthermore, auxin and auxin analogs can affect the composition of the actin network, indicating a potential feedback loop. Light, in its turn, affects actin organization and hence, root growth, although its precise role remains largely unknown. Recently, fundamental studies with the latest techniques have given us more in-depth knowledge of the role and organization of actin in the coordination of root growth; however, there remains a lot to discover, especially in how actin organization helps cell shaping, and therefore root growth.
Collapse
Affiliation(s)
- Judith García-González
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czechia
- *Correspondence: Judith García-González,
| | - Kasper van Gelderen
- Plant Ecophysiology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
- Kasper van Gelderen,
| |
Collapse
|
3
|
Pimm ML, Hotaling J, Henty-Ridilla JL. Profilin choreographs actin and microtubules in cells and cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 355:155-204. [PMID: 32859370 PMCID: PMC7461721 DOI: 10.1016/bs.ircmb.2020.05.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Actin and microtubules play essential roles in aberrant cell processes that define and converge in cancer including: signaling, morphology, motility, and division. Actin and microtubules do not directly interact, however shared regulators coordinate these polymers. While many of the individual proteins important for regulating and choreographing actin and microtubule behaviors have been identified, the way these molecules collaborate or fail in normal or disease contexts is not fully understood. Decades of research focus on Profilin as a signaling molecule, lipid-binding protein, and canonical regulator of actin assembly. Recent reports demonstrate that Profilin also regulates microtubule dynamics and polymerization. Thus, Profilin can coordinate both actin and microtubule polymer systems. Here we reconsider the biochemical and cellular roles for Profilin with a focus on the essential cytoskeletal-based cell processes that go awry in cancer. We also explore how the use of model organisms has helped to elucidate mechanisms that underlie the regulatory essence of Profilin in vivo and in the context of disease.
Collapse
Affiliation(s)
- Morgan L Pimm
- Department of Cell and Developmental Biology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
| | - Jessica Hotaling
- Department of Cell and Developmental Biology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
| | - Jessica L Henty-Ridilla
- Department of Cell and Developmental Biology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States; Department of Biochemistry and Molecular Biology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States.
| |
Collapse
|
4
|
Analysis of Pollen Allergens in Lily by Transcriptome and Proteome Data. Int J Mol Sci 2019; 20:ijms20235892. [PMID: 31771269 PMCID: PMC6929097 DOI: 10.3390/ijms20235892] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/20/2019] [Accepted: 11/20/2019] [Indexed: 11/16/2022] Open
Abstract
The lily (Lilium spp.) anther contains a lot of pollen. It is not known if lily pollen contains allergens, and therefore screening pollen allergy-related proteins and genes is necessary. The pollen development period of lily 'Siberia' was determined by microscope observation. Early mononuclear microspores and mature pollens were used as sequencing materials. The analysis of the pollen transcriptome identified differentially expressed genes (DEGs), e.g., Profilin, Phl p 7 (Polcalcin), Ole e 1, and Phl p 11, which are associated with pollen allergens. The proteome analysis positively verified a significant increase in pollen allergenic protein content. The expression levels of LoProfiilin and LoPolcalcin, annotated as allergen proteins, gradually increased in mature pollen. LoProfiilin and LoPolcalcin were cloned and their open reading frame lengths were 396 bp and 246 bp, which encoded 131 and 81 amino acids, respectively. Amino acid sequence and structure alignment indicated that the protein sequences of LoProfilin and LoPolcalcin were highly conserved. Subcellular localization analysis showed that LoProfilin protein was localized in the cell cytoplasm and nucleus. LoProfilin and LoPolcalcin were highly expressed in mature pollen at the transcriptional and protein levels. A tertiary structure prediction analysis identified LoProfilin and LoPolcalcin as potential allergens in lily pollen.
Collapse
|
5
|
Wu Y, Mirzaei M, Pascovici D, Haynes PA, Atwell BJ. Proteomes of Leaf-Growing Zones in Rice Genotypes with Contrasting Drought Tolerance. Proteomics 2019; 19:e1800310. [PMID: 30891909 DOI: 10.1002/pmic.201800310] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 02/25/2019] [Indexed: 11/10/2022]
Abstract
Plants require a distinctive cohort of enzymes to coordinate cell division and expansion. Proteomic analysis now enables interrogation of immature leaf bases where these processes occur. Hence, proteins in tissues sampled from leaves of a drought-tolerant rice (IAC1131) are investigated to provide insights into the effect of soil drying on gene expression relative to the drought-sensitive genotype Nipponbare. Shoot growth zones are dissected to estimate the proportion of dividing cells and extract protein for subsequent tandem mass tags quantitative proteomic analysis. Gene ontology annotations of differentially expressed proteins provide insights into responses of Nipponbare and IAC1131 to drought. Soil drying does not affect the percentage of mitotic cells in IAC1131. More than 800 proteins across most functional categories increase in drought (and decrease on rewatering) in IAC1131, including proteins involved in "organizing the meristem" and "new cell formation". On the other hand, the percentage of dividing cells in Nipponbare is severely impaired during drought and fewer than 200 proteins respond in abundance when growing zones undergo a drying cycle. Remarkably, the proteomes of the growing zones of each genotype respond in a highly distinctive manner, reflecting their contrasting drought tolerance even at the earliest stages of leaf development.
Collapse
Affiliation(s)
- Yunqi Wu
- Department of Molecular Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Mehdi Mirzaei
- Australian Proteome Analysis Facility, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Dana Pascovici
- Australian Proteome Analysis Facility, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Paul A Haynes
- Department of Molecular Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Brian J Atwell
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| |
Collapse
|
6
|
Sun H, Qiao Z, Chua KP, Tursic A, Liu X, Gao YG, Mu Y, Hou X, Miao Y. Profilin Negatively Regulates Formin-Mediated Actin Assembly to Modulate PAMP-Triggered Plant Immunity. Curr Biol 2018; 28:1882-1895.e7. [PMID: 29861135 DOI: 10.1016/j.cub.2018.04.045] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 03/01/2018] [Accepted: 04/13/2018] [Indexed: 11/26/2022]
Abstract
Profilin functions with formin in actin assembly, a process that regulates multiple aspects of plant development and immune responses. High-level eukaryotes contain multiple isoforms of profilin, formin, and actin, whose partner-specific interactions in actin assembly are not completely understood in plant development and defense responses. To examine the functionally distinct interactions between profilin and formin, we studied all five Arabidopsis profilins and their interactions with formin by using both in vitro biochemical and in vivo cell biology approaches. Unexpectedly, we found a previously undescribed negative regulatory function of AtPRF3 in AtFH1-mediated actin polymerization. The N-terminal 37 residues of AtPRF3 were identified to play a predominant role in inhibiting formin-mediated actin nucleation via their high affinity for the formin polyproline region and their triggering of the oligomerization of AtPRF3. Both in vivo and in vitro mechanistic studies of AtPRF3 revealed a universal mechanism in which the weak interaction between profilin and formin positively regulates actin assembly by ensuring rapid recycling of profilin, whereas profilin oligomerization negatively regulates actin polymerization. Upon recognition of the pathogen-associated molecular pattern, the gene transcription and protein degradation of AtPRF3 are modulated for actin assembly during plant innate immunity. The prf3 Arabidopsis plants show higher sensitivity to the bacterial flagellum peptide in both the plant growth and ROS responses. These findings demonstrate a profilin-mediated actin assembly mechanism underlying the plant immune responses.
Collapse
Affiliation(s)
- He Sun
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Zhu Qiao
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Khi Pin Chua
- Interdisciplinary Graduate School, Nanyang Technological University, Singapore 637371, Singapore
| | - Alma Tursic
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Xu Liu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Yong-Gui Gao
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; Institute of Molecular and Cell Biology, A(∗)STAR, Singapore 138673, Singapore
| | - Yuguang Mu
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Xingliang Hou
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Yansong Miao
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore.
| |
Collapse
|
7
|
Paez-Garcia A, Sparks JA, de Bang L, Blancaflor EB. Plant Actin Cytoskeleton: New Functions from Old Scaffold. PLANT CELL MONOGRAPHS 2018. [DOI: 10.1007/978-3-319-69944-8_6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Zhang S, Liu C, Wang J, Ren Z, Staiger CJ, Ren H. A Processive Arabidopsis Formin Modulates Actin Filament Dynamics in Association with Profilin. MOLECULAR PLANT 2016; 9:900-10. [PMID: 26996265 DOI: 10.1016/j.molp.2016.03.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 02/28/2016] [Accepted: 03/04/2016] [Indexed: 05/08/2023]
Abstract
Formins are conserved regulators of actin cytoskeletal organization and dynamics that have been implicated to be important for cell division and cell polarity. The mechanism by which diverse formins regulate actin dynamics in plants is still not well understood. Using in vitro single-molecule imaging technology, we directly observed that the FH1-FH2 domain of an Arabidopsis thaliana formin, AtFH14, processively attaches to the barbed end of actin filaments as a dimer and slows their elongation rate by 90%. The attachment persistence of FH1-FH2 is concentration dependent. Furthermore, by use of the triple-color total internal reflection fluorescence microscopy, we found that ABP29, a barbed-end capping protein, competes with FH1-FH2 at the filament barbed end, where its binding is mutually exclusive with AtFH14. In the presence of different plant profilin isoforms, FH1-FH2 enhances filament elongation rates from about 10 to 42 times. Filaments buckle when FH1-FH2 is anchored specifically to cover slides, further indicating that AtFH14 moves processively on the elongating barbed end. At high concentration, AtFH14 bundles actin filaments randomly into antiparallel or parallel spindle-like structures; however, the FH1-FH2-mediated bundles become thinner and longer in the presence of plant profilins. This is the direct demonstration of a processive formin from plants. Our results also illuminate the molecular mechanism of AtFH14 in regulating actin dynamics via association with profilin.
Collapse
Affiliation(s)
- Sha Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Chang Liu
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Jiaojiao Wang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Zhanhong Ren
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Christopher J Staiger
- Department of Biological Sciences, Purdue University, Hansen Life Sciences Research Building, West Lafayette, IN 47907-2064, USA
| | - Haiyun Ren
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, People's Republic of China.
| |
Collapse
|
9
|
Johnson PE, Sayers RL, Gethings LA, Balasundaram A, Marsh JT, Langridge JI, Mills ENC. Quantitative Proteomic Profiling of Peanut Allergens in Food Ingredients Used for Oral Food Challenges. Anal Chem 2016; 88:5689-95. [DOI: 10.1021/acs.analchem.5b04466] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Philip E. Johnson
- Manchester
Institute of Biotechnology, Institute of Inflammation and Repair,
Manchester Academic Health Sciences Centre, University of Manchester, Manchester, United Kingdom M17DN
| | - Rebekah L. Sayers
- Manchester
Institute of Biotechnology, Institute of Inflammation and Repair,
Manchester Academic Health Sciences Centre, University of Manchester, Manchester, United Kingdom M17DN
| | - Lee A. Gethings
- Waters
Corporation, Stamford Avenue, Altrincham
Road, Wilmslow, United Kingdom SK9 4AX
| | - Anuradha Balasundaram
- Manchester
Institute of Biotechnology, Institute of Inflammation and Repair,
Manchester Academic Health Sciences Centre, University of Manchester, Manchester, United Kingdom M17DN
| | - Justin T. Marsh
- Manchester
Institute of Biotechnology, Institute of Inflammation and Repair,
Manchester Academic Health Sciences Centre, University of Manchester, Manchester, United Kingdom M17DN
| | - James I. Langridge
- Waters
Corporation, Stamford Avenue, Altrincham
Road, Wilmslow, United Kingdom SK9 4AX
| | - E. N. Clare Mills
- Manchester
Institute of Biotechnology, Institute of Inflammation and Repair,
Manchester Academic Health Sciences Centre, University of Manchester, Manchester, United Kingdom M17DN
| |
Collapse
|
10
|
Pandey DK, Chaudhary B. Domestication-driven Gossypium profilin 1 (GhPRF1) gene transduces early flowering phenotype in tobacco by spatial alteration of apical/floral-meristem related gene expression. BMC PLANT BIOLOGY 2016; 16:112. [PMID: 27177585 PMCID: PMC4866011 DOI: 10.1186/s12870-016-0798-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 05/02/2016] [Indexed: 05/26/2023]
Abstract
BACKGROUND Plant profilin genes encode core cell-wall structural proteins and are evidenced for their up-regulation under cotton domestication. Notwithstanding striking discoveries in the genetics of cell-wall organization in plants, little is explicit about the manner in which profilin-mediated molecular interplay and corresponding networks are altered, especially during cellular signalling of apical meristem determinacy and flower development. RESULTS Here we show that the ectopic expression of GhPRF1 gene in tobacco resulted in the hyperactivation of apical meristem and early flowering phenotype with increased flower number in comparison to the control plants. Spatial expression alteration in CLV1, a key meristem-determinacy gene, is induced by the GhPRF1 overexpression in a WUS-dependent manner and mediates cell signalling to promote flowering. But no such expression alterations are recorded in the GhPRF1-RNAi lines. The GhPRF1 transduces key positive flowering regulator AP1 gene via coordinated expression of FT4, SOC1, FLC1 and FT1 genes involved in the apical-to-floral meristem signalling cascade which is consistent with our in silico profilin interaction data. Remarkably, these positive and negative flowering regulators are spatially controlled by the Actin-Related Protein (ARP) genes, specifically ARP4 and ARP6 in proximate association with profilins. This study provides a novel and systematic link between GhPRF1 gene expression and the flower primordium initiation via up-regulation of the ARP genes, and an insight into the functional characterization of GhPRF1 gene acting upstream to the flowering mechanism. Also, the transgenic plants expressing GhPRF1 gene show an increase in the plant height, internode length, leaf size and plant vigor. CONCLUSIONS Overexpression of GhPRF1 gene induced early and increased flowering in tobacco with enhanced plant vigor. During apical meristem determinacy and flower development, the GhPRF1 gene directly influences key flowering regulators through ARP-genes, indicating for its role upstream in the apical-to-floral meristem signalling cascade.
Collapse
Affiliation(s)
- Dhananjay K Pandey
- School of Biotechnology, Gautam Buddha University, Greater Noida, 201310, UP, India
| | - Bhupendra Chaudhary
- School of Biotechnology, Gautam Buddha University, Greater Noida, 201310, UP, India.
| |
Collapse
|
11
|
Liu X, Qu X, Jiang Y, Chang M, Zhang R, Wu Y, Fu Y, Huang S. Profilin Regulates Apical Actin Polymerization to Control Polarized Pollen Tube Growth. MOLECULAR PLANT 2015; 8:1694-709. [PMID: 26433093 DOI: 10.1016/j.molp.2015.09.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 09/14/2015] [Accepted: 09/25/2015] [Indexed: 05/23/2023]
Abstract
Pollen tube growth is an essential step during flowering plant reproduction, whose growth depends on a population of dynamic apical actin filaments. Apical actin filaments were thought to be involved in the regulation of vesicle fusion and targeting in the pollen tube. However, the molecular mechanisms that regulate the construction of apical actin structures in the pollen tube remain largely unclear. Here, we identify profilin as an important player in the regulation of actin polymerization at the apical membrane in the pollen tube. Downregulation of profilin decreased the amount of filamentous actin and induced disorganization of apical actin filaments, and reduced tip-directed vesicle transport and accumulation in the pollen tube. Direct visualization of actin dynamics revealed that the elongation of actin filaments originating at the apical membrane decreased in profilin mutant pollen tubes. Mutant profilin that is defective in binding poly-L-proline only partially rescues the actin polymerization defect in profilin mutant pollen tubes, although it fully rescues the actin turnover phenotype. We propose that profilin controls the construction of actin structures at the pollen tube tip, presumably by favoring formin-mediated actin polymerization at the apical membrane.
Collapse
Affiliation(s)
- Xiaonan Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China; Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Xiaolu Qu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Joint Center for Life Sciences, Beijing 100084, China
| | - Yuxiang Jiang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Ming Chang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Ruihui Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Youjun Wu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Ying Fu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shanjin Huang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; National Center for Plant Gene Research, Beijing 100101, China.
| |
Collapse
|
12
|
Liu J, Tie H, Chen H, Han R. The distribution of profilin in root-tip cells of wheat seedlings exposed to enhanced UV-B radiation. FRONTIERS IN LIFE SCIENCE 2015. [DOI: 10.1080/21553769.2015.1075434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Müssar KJ, Kandasamy MK, McKinney EC, Meagher RB. Arabidopsis plants deficient in constitutive class profilins reveal independent and quantitative genetic effects. BMC PLANT BIOLOGY 2015; 15:177. [PMID: 26160044 PMCID: PMC4702419 DOI: 10.1186/s12870-015-0551-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 06/13/2015] [Indexed: 05/23/2023]
Abstract
BACKGROUND The actin cytoskeleton is involved in an array of integral structural and developmental processes throughout the cell. One of actin's best-studied binding partners is the small ubiquitously expressed protein, profilin. Arabidopsis thaliana is known to encode a family of five profilin sequence variants: three vegetative (also constitutive) profilins that are predominantly expressed in all vegetative tissues and ovules, and two reproductive profilins that are specifically expressed in pollen. This paper analyzes the roles of the three vegetative profilin members, PRF1, PRF2, and PRF3, in plant cell and organ development. RESULTS Using a collection of knockout or severe knockdown T-DNA single mutants, we found that defects in each of the three variants gave rise to specific developmental deficiencies. Plants lacking PRF1 or PRF2 had defects in rosette leaf morphology and inflorescence stature, while those lacking PRF3 led to plants with slightly elongated petioles. To further examine these effects, double mutants and double and triple gene-silenced RNAi epialleles were created. These plants displayed significantly compounded developmental defects, as well as distinct lateral root growth morphological phenotypes. CONCLUSION These results suggest that having at least one vegetative profilin gene is essential to viability. Evidence is presented that combinations of independent function, quantitative genetic effects, and functional redundancy have preserved the three vegetative profilin genes in the Arabidopsis lineage.
Collapse
Affiliation(s)
- Kristofer J Müssar
- Genetics Department, Davison Life Sciences Building, University of Georgia, Athens, GA, 30602, USA.
| | - Muthugapatti K Kandasamy
- Genetics Department, Davison Life Sciences Building, University of Georgia, Athens, GA, 30602, USA.
| | - Elizabeth C McKinney
- Genetics Department, Davison Life Sciences Building, University of Georgia, Athens, GA, 30602, USA.
| | - Richard B Meagher
- Genetics Department, Davison Life Sciences Building, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
14
|
Petriccione M, Salzano AM, Di Cecco I, Scaloni A, Scortichini M. Proteomic analysis of the Actinidia deliciosa leaf apoplast during biotrophic colonization by Pseudomonas syringae pv. actinidiae. J Proteomics 2014; 101:43-62. [DOI: 10.1016/j.jprot.2014.01.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 01/20/2014] [Accepted: 01/29/2014] [Indexed: 11/25/2022]
|
15
|
Yu LX, Parthasarathy MV. Molecular and cellular characterization of the tomato pollen profilin, LePro1. PLoS One 2014; 9:e86505. [PMID: 24466125 PMCID: PMC3897733 DOI: 10.1371/journal.pone.0086505] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Accepted: 12/11/2013] [Indexed: 11/26/2022] Open
Abstract
Profilin is an actin-binding protein involved in the dynamic turnover and restructuring of the actin cytoskeleton in all eukaryotic cells. We previously cloned a profilin gene, designated as LePro1 from tomato pollen. To understand its biological role, in the present study, we investigated the temporal and spatial expression of LePro1 during pollen development and found that the transcript was only detected at late stages during microsporogenesis and pollen maturation. Using antisense RNA, we successfully knocked down the expression of LePro1 in tomato plants using stable transformation, and obtained two antisense lines, A2 and A3 showing significant down-regulation of LePro1 in pollen resulting in poor pollen germination and abnormal pollen tube growth. A disorganized F-actin distribution was observed in the antisense pollen. Down-regulation of LePro1 also appeared to affect hydration of pollen deposited on the stigma and arrested pollen tube elongation in the style, thereby affecting fertilization. Our results suggest that LePro1 in conjunction with perhaps other cytoskeletal proteins, plays a regulatory role in the proper organization of F-actin in tomato pollen tubes through promoting actin assembly. Down-regulation of LePro1 leads to interruption of actin assembly and disorganization of the actin cytoskeleton thus arresting pollen tube growth. Based on the present and previous studies, it is likely that a single transcript of profilin gives rise to multiple forms displaying multifunctionality in tomato pollen.
Collapse
Affiliation(s)
- Long-Xi Yu
- Department of Plant Biology, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| | | |
Collapse
|
16
|
Sun T, Li S, Ren H. Profilin as a regulator of the membrane-actin cytoskeleton interface in plant cells. FRONTIERS IN PLANT SCIENCE 2013; 4:512. [PMID: 24391654 PMCID: PMC3867660 DOI: 10.3389/fpls.2013.00512] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 11/30/2013] [Indexed: 05/04/2023]
Abstract
Membrane structures and cytoskeleton dynamics are intimately inter-connected in the eukaryotic cell. Recently, the molecular mechanisms operating at this interface have been progressively addressed. Many experiments have revealed that the actin cytoskeleton can interact with membranes through various discrete membrane domains. The actin-binding protein, profilin has been proven to inhibit actin polymerization and to promote F-actin elongation. This is dependent on many factors, such as the profilin/G-actin ratio and the ionic environment of the cell. Additionally, profilin has specific domains that interact with phosphoinositides and poly-L-proline rich proteins; theoretically, this gives profilin the opportunity to interact with membranes, and a large number of experiments have confirmed this possibility. In this article, we summarize recent findings in plant cells, and discuss the evidence of the connections among actin cytoskeleton, profilin and biomembranes through direct or indirect relationships.
Collapse
Affiliation(s)
| | | | - Haiyun Ren
- *Correspondence: Haiyun Ren, Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Science, Beijing Normal University, No. 19, Xin Jie Kou Wai Street, Beijing 100875, China e-mail:
| |
Collapse
|
17
|
Serra IA, Bernardo L, Spadafora A, Faccioli P, Canton C, Mazzuca S. The Citrus clementina putative allergens: from proteomic analysis to structural features. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:8949-8958. [PMID: 23927767 DOI: 10.1021/jf4023367] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Several allergens have been identified and characterized in the genus Citrus, which belongs to the germin-like proteins (GPLs), profilins, and non-specific lipid transfer proteins (nsLTPs). In this work, in silico sequence analysis, protein purification, mass spectrometry identification, and the spectral counting method were integrated to identify new putative allergens of Citrus clementina and their expression level in the fruit peel. The in silico analysis revealed fifteen new sequences belonging to GLPs (Cit cl 1), and two more belonging to nsLTPs (Cit cl 3). No other new sequences were found as regards profilins (Cit cl 2). Each putative allergen from fruit peel was obtained using different protein extraction methods, and the protein sequences of the putative allergens were identified by means of LTQ-Orbitrap XL mass spectrometer. The spectral counting strategy revealed that Cit cl 1 had a higher expression level than Cit cl 2 and Cit cl 3. To predict the quaternary structure and deduced function of Cit cl 1, its primary sequence was used as a template to search a homologous protein structure in the RCSB PDB Database, getting high correspondence with the oxalate oxidase protein in barley.
Collapse
Affiliation(s)
- Ilia Anna Serra
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Rende (CS), Italy
| | | | | | | | | | | |
Collapse
|
18
|
Fan T, Zhai H, Shi W, Wang J, Jia H, Xiang Y, An L. Overexpression of profilin 3 affects cell elongation and F-actin organization in Arabidopsis thaliana. PLANT CELL REPORTS 2013; 32:149-60. [PMID: 23052593 DOI: 10.1007/s00299-012-1349-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 08/06/2012] [Accepted: 09/18/2012] [Indexed: 05/13/2023]
Abstract
KEY MESSAGE : Reduced levels of profilin 3 do not have a noticeable phenotypic effect; however, elevated profilin 3 levels result in decreased hypocotyl length due to a reduction in cell elongation and F-actin reorganization. The actin cytoskeleton is critical for a variety of cellular processes. The small actin monomer proteins, profilins (PRFs), are encoded by five highly conserved isoforms in Arabidopsis thaliana. PRF3, one of the vegetative isoforms, has 36 more N-terminal amino acid residues than the other four PRFs; however, the functions of PRF3 are mostly unknown. In this study, we demonstrated that PRF3 was strongly expressed in young seedlings, rosette leaves, and cauline leaves, but was weakly expressed in 14-day-old seedlings and flowers. Our data also showed that PRF3 could increase the critical concentration (Cc) of actin assembly in vitro. Overexpression of the full-length PRF3 cDNA resulted in a decrease in the lengths of roots and hypocotyls and delayed seed germination, but PRF3-ΔN36 transgenic plants and prf3 mutant plants showed normal growth when compared with wild-type plants. Microscopy observation revealed that cell elongation was inhibited in the hypocotyl and that F-actin was reorganized by destabilizing microfilaments. These results suggest that the dwarf phenotype of the PRF3 overexpression seedlings may be related to a reduction in cell length and F-actin rearrangement.
Collapse
Affiliation(s)
- Tingting Fan
- School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China.
| | | | | | | | | | | | | |
Collapse
|
19
|
Jimenez-Lopez JC, Morales S, Castro AJ, Volkmann D, Rodríguez-García MI, Alché JDD. Characterization of profilin polymorphism in pollen with a focus on multifunctionality. PLoS One 2012; 7:e30878. [PMID: 22348028 PMCID: PMC3279341 DOI: 10.1371/journal.pone.0030878] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 12/28/2011] [Indexed: 12/20/2022] Open
Abstract
Profilin, a multigene family involved in actin dynamics, is a multiple partners-interacting protein, as regard of the presence of at least of three binding domains encompassing actin, phosphoinositide lipids, and poly-L-proline interacting patches. In addition, pollen profilins are important allergens in several species like Olea europaea L. (Ole e 2), Betula pendula (Bet v 2), Phleum pratense (Phl p 12), Zea mays (Zea m 12) and Corylus avellana (Cor a 2). In spite of the biological and clinical importance of these molecules, variability in pollen profilin sequences has been poorly pointed out up until now. In this work, a relatively high number of pollen profilin sequences have been cloned, with the aim of carrying out an extensive characterization of their polymorphism among 24 olive cultivars and the above mentioned plant species. Our results indicate a high level of variability in the sequences analyzed. Quantitative intra-specific/varietal polymorphism was higher in comparison to inter-specific/cultivars comparisons. Multi-optional posttranslational modifications, e.g. phosphorylation sites, physicochemical properties, and partners-interacting functional residues have been shown to be affected by profilin polymorphism. As a result of this variability, profilins yielded a clear taxonomic separation between the five plant species. Profilin family multifunctionality might be inferred by natural variation through profilin isovariants generated among olive germplasm, as a result of polymorphism. The high variability might result in both differential profilin properties and differences in the regulation of the interaction with natural partners, affecting the mechanisms underlying the transmission of signals throughout signaling pathways in response to different stress environments. Moreover, elucidating the effect of profilin polymorphism in adaptive responses like actin dynamics, and cellular behavior, represents an exciting research goal for the future.
Collapse
Affiliation(s)
- Jose C. Jimenez-Lopez
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, High Council for Scientific Research, Granada, Spain
| | - Sonia Morales
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, High Council for Scientific Research, Granada, Spain
| | - Antonio J. Castro
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, High Council for Scientific Research, Granada, Spain
| | - Dieter Volkmann
- Institute of Cellular and Molecular Botany, Department of Plant Cell Biology, University of Bonn, Bonn, Germany
| | - María I. Rodríguez-García
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, High Council for Scientific Research, Granada, Spain
| | - Juan de D. Alché
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, High Council for Scientific Research, Granada, Spain
- * E-mail:
| |
Collapse
|
20
|
Parallel up-regulation of the profilin gene family following independent domestication of diploid and allopolyploid cotton (Gossypium). Proc Natl Acad Sci U S A 2011; 108:21152-7. [PMID: 22160709 DOI: 10.1073/pnas.1115926109] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cotton is remarkable among our major crops in that four species were independently domesticated, two allopolyploids and two diploids. In each case thousands of years of human selection transformed sparsely flowering, perennial shrubs into highly productive crops with seeds bearing the vastly elongated and abundant single-celled hairs that comprise modern cotton fiber. The genetic underpinnings of these transformations are largely unknown, but comparative gene expression profiling experiments have demonstrated up-regulation of profilin accompanying domestication in all three species for which wild forms are known. Profilins are actin monomer binding proteins that are important in cytoskeletal dynamics and in cotton fiber elongation. We show that Gossypium diploids contain six profilin genes (GPRF1-GPRF6), located on four different chromosomes (eight chromosomes in the allopolyploid). All but one profilin (GPRF6) are expressed during cotton fiber development, and both homeologs of GPRF1-GPRF5 are expressed in fibers of the allopolyploids. Remarkably, quantitative RT-PCR and RNAseq data demonstrate that GPRF1-GPRF5 are all up-regulated, in parallel, in the three independently domesticated cottons in comparison with their wild counterparts. This result was additionally supported by iTRAQ proteomic data. In the allopolyploids, there This usage of novel should be fine, since it refers to a novel evolutionary process, not a novel discovery has been novel recruitment of the sixth profilin gene (GPRF6) as a result of domestication. This parallel up-regulation of an entire gene family in multiple species in response to strong directional selection is without precedent and suggests unwitting selection on one or more upstream transcription factors or other proteins that coordinately exercise control over profilin expression.
Collapse
|
21
|
Abstract
BACKGROUND INFORMATION Although actin is a relevant component of the plant nucleus, only three nuclear ABPs (actin-binding proteins) have been identified in plants to date: cofilin, profilin and nuclear myosin I. Although plants lack orthologues of the main structural nuclear ABPs in animals, such as lamins, lamin-associated proteins and nesprins, their genome does contain sequences with spectrin repeats and N-terminal calponin homology domains for actin binding that might be distant relatives of spectrin. We investigated here whether spectrin-like proteins could act as structural nuclear ABPs in plants. RESULTS We have investigated the presence of spectrins in Allium cepa meristematic nuclei by Western blotting, confocal and electron microscopy, using antibodies against α- and β-spectrin chains that cross-react in plant nuclei. Their role as nuclear ABPs was analysed by co-immunoprecipitation and IF (immunofluorescence) co-localization and their association with the nuclear matrix was investigated by sequential extraction of nuclei with non-ionic detergent, and in low- and high-salt buffers after nuclease digestion. Our results demonstrate the existence of several spectrin-like proteins in the nucleus of onion cells that have different intranuclear distributions in asynchronous meristematic populations and associate with the nuclear matrix. These nuclear proteins co-immunoprecipitate and co-localize with actin. CONCLUSIONS These results reveal that the plant nucleus contains spectrin-like proteins that are structural nuclear components and function as ABPs. Their intranuclear distribution suggests that plant nuclear spectrin-like proteins could be involved in multiple nuclear functions.
Collapse
|
22
|
Takáč T, Pechan T, Samaj J. Differential proteomics of plant development. J Proteomics 2011; 74:577-88. [PMID: 21315196 DOI: 10.1016/j.jprot.2011.02.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 01/28/2011] [Accepted: 02/01/2011] [Indexed: 10/18/2022]
Abstract
In this mini-review, recent advances in plant developmental proteomics are summarized. The growing interest in plant proteomics continually produces large numbers of developmental studies on plant cell division, elongation, differentiation, and formation of various organs. The brief overview of changes in proteome profiles emphasizes the participation of stress-related proteins in all developmental processes, which substantially changes the view on functional classification of these proteins. Next, it is noteworthy that proteomics helped to recognize some metabolic and housekeeping proteins as important signaling inducers of developmental pathways. Further, cell division and elongation are dependent on proteins involved in membrane trafficking and cytoskeleton dynamics. These protein groups are less prevalently represented in studies concerning cell differentiation and organ formation, which do not target primarily cell division. The synthesis of new proteins, generally observed during developmental processes, is followed by active protein folding. In this respect, disulfide isomerase was found to be commonly up-regulated during several developmental processes. The future progress in plant proteomics requires new and/or complementary approaches including cell fractionation, specific chemical treatments, molecular cloning and subcellular localization of proteins combined with more sensitive methods for protein detection and identification.
Collapse
Affiliation(s)
- Tomáš Takáč
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | | | | |
Collapse
|
23
|
Kandasamy MK, McKinney EC, Meagher RB. Differential sublocalization of actin variants within the nucleus. Cytoskeleton (Hoboken) 2011; 67:729-43. [PMID: 20862689 DOI: 10.1002/cm.20484] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Conventional actin has been implicated in various nuclear processes including chromatin remodeling, transcription, nuclear transport, and overall nuclear structure. Moreover, actin has been identified as a component of several chromatin remodeling complexes present in the nucleus. In animal cells, nuclear actin exists as a dynamic equilibrium of monomers and polymers. Actin-binding proteins (ABPs) such as ADF/cofilin and profilin play a role in actin import and export, respectively. However, very little is known about the localization and roles of nuclear actin in plants. In multicellular plants and animals, actin is comprised of an ancient and divergent family of protein variants. Here, we have investigated the presence and differential localization of two ancient subclasses of actin in isolated Arabidopsis nuclei. Although the subclass 1 variants ACT2 and ACT8 and subclass 2 variant ACT7 were found distributed throughout the nucleoplasm, ACT7 was often found more concentrated in nuclear speckles than subclass 1 variants. The nuclei from the act2-1/act8-2 double null mutant and the act7-5 null mutant lacked their corresponding actin variants. In addition, serial sectioning of several independent nuclei revealed that ACT7 was notably more abundant in the nucleolus than the subclass 1 actins. Profilin and ADF proteins were also found in significant levels in plant nuclei. The possible functions of differentially localized nuclear actin variants are discussed.
Collapse
Affiliation(s)
- Muthugapatti K Kandasamy
- Department of Genetics, Davison Life Sciences Complex, University of Georgia, Athens, Georgia 30602, USA
| | | | | |
Collapse
|
24
|
|
25
|
Wang J, Wang HY, Zhao PM, Han LB, Jiao GL, Zheng YY, Huang SJ, Xia GX. Overexpression of a profilin (GhPFN2) promotes the progression of developmental phases in cotton fibers. PLANT & CELL PHYSIOLOGY 2010; 51:1276-90. [PMID: 20558432 DOI: 10.1093/pcp/pcq086] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Cotton fiber development at the stages of elongation and secondary wall synthesis determines the traits of fiber length and strength. To date, the mechanisms controlling the progression of these two phases remain elusive. In this work, the function of a fiber-preferential actin-binding protein (GhPFN2) was characterized by cytological and molecular studies on the fibers of transgenic green-colored cotton (Gossypium hirsutum) through three successive generations. Overexpression of GhPFN2 caused pre-terminated cell elongation, resulting in a marked decrease in the length of mature fibers. Cytoskeleton staining and quantitative assay revealed that thicker and more abundant F-actin bundles formed during the elongation stage in GhPFN2-overexpressing fibers. Accompanying this alteration, the developmental reorientation of transverse microtubules to the oblique direction was advanced by 2 d at the period of transition from elongation to secondary wall deposition. Birefringence and reverse transcription-PCR analyses showed that earlier onset of secondary wall synthesis occurred in parallel. These data demonstrate that formation of the higher actin structure plays a determinant role in the progression of developmental phases in cotton fibers, and that GhPFN2 acts as a critical modulator in this process. Such a function of the actin cytoskeleton in cell phase conversion may be common to other secondary wall-containing plant cells.
Collapse
Affiliation(s)
- Juan Wang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Chen N, Qu X, Wu Y, Huang S. Regulation of actin dynamics in pollen tubes: control of actin polymer level. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2009; 51:740-750. [PMID: 19686371 DOI: 10.1111/j.1744-7909.2009.00850.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Actin cytoskeleton undergoes rapid reorganization in response to internal and external cues. How the dynamics of actin cytoskeleton are regulated, and how its dynamics relate to its function are fundamental questions in plant cell biology. The pollen tube is a well characterized actin-based cell morphogenesis in plants. One of the striking features of actin cytoskeleton characterized in the pollen tube is its surprisingly low level of actin polymer. This special phenomenon might relate to the function of actin cytoskeleton in pollen tubes. Understanding the molecular mechanism underlying this special phenomenon requires careful analysis of actin-binding proteins that modulate actin dynamics directly. Recent biochemical and biophysical analyses of several highly conserved plant actin-binding proteins reveal unusual and unexpected properties, which emphasizes the importance of carefully analyzing their action mechanism and cellular activity. In this review, we highlight an actin monomer sequestering protein, a barbed end capping protein and an F-actin severing and dynamizing protein in plant. We propose that these proteins function in harmony to regulate actin dynamics and maintain the low level of actin polymer in pollen tubes.
Collapse
Affiliation(s)
- Naizhi Chen
- Center for Signal Transduction and Metabolomics, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | | | | | | |
Collapse
|
27
|
Kandasamy MK, McKinney EC, Meagher RB. A single vegetative actin isovariant overexpressed under the control of multiple regulatory sequences is sufficient for normal Arabidopsis development. THE PLANT CELL 2009; 21:701-18. [PMID: 19304937 PMCID: PMC2671709 DOI: 10.1105/tpc.108.061960] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 02/12/2009] [Accepted: 02/24/2009] [Indexed: 05/18/2023]
Abstract
The relative significance of gene regulation and protein isovariant differences remains unexplored for most gene families, particularly those participating in multicellular development. Arabidopsis thaliana encodes three vegetative actins, ACT2, ACT7, and ACT8, in two ancient and highly divergent subclasses. Mutations in any of these differentially expressed actins revealed only mild phenotypes. However, double mutants were extremely dwarfed, with altered cell and organ morphology and an aberrant F-actin cytoskeleton (e.g., act2-1 act7-4 and act8-2 act7-4) or totally root-hairless (e.g., act2-1 act8-2). Our studies suggest that the three vegetative actin genes and protein isovariants play distinct subclass-specific roles during plant morphogenesis. For example, during root development, ACT7 was involved in root growth, epidermal cell specification, cell division, and root architecture, and ACT2 and ACT8 were essential for root hair tip growth. Also, genetic complementation revealed that the ACT2 and ACT8 isovariants, but not ACT7, fully rescued the root hair growth defects of single and double mutants. Moreover, we synthesized fully normal plants overexpressing the ACT8 isovariant from multiple actin regulatory sequences as the only vegetative actin in the act2-1 act7-4 background. In summary, it is evident that differences in vegetative actin gene regulation and the diversity in actin isovariant sequences are essential for normal plant development.
Collapse
Affiliation(s)
- Muthugapatti K Kandasamy
- Department of Genetics, Davison Life Sciences Complex, University of Georgia, Athens, Georgia 30602, USA
| | | | | |
Collapse
|
28
|
Wang F, Jing Y, Wang Z, Mao T, Samaj J, Yuan M, Ren H. Arabidopsis profilin isoforms, PRF1 and PRF2 show distinctive binding activities and subcellular distributions. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2009; 51:113-21. [PMID: 19200149 DOI: 10.1111/j.1744-7909.2008.00781.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Profilin is an actin-binding protein that shows complex effects on the dynamics of the actin cytoskeleton. There are five profilin isoforms in Arabidopsis thaliana L. However, it is still an open question whether these isoforms are functionally different. In the present study, two profilin isoforms from Arabidopsis, PRF1 and PRF2 were fused with green fluorescent protein (GFP) tag and expressed in Escherichia coli and A. thaliana in order to compare their biochemical properties in vitro and their cellular distributions in vivo. Biochemical analysis revealed that fusion proteins of GFP-PRF1 and GFP-PRF2 can bind to poly-L-proline and G-actin showing remarkable differences. GFP-PRF1 has much higher affinities for both poly-L-proline and G-actin compared with GFP-PRF2. Observations of living cells in stable transgenic A. thaliana lines revealed that 35S::GFP-PRF1 formed a filamentous network, while 35S::GFP-PRF2 formed polygonal meshes. Results from the treatment with latrunculin A and a subsequent recovery experiment indicated that filamentous alignment of GFP-PRF1 was likely associated with actin filaments. However, GFP-PRF2 localized to polygonal meshes resembling the endoplasmic reticulum. Our results provide evidence that Arabidopsis profilin isoforms PRF1 and PRF2 have different biochemical affinities for poly-L-proline and G-actin, and show distinctive localizations in living cells. These data suggest that PRF1 and PRF2 are functionally different isoforms.
Collapse
Affiliation(s)
- Feng Wang
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing 100094, China
| | | | | | | | | | | | | |
Collapse
|
29
|
Botton A, Andreotti C, Costa G, Ramina A. Peach ( Prunus persica L. Batsch) allergen-encoding genes are developmentally regulated and affected by fruit load and light radiation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:724-34. [PMID: 19090764 DOI: 10.1021/jf802709k] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The fruits of Rosaceae species may frequently induce allergic reactions in both adults and children, especially in the Mediterranean area. In peach, true allergens and cross-reactive proteins may cause hypersensitive reactions involving a wide diversity of symptoms. Three known classes of allergenic proteins, namely, Pru p 1, Pru p 3, and Pru p 4, have been reported to be mostly involved, but an exhaustive survey of the proteins determining the overall allergenic potential, their biological functions, and the factors affecting the expression of the related genes is still missing. In the present study, the expression profiles of some selected genes encoding peach allergen isoforms were studied during fruit growth and development and upon different fruit load and light radiation regimens. The results indicate that the majority of allergen-encoding genes are expressed at their maximum during the ripening stage, therefore representing a potential risk for peach consumers. Nevertheless, enhancing the light radiation and decreasing the fruit load achieved a reduction of the transcription rate of most genes and a possible decrease of the overall allergenic potential at harvest. According to these data, new growing practices could be set up to obtain hypoallergenic peach fruits and eventually combined with the cultivation of hypoallergenic genotypes to obtain a significant reduction of the allergenic potential.
Collapse
Affiliation(s)
- Alessandro Botton
- Department of Environmental Agronomy and Crop Science, Agripolis, University of Padova, Viale dell'Universita, Legnaro, Italy
| | | | | | | |
Collapse
|
30
|
Cruz JR, Moreno Díaz de la Espina S. Subnuclear compartmentalization and function of actin and nuclear myosin I in plants. Chromosoma 2008; 118:193-207. [PMID: 18982342 DOI: 10.1007/s00412-008-0188-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 10/02/2008] [Accepted: 10/06/2008] [Indexed: 01/08/2023]
Abstract
Actins are highly conserved proteins that serve as the basic building blocks of cytoskeletal microfilaments. In animal cells, specific nuclear actin adopts unconventional conformations that are involved in multiple nuclear functions and that associate with nuclear actin binding proteins. However, there is practically no information available about nuclear actin in plants. Indeed, actin has not been detected in the nuclear proteomes of many plants, and orthologs of the main structural nuclear actin-binding proteins have yet to be identified. Here, we have investigated the characteristics, intranuclear compartmentalization, and function of actin in isolated Allium cepa nuclei as well as that of its motor protein nuclear myosin I (NMI). Using conformation-specific antibodies for nuclear actin isoforms, ss-actin, and NMI, the distribution of these proteins was studied in Western blots and by immunocytochemistry. Moreover, the participation of nuclear actin in transcription was analyzed in run on in situ assays and inhibition of RNA polymerases I and II. We show that actin isoforms with distinct solubilities are present in onion nuclei with a consistent subnuclear compartmentalization. Actin and NMI are highly enriched in foci that are similar to transcription foci, although actin is also distributed diffusely in the nucleus and nucleolus as well as accumulating in a subset of the Cajal bodies. Immunogold labeling identified both proteins in the nuclear transcription subdomains and in other subnuclear compartments. In addition, actin and NMI were diffusely distributed in the nuclear matrix.
Collapse
Affiliation(s)
- J R Cruz
- Department of Plant Biology, Centro Investigaciones Biológicas, CSIC, Madrid, Spain.
| | | |
Collapse
|
31
|
Morales S, Jiménez-López JC, Castro AJ, Rodríguez-García MI, Alché JD. Olive pollen profilin (Ole e 2 allergen) co-localizes with highly active areas of the actin cytoskeleton and is released to the culture medium during in vitro pollen germination. J Microsc 2008; 231:332-41. [PMID: 18778430 DOI: 10.1111/j.1365-2818.2008.02044.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pollen allergens offer a dual perspective of study: some of them are considered key proteins for pollen physiology, but they are also able to trigger allergy symptoms in susceptible humans after coming in contact with their tissues. Profilin (Ole e 2 allergen) has been characterized, to some extent, as one of the major allergens from Olea europaea L. pollen, a highly allergenic species in the Mediterranean countries. In order to obtain clues regarding the biological role of this protein, we have analyzed both its cellular localization and the organization of actin throughout pollen hydration and early pollen tube germination. The localization of the cited proteins was visualized by confocal laser scanning microscopy immunofluorescence using different antibodies. Upon pollen hydration and pollen germination, a massive presence of profilin was detected close to the site of pollen tube emergence, forming a ring-like structure around the 'effective' apertural region. Profilin was also detected in the pollen exine of the germinating pollen grains and in the germination medium. After using a permeabilization-enhanced protocol for immunolocalization, profilin was also localized in the cytoplasm of the pollen tube, particularly at both the proximal and apical ends. Noticeable accumulations of actin were observed in the cytoplasm of the pollen tube; particularly, in both the apical region and the area immediately close to the aperture. Actin filaments were not observed, probably due to the need of further enhanced fixation procedures. The ultrastructural localization of profilin showed the presence of the protein in the cytoplasm of both the mature pollen grain and the pollen tube. The results shown here could be interpreted as signs of a massive dissociation of the actin-profilin complexes, mobilization of actin monomers, and therefore, an intense activity of the actin cytoskeleton. The extensive release of allergenic proteins from the pollen grain into the surrounding aqueous media, as described here for profilin, may help us to understand the mechanisms by which these allergens might come in contact with the human mucosa, therefore triggering the symptoms of allergy.
Collapse
Affiliation(s)
- S Morales
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidin. CSIC, Profesor Albareda, 1, 18008 Granada, Spain
| | | | | | | | | |
Collapse
|
32
|
Schmidt von Braun S, Schleiff E. Moving the green: CHUP1 and chloroplast movement-An obvious relationship? PLANT SIGNALING & BEHAVIOR 2008; 3:488-9. [PMID: 19704495 PMCID: PMC2634439 DOI: 10.4161/psb.3.7.5683] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Accepted: 01/31/2008] [Indexed: 05/20/2023]
Abstract
Chloroplast movement as a response of plants to light variations is presented as an example in each classical textbook, showing that these organelles accumulate in response to low light and avoid high light irradiation. In sharp contrast to the morphological discovery of the phenomenon, which dates back more than a century, the molecular understanding of this effect is just at its beginning and only recently first components of the signal cascade initiating this process were described. Among these, a protein termed CHUP1 was identified. This protein is present in the outer membrane of chloroplasts and thereby discussed as the first component of a possible 'moving ensemble' assembling at the 'moved cargo'. The protein is able to interact with actin and profilin-and even more, is able to regulate this interaction in vitro. Thereby, today it can be stated that actin filament reformation and chloroplast repositioning are coordinated if not dependent on each other.
Collapse
Affiliation(s)
- Serena Schmidt von Braun
- JWGU Frankfurt am Main; Cluster of Excellence Macromolecular Complexes; Department of Biosciences; Frankfurt, Germany
| | | |
Collapse
|
33
|
Meagher RB, Kandasamy MK, McKinney EC. Multicellular development and protein-protein interactions. PLANT SIGNALING & BEHAVIOR 2008; 3:333-6. [PMID: 19841663 PMCID: PMC2634275 DOI: 10.4161/psb.3.5.5343] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2007] [Accepted: 11/28/2007] [Indexed: 05/20/2023]
Abstract
The macroevolution of organs and tissues in higher plants and animals may have been contingent upon the expansion of numerous gene families encoding interacting proteins. For example, there are dozens of gene families encoding actin cytoskeletal proteins that elaborate intercellular structures influencing development. Once gene family members evolve compartmentalized expression, protein isovariants are free to coevolve new interacting partners that may be incompatible with other related protein networks. Ancient classes of actin isovariants and actin-binding proteins are clear examples of such coevolving networks. Ectopic expression and suppression studies were used to dissect these interactions. In higher plants, the ectopic expression of a reproductive actin isovariant in vegetative cell types causes aberrant reorganization of the F-actin cytoskeleton and bizarre development of most organs and tissues. In contrast, overexpression of vegetative actin in vegetative cell types has little effect. The extreme ectopic actin expression phenotypes are suppressed by the coectopic expression of reproductive profilin or actin depolymerizing factor (ADF/cofilin) isovariants, but not by the overexpression of vegetative profilin or ADF. These data provide evidence for the coevolution of organ-specific protein-protein interactions. Thus, understanding the contingent relationships between the evolution of organ-specific isovariant networks and organ origination may be key to explaining multicellular development.
Collapse
Affiliation(s)
- Richard B Meagher
- Department of Genetics; Davison Life Sciences Building; University of Georgia; Athens, Georgia USA
| | | | | |
Collapse
|
34
|
Golomb L, Abu-Abied M, Belausov E, Sadot E. Different subcellular localizations and functions of Arabidopsis myosin VIII. BMC PLANT BIOLOGY 2008; 8:3. [PMID: 18179725 PMCID: PMC2275265 DOI: 10.1186/1471-2229-8-3] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2007] [Accepted: 01/08/2008] [Indexed: 05/18/2023]
Abstract
BACKGROUND Myosins are actin-activated ATPases that use energy to generate force and move along actin filaments, dragging with their tails different cargos. Plant myosins belong to the group of unconventional myosins and Arabidopsis myosin VIII gene family contains four members: ATM1, ATM2, myosin VIIIA and myosin VIIIB. RESULTS In transgenic plants expressing GFP fusions with ATM1 (IQ-tail truncation, lacking the head domain), fluorescence was differentially distributed: while in epidermis cells at the root cap GFP-ATM1 equally distributed all over the cell, in epidermal cells right above this region it accumulated in dots. Further up, in cells of the elongation zone, GFP-ATM1 was preferentially positioned at the sides of transversal cell walls. Interestingly, the punctate pattern was insensitive to brefeldin A (BFA) while in some cells closer to the root cap, ATM1 was found in BFA bodies. With the use of different markers and transient expression in Nicotiana benthamiana leaves, it was found that myosin VIII co-localized to the plasmodesmata and ER, colocalized with internalized FM4-64, and partially overlapped with the endosomal markers ARA6, and rarely with ARA7 and FYVE. Motility of ARA6 labeled organelles was inhibited whenever associated with truncated ATM1 but motility of FYVE labeled organelles was inhibited only when associated with large excess of ATM1. Furthermore, GFP-ATM1 and RFP-ATM2 (IQ-tail domain) co-localized to the same spots on the plasma membrane, indicating a specific composition at these sites for myosin binding. CONCLUSION Taken together, our data suggest that myosin VIII functions differently in different root cells and can be involved in different steps of endocytosis, BFA-sensitive and insensitive pathways, ER tethering and plasmodesmatal activity.
Collapse
Affiliation(s)
- Lior Golomb
- The Institute of Plant Sciences, The Volcani Center, Bet-Dagan 50250, Israel
| | - Mohamad Abu-Abied
- The Institute of Plant Sciences, The Volcani Center, Bet-Dagan 50250, Israel
| | - Eduard Belausov
- The Institute of Plant Sciences, The Volcani Center, Bet-Dagan 50250, Israel
| | - Einat Sadot
- The Institute of Plant Sciences, The Volcani Center, Bet-Dagan 50250, Israel
| |
Collapse
|
35
|
Balasubramanian R, Karve A, Kandasamy M, Meagher RB, Moore BD. A role for F-actin in hexokinase-mediated glucose signaling. PLANT PHYSIOLOGY 2007; 145:1423-34. [PMID: 17965176 PMCID: PMC2151701 DOI: 10.1104/pp.107.108704] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Accepted: 10/22/2007] [Indexed: 05/17/2023]
Abstract
HEXOKINASE1 (HXK1) from Arabidopsis (Arabidopsis thaliana) has dual roles in glucose (Glc) signaling and in Glc phosphorylation. The cellular context, though, for HXK1 function in either process is not well understood. Here we have shown that within normal experimental detection limits, AtHXK1 is localized continuously to mitochondria. Two mitochondrial porin proteins were identified as capable of binding to overexpressed HXK1 protein, both in vivo and in vitro. We also found that AtHXK1 can be associated with its structural homolog, F-actin, based on their coimmunoprecipitation from transgenic plants that overexpress HXK1-FLAG or from transient expression assays, and based on their localization in leaf cells after cryofixation. This association might be functionally important because Glc signaling in protoplast transient expression assays is compromised by disruption of F-actin. We also demonstrate that Glc treatment of Arabidopsis seedlings rapidly and reversibly disrupts fine mesh actin filaments. The possible roles of actin in HXK-dependent Glc signaling are discussed.
Collapse
|
36
|
Vidali L, Augustine RC, Kleinman KP, Bezanilla M. Profilin is essential for tip growth in the moss Physcomitrella patens. THE PLANT CELL 2007; 19:3705-22. [PMID: 17981997 PMCID: PMC2174871 DOI: 10.1105/tpc.107.053413] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Revised: 10/05/2007] [Accepted: 10/10/2007] [Indexed: 05/19/2023]
Abstract
The actin cytoskeleton is critical for tip growth in plants. Profilin is the main monomer actin binding protein in plant cells. The moss Physcomitrella patens has three profilin genes, which are monophyletic, suggesting a single ancestor for plant profilins. Here, we used RNA interference (RNAi) to determine the loss-of-function phenotype of profilin. Reduction of profilin leads to a complete loss of tip growth and a partial inhibition of cell division, resulting in plants with small rounded cells and fewer cells. We silenced all profilins by targeting their 3' untranslated region sequences, enabling complementation analyses by expression of profilin coding sequences. We show that any moss or a lily (Lilium longiflorum) profilin support tip growth. Profilin with a mutation in its actin binding site is unable to rescue profilin RNAi, while a mutation in the poly-l-proline binding site weakly rescues. We show that moss tip growing cells contain a prominent subapical cortical F-actin structure composed of parallel actin cables. Cells lacking profilin lose this structure; instead, their F-actin is disorganized and forms polarized cortical patches. Plants expressing the actin and poly-l-proline binding mutants exhibited similar F-actin disorganization. These results demonstrate that profilin and its binding to actin are essential for tip growth. Additionally, profilin is not needed for formation of F-actin, but profilin and its interactions with actin and poly-l-proline ligands are required to properly organize F-actin.
Collapse
Affiliation(s)
- Luis Vidali
- Biology Department, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | | | | | |
Collapse
|
37
|
Ruzicka DR, Kandasamy MK, McKinney EC, Burgos-Rivera B, Meagher RB. The ancient subclasses of Arabidopsis Actin Depolymerizing Factor genes exhibit novel and differential expression. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 52:460-72. [PMID: 17877706 DOI: 10.1111/j.1365-313x.2007.03257.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The Actin Depolymerizing Factor (ADF) gene family of Arabidopsis thaliana encodes 11 functional protein isovariants in four ancient subclasses. We report the characterization of the tissue-specific and developmental expression of all Arabidopsis ADF genes and the subcellular localization of several protein isovariants. The four subclasses exhibited distinct expression patterns as examined by qRT-PCR and histochemical assays of a GUS reporter gene under the control of individual ADF regulatory sequences. Subclass I ADFs were expressed strongly and constitutively in all vegetative and reproductive tissues except pollen. Subclass II ADFs were expressed specifically in mature pollen and pollen tubes or root epidermal trichoblast cells and root hairs, and these patterns evolved from an ancient dual expression pattern comprised of both polar tip growth cell types, still observed in the monocot Oryza sativa. Subclass III ADFs were expressed weakly in vegetative tissues, but were strongest in fast growing and/or differentiating cells including callus, emerging leaves, and meristem regions. The single subclass IV ADF was constitutively expressed at moderate levels in all tissues, including pollen. Immunocytochemical analysis with subclass-specific monoclonal antibodies demonstrated that subclass I isovariants localize to both the cytoplasm and the nucleus of leaf cells, while subclass II isovariants predominantly localize to the cytoplasm at the tip region of elongating root hairs and pollen tubes. The distinct expression patterns of the ADF subclasses support a model of ADF s co-evolving with the ancient and divergent actin isovariants.
Collapse
Affiliation(s)
- Daniel R Ruzicka
- Genetics Department, University of Georgia, Athens, GA 30602-7223, USA
| | | | | | | | | |
Collapse
|
38
|
Kandasamy MK, Burgos-Rivera B, McKinney EC, Ruzicka DR, Meagher RB. Class-specific interaction of profilin and ADF isovariants with actin in the regulation of plant development. THE PLANT CELL 2007; 19:3111-26. [PMID: 17933902 PMCID: PMC2174723 DOI: 10.1105/tpc.107.052621] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Revised: 09/06/2007] [Accepted: 09/24/2007] [Indexed: 05/20/2023]
Abstract
Two ancient and highly divergent actin-based cytoskeletal systems have evolved in angiosperms. Plant genomes encode complex actin and actin binding protein (ABP) gene families, most of which are phylogenetically grouped into gene classes with distinct vegetative or constitutive and reproductive expression patterns. In Arabidopsis thaliana, ectopic expression of high levels of a reproductive class actin, ACT1, in vegetative tissues causes severe dwarfing of plants with aberrant organization of most plant organs and cell types due to a severely altered actin cytoskeletal architecture. Overexpression of the vegetative class actin ACT2 to similar levels, however, produces insignificant phenotypic changes. We proposed that the misexpression of the pollen-specific ACT1 in vegetative cell types affects the dynamics of actin due to its inappropriate interaction with endogenous vegetative ABPs. To examine the functionally distinct interactions among the major classes of actins and ABPs, we ectopically coexpressed reproductive profilin (PRF4) or actin-depolymerizing factor (ADF) isovariants (e.g., ADF7) with ACT1. Our results demonstrated that the coexpression of these reproductive, but not vegetative, ABP isovariants suppressed the ectopic ACT1 expression phenotypes and restored wild-type stature and normal actin cytoskeletal architecture to the double transgenic plants. Thus, the actins and ABPs appear to have evolved class-specific, protein-protein interactions that are essential to the normal regulation of plant growth and development.
Collapse
Affiliation(s)
- Muthugapatti K Kandasamy
- Department of Genetics, Davison Life Sciences Building, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | |
Collapse
|
39
|
Radauer C, Breiteneder H. Evolutionary biology of plant food allergens. J Allergy Clin Immunol 2007; 120:518-25. [PMID: 17689599 DOI: 10.1016/j.jaci.2007.07.024] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Revised: 07/18/2007] [Accepted: 07/18/2007] [Indexed: 11/20/2022]
Abstract
The majority of plant food allergens can be grouped into just 4 protein families. This review summarizes the evolutionary relationships of allergenic and nonallergenic members of these families. Proteins from the prolamin superfamily have been described in vascular plants. This superfamily contains several allergenic (2S albumins, nonspecific lipid transfer proteins, and cereal amylase and protease inhibitors) and nonallergenic (hybrid proline-rich proteins, cereal indolines, and alpha-globulins) member families. The cupin superfamily comprises numerous functionally highly diverse protein families from all groups of organisms. However, allergenicity within the cupins is confined to the vicilin and legumin seed storage proteins. Profilins are ubiquitous eukaryotic proteins that are nonallergenic, with the exception of profilins from flowering plants. Finally, the Bet v 1 superfamily contains the pathogenesis-related proteins 10 family, the family of major latex proteins and ripening-related proteins, the norcoclaurine synthases, and the cytokinin-binding proteins, with pathogenesis-related proteins 10 family members from certain taxa being the only allergenic members. The study of the distribution of allergenic and nonallergenic members of protein families will provide new insights into the evolution of allergenicity and the factors that make proteins allergenic.
Collapse
Affiliation(s)
- Christian Radauer
- Department of Pathophysiology, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
40
|
Abstract
Profilins are small proteins involved in actin dynamics. In accordance with this function, they are found in all eukaryotes and are structurally highly conserved. However, their precise role in regulating actin-related functions is just beginning to emerge. This article recapitulates the wealth of information on structure, expression and functions accumulated on profilins from many different organisms in the 30 years after their discovery as actin-binding proteins. Emphasis is given to their interaction with a plethora of many different ligands in the cytoplasm as well as in the nucleus, which is considered the basis for their various activities and the significance of the tissue-specific expression of profilin isoforms.
Collapse
Affiliation(s)
- B M Jockusch
- Cell Biology, Zoological Institute, Technical University of Braunschweig, 38092 Braunschweig, Germany.
| | | | | |
Collapse
|
41
|
Schütz I, Gus-Mayer S, Schmelzer E. Profilin and Rop GTPases are localized at infection sites of plant cells. PROTOPLASMA 2006; 227:229-35. [PMID: 16736261 DOI: 10.1007/s00709-005-0151-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2005] [Accepted: 09/08/2005] [Indexed: 05/09/2023]
Abstract
We have found 5 profilin cDNAs in cultured parsley cells, representing a small gene family of about 5 members in parsley. Specific antibodies were produced using heterologously expressed parsley profilin as antigen. Western blot analysis revealed the occurrence of similar amounts of profilin in roots and green parts of parsley plants. Immunocytochemical staining of parsley cells infected with the oomycetous plant pathogen Phytophthora infestans clearly revealed that profilin accumulates at the site on the plasma membrane subtending the oomycetous appressorium, where the actin cables focus. We also observed the accumulation of Rop GTPases around this site, which might point to a potential function in signaling to the cytoskeleton.
Collapse
Affiliation(s)
- I Schütz
- Central Microscopy, Max Planck Institute for Plant Breeding Research, Cologne
| | | | | |
Collapse
|
42
|
Jeong YM, Mun JH, Lee I, Woo JC, Hong CB, Kim SG. Distinct roles of the first introns on the expression of Arabidopsis profilin gene family members. PLANT PHYSIOLOGY 2006; 140:196-209. [PMID: 16361517 PMCID: PMC1326044 DOI: 10.1104/pp.105.071316] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Profilin is a small actin-binding protein that regulates cellular dynamics of the actin cytoskeleton. In Arabidopsis (Arabidopsis thaliana), five profilins were identified. The vegetative class profilins, PRF1, PRF2, and PRF3, are expressed in vegetative organs. The reproductive class profilins, PRF4 and PRF5, are mainly expressed in pollen. In this study, we examined the role of the first intron in the expression of the Arabidopsis profilin gene family using transgenic plants and a transient expression system. In transgenic plants, we examined PRF2 and PRF5, which represent vegetative and reproductive profilins. The expression of the PRF2 promoter fused with the beta-glucuronidase (GUS) gene was observed in the vascular bundles, but transgenic plants carrying the PRF2 promoter-GUS with its first intron showed constitutive expression throughout the vegetative tissues. However, the first intron of PRF5 had little effect on the reporter gene expression pattern. Transgenic plants containing PRF5 promoter-GUS fusion with or without its first intron showed reproductive tissue-specific expression. To further investigate the different roles of the first two introns on gene expression, the first introns were exchanged between PRF2 and PRF5. The first intron of PRF5 had no apparent effect on the expression pattern of the PRF2 promoter. But, unlike the intron of PRF5, the first intron of PRF2 greatly affected the reproductive tissue-specific expression of the PRF5 promoter, confirming a different role for these introns. The results of a transient expression assay indicated that the first intron of PRF1 and PRF2 enhances gene expression, whereas PRF4 and PRF5 do not. These results suggest that the first introns of profilin genes are functionally distinctive and the first introns are required for the strong and constitutive gene expression of PRF1 and PRF2 in vegetative tissues.
Collapse
Affiliation(s)
- Young-Min Jeong
- Department of Biological Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | | | | | | | | | | |
Collapse
|
43
|
Feng Y, Liu Q, Xue Q. Comparative study of rice and Arabidopsis actin-depolymerizing factors gene families. JOURNAL OF PLANT PHYSIOLOGY 2006; 163:69-79. [PMID: 16360805 DOI: 10.1016/j.jplph.2005.01.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2004] [Accepted: 01/06/2005] [Indexed: 05/05/2023]
Abstract
Actin-depolymerizing factors (ADF) is one of the small actin-binding proteins that regulate actin dynamics in cells. Analysis of the complete rice and Arabidopsis protein sequences revealed 12 ADF proteins, respectively. A further study on the similarities and differences between ADF throughout rice and Arabidopsis genome was carried out at the level of genomic organization and protein structure. The strict conservation of essential structural features suggested that the mode of action and physiological function of these proteins, as well as the expression pattern of their coding genes, might be very similar. The ADF proteins were divided into four groups based on the phylogenetic relationships of the amino acid sequences, and was comparable with previous studies.
Collapse
Affiliation(s)
- Ying Feng
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, PR China
| | | | | |
Collapse
|
44
|
Fernando DD. Characterization of pollen tube development inPinus strobus (Eastern white pine) through proteomic analysis of differentially expressed proteins. Proteomics 2005; 5:4917-26. [PMID: 16247732 DOI: 10.1002/pmic.200500009] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The differentially expressed proteins in pollen tubes indicate their specific roles in this stage of male gametophyte development. To isolate these proteins, 2-DE was done using ungerminated pollen and 2-day-old pollen tubes of Pinus strobus. Results show that 645 and 647 protein spots were clearly resolved from pollen grains and pollen tubes, respectively. Thirty-eight protein spots were expressed only in pollen tubes, while 19 increased in intensity. MALDI-TOF MS was used to generate tryptic peptide masses that were submitted to Mascot for identification. Of the differentially expressed proteins, 12% matched with hypothetical proteins, 33% did not hit any protein, and for the 55%, a putative function was assigned based on similarity of sequences with previously characterized proteins. Therefore, pollen tube development can be characterized by the cellular activities that involve metabolism, stress/defense response, gene regulation, signal transduction, and cell wall formation. This study expands our understanding of the changes in protein expression associated with pollen tube development and provides insights into the molecular programs that separate the development of the pollen tubes from pollen grains. This is the first report that describes a global analysis of differentially expressed proteins from the pollen tube of any seed plant.
Collapse
Affiliation(s)
- Danilo D Fernando
- Department of Environmental and Forest Biology, State University of New York College of Environmental Science and Forestry, 461 Illick Hall, I Forestry Drive, Syracuse, NY 13210, USA.
| |
Collapse
|
45
|
Wang HY, Yu Y, Chen ZL, Xia GX. Functional characterization of Gossypium hirsutum profilin 1 gene (GhPFN1) in tobacco suspension cells. Characterization of in vivo functions of a cotton profilin gene. PLANTA 2005; 222:594-603. [PMID: 16001260 DOI: 10.1007/s00425-005-0005-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2005] [Accepted: 04/23/2005] [Indexed: 05/03/2023]
Abstract
Cotton fiber is an extremely long plant cell. Fiber elongation is a complex process and the genes that are crucial for elongation are largely unknown. We previously cloned a cDNA encoding an isoform of cotton profilin and found that the gene (designated GhPFN1) was preferentially expressed in cotton fibers. In the present study, we have further analyzed the expression pattern of GhPFN1 during fiber development and studied its cellular function using tobacco suspension cells as an experimental system. We report that expression of GhPFN1 is tightly associated with fast elongation of cotton fibers whose growth requires an intact actin cytoskeleton. Overexpression of GhPFN1 in the transgenic tobacco cells was correlated with the formation of elongated cells that contained thicker and longer microfilament cables. Quantitative analyses revealed a 2.5-3.6 fold increase in total profilin levels and a 1.6-2.6 fold increase in the F-actin levels in six independent transgenic lines. In addition to the effect on cell elongation, we also observed delayed cell cycle progression and a slightly lower mitotic index in the transgenic cells. Based on these data, we propose that GhPFN1 may play a critical role in the rapid elongation of cotton fibers by promoting actin polymerization.
Collapse
Affiliation(s)
- Hai-Yun Wang
- National Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100080, China
| | | | | | | |
Collapse
|
46
|
Pawloski LC, Deal RB, McKinney EC, Burgos-Rivera B, Meagher RB. Inverted repeat PCR for the rapid assembly of constructs to induce RNA interference. PLANT & CELL PHYSIOLOGY 2005; 46:1872-8. [PMID: 16120684 DOI: 10.1093/pcp/pci191] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Expressing stem-loop RNAs in plants, fungi, and animals efficiently silences homologous target gene expression. We devised a novel PCR strategy, called inverted repeat PCR (IR-PCR), which allows rapid assembly and cloning of stem-loop-containing constructs in any vector. IR-PCR relies on differentially tagging antisense and sense copies of the target in one round of PCR and assembling them in a second. We used IR-PCR to assemble constructs targeting profilin, actin, and actin-related protein (ARP) transcripts from Arabidopsis. Immunoblotting of lines expressing a profilin PRF1 3' untranslated region (UTR)-specific construct demonstrated a 77 to 97% reduction in PRF1 protein, but not other profilin isovariants.
Collapse
|
47
|
Zimeri AM, Dhankher OP, McCaig B, Meagher RB. The plant MT1 metallothioneins are stabilized by binding cadmiums and are required for cadmium tolerance and accumulation. PLANT MOLECULAR BIOLOGY 2005; 58:839-855. [PMID: 16240177 DOI: 10.1007/s11103-005-8268-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2004] [Accepted: 06/01/2005] [Indexed: 05/03/2023]
Abstract
The small Arabidopsis genome contains nine metallothionein-like (MT) sequences with classic, cysteine-rich domains separated by spacer sequences, quite unlike the small conserved MT families found vertebrate genomes. Phylogenetic analysis revealed four ancient and divergent classes of plant MTs that predate the monocot-dicot divergence. A distinct cysteine spacing pattern suggested differential metal ion specificity for each class. The in vivo stability of representatives of the four classes of plant MT proteins and a mouse MT2 control expressed in E. coli were enhanced by cadmium (Cd). Particular MTs were also stabilized by arsenic (As), copper (Cu), and or zinc (Zn). To understand why plants have such a diversity of MT sequences, the Arabidopsis MT1 class, comprised of three genes, MT1a, MT1b, and MT1c, was characterized in more detail in plants. MT1 family transcripts were knocked down to less than 5-10% of wild-type levels in Arabidopsis by expression of a RNA interference (RNAi) construct. The MT1 knockdown plant lines were all hypersensitive to Cd and accumulated several fold lower levels of As, Cd, and Zn than wildtype, while Cu and Fe levels were unaffected. The ancient class of MT1 protein sequences may be preserved in plant genomes, because it has distinct metal-binding properties, confers tolerance to cadmium, and can assist with zinc homeostasis.
Collapse
Affiliation(s)
- Anne Marie Zimeri
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
- Toxicology & Mycology Research Unit, USDA-ARS, Russell Research Center, Athens, GA, 30605, USA
| | - Om Parkash Dhankher
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
- Department of Plant, Soil and Insect Sciences, University of Massachusetts, Amherst, MA, 01002, USA
| | - Bonnie McCaig
- D.O.E. Plant Research Laboratories, Michigan State University, East Lansing, MI, 48824, USA
| | - Richard B Meagher
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA. and
| |
Collapse
|
48
|
Limmongkon A, Giuliani C, Valenta R, Mittermann I, Heberle-Bors E, Wilson C. MAP kinase phosphorylation of plant profilin. Biochem Biophys Res Commun 2004; 324:382-6. [PMID: 15465030 DOI: 10.1016/j.bbrc.2004.09.071] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2004] [Indexed: 01/19/2023]
Abstract
Profilin is a small actin-binding protein and is expressed at high levels in mature pollen where it is thought to regulate actin filament dynamics upon pollen germination and tube growth. The majority of identified plant profilins contain a MAP kinase phosphorylation motif, P-X-T-P, and a MAP kinase interaction motif (KIM). In in vitro kinase assays, the tobacco MAP kinases p45(Ntf4) and SIPK, when activated by the tobacco MAP kinase kinase NtMEK2, can phosphorylate the tobacco profilin NtProf2. Mutagenesis of the threonine residue in this motif identified it as the site of MAP kinase phosphorylation. Fractionation of tobacco pollen extracts showed that p45(Ntf4) is found exclusively in the high-speed pellet fraction while SIPK and profilin are predominantly cytosolic. These data identify one of the first substrates to be directly phosphorylated by MAP kinases in plants.
Collapse
Affiliation(s)
- Apinun Limmongkon
- Max F. Perutz Laboratories, University Departments at the Vienna Biocenter, Institute of Microbiology and Genetics, University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | | | | | | | | | | |
Collapse
|
49
|
Becker JD, Boavida LC, Carneiro J, Haury M, Feijó JA. Transcriptional profiling of Arabidopsis tissues reveals the unique characteristics of the pollen transcriptome. PLANT PHYSIOLOGY 2003; 133:713-25. [PMID: 14500793 PMCID: PMC219046 DOI: 10.1104/pp.103.028241] [Citation(s) in RCA: 176] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2003] [Revised: 07/07/2003] [Accepted: 07/09/2003] [Indexed: 05/18/2023]
Abstract
Pollen tubes are a good model for the study of cell growth and morphogenesis because of their extreme elongation without cell division. Yet, knowledge about the genetic basis of pollen germination and tube growth is still lagging behind advances in pollen physiology and biochemistry. In an effort to reduce this gap, we have developed a new method to obtain highly purified, hydrated pollen grains of Arabidopsis through flowcytometric sorting, and we used GeneChips (Affymetrix, Santa Clara, CA; representing approximately 8,200 genes) to compare the transcriptional profile of sorted pollen with those of four vegetative tissues (seedlings, leaves, roots, and siliques). We present a new graphical tool allowing genomic scale visualization of the unique transcriptional profile of pollen. The 1,584 genes expressed in pollen showed a 90% overlap with genes expressed in these vegetative tissues, whereas one-third of the genes constitutively expressed in the vegetative tissues were not expressed in pollen. Among the 469 genes enriched in pollen, 162 were selectively expressed, and most of these had not been associated previously with pollen. Their functional classification reveals several new candidate genes, mainly in the categories of signal transduction and cell wall biosynthesis and regulation. Thus, the results presented improve our knowledge of the molecular mechanisms underlying pollen germination and tube growth and provide new directions for deciphering their genetic basis. Because pollen expresses about one-third of the number of genes expressed on average in other organs, it may constitute an ideal system to study fundamental mechanisms of cell biology and, by omission, of cell division.
Collapse
Affiliation(s)
- Jörg D Becker
- Instituto Gulbenkian de Ciência, PT-2780-156 Oeiras, Portugal
| | | | | | | | | |
Collapse
|
50
|
Abstract
In the past decade the first Arabidopsis genes encoding cytoskeletal proteins were identified. A few dozen genes in the actin and tubulin cytoskeletal systems have been characterized thoroughly, including gene families encoding actins, profilins, actin depolymerizing factors, α-tubulins, and β-tubulins. Conventional molecular genetics have shown these family members to be differentially expressed at the temporal and spatial levels with an ancient split separating those genes expressed in vegetative tissues from those expressed in reproductive tissues. A few members of other cytoskeletal gene families have also been partially characterized, including an actin-related protein, annexins, fimbrins, kinesins, myosins, and villins. In the year 2001 the Arabidopsis genome sequence was completed. Based on sequence homology with well-characterized animal, fungal, and protist sequences, we find candidate cytoskeletal genes in the Arabidopsis database: more than 150 actin-binding proteins (ABPs), including monomer binding, capping, cross-linking, attachment, and motor proteins; more than 200 microtubule-associated proteins (MAPs); and, surprisingly, 10 to 40 potential intermediate filament (IF) proteins. Most of these sequences are uncharacterized and were not identified as related to cytoskeletal proteins. Several Arabidopsis ABPs, MAPs, and IF proteins are represented by individual genes and most were represented as as small gene families. However, several classes of cytoskeletal genes including myosin, eEF1α, CLIP, tea1, and kinesin are part of large gene families with 20 to 70 potential gene members each. This treasure trove of data provides an unprecedented opportunity to make rapid advances in understanding the complex plant cytoskeletal proteome. However, the functional analysis of these proposed cytoskeletal proteins and their mutants will require detailed analysis at the cell biological, molecular genetic, and biochemical levels. New approaches will be needed to move more efficiently and rapidly from this mass of DNA sequence to functional studies on cytoskeletal proteins.
Collapse
Affiliation(s)
- Richard B. Meagher
- Department of Genetics, University of Georgia, Athens, GA 30602,
; phone: 706 542-1444; fax: 706 542-1387
| | - Marcus Fechheimer
- Department of Cellular Biology, University of Georgia, Athens, GA 30602,
; phone: 706 542-3338; fax: 706 542-4271
| |
Collapse
|