1
|
Govorunova EG, Sineshchekov OA. Channelrhodopsins: From Phototaxis to Optogenetics. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1555-1570. [PMID: 38105024 DOI: 10.1134/s0006297923100115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/09/2023] [Accepted: 07/09/2023] [Indexed: 12/19/2023]
Abstract
Channelrhodopsins stand out among other retinal proteins because of their capacity to generate passive ionic currents following photoactivation. Owing to that, channelrhodopsins are widely used in neuroscience and cardiology as instruments for optogenetic manipulation of the activity of excitable cells. Photocurrents generated by channelrhodopsins were first discovered in the cells of green algae in the 1970s. In this review we describe this discovery and discuss the current state of research in the field.
Collapse
|
2
|
Leptos KC, Chioccioli M, Furlan S, Pesci AI, Goldstein RE. Phototaxis of Chlamydomonas arises from a tuned adaptive photoresponse shared with multicellular Volvocine green algae. Phys Rev E 2023; 107:014404. [PMID: 36797913 PMCID: PMC7616094 DOI: 10.1103/physreve.107.014404] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 12/16/2022] [Indexed: 06/18/2023]
Abstract
A fundamental issue in biology is the nature of evolutionary transitions from unicellular to multicellular organisms. Volvocine algae are models for this transition, as they span from the unicellular biflagellate Chlamydomonas to multicellular species of Volvox with up to 50,000 Chlamydomonas-like cells on the surface of a spherical extracellular matrix. The mechanism of phototaxis in these species is of particular interest since they lack a nervous system and intercellular connections; steering is a consequence of the response of individual cells to light. Studies of Volvox and Gonium, a 16-cell organism with a plate-like structure, have shown that the flagellar response to changing illumination of the cellular photosensor is adaptive, with a recovery time tuned to the rotation period of the colony around its primary axis. Here, combining high-resolution studies of the flagellar photoresponse of micropipette-held Chlamydomonas with 3D tracking of freely swimming cells, we show that such tuning also underlies its phototaxis. A mathematical model is developed based on the rotations around an axis perpendicular to the flagellar beat plane that occur through the adaptive response to oscillating light levels as the organism spins. Exploiting a separation of timescales between the flagellar photoresponse and phototurning, we develop an equation of motion that accurately describes the observed photoalignment. In showing that the adaptive timescales in Volvocine algae are tuned to the organisms' rotational periods across three orders of magnitude in cell number, our results suggest a unified picture of phototaxis in green algae in which the asymmetry in torques that produce phototurns arise from the individual flagella of Chlamydomonas, the flagellated edges of Gonium, and the flagellated hemispheres of Volvox.
Collapse
Affiliation(s)
- Kyriacos C. Leptos
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
| | | | | | | | | |
Collapse
|
3
|
Alachkar A. Aromatic patterns: Tryptophan aromaticity as a catalyst for the emergence of life and rise of consciousness. Phys Life Rev 2022; 42:93-114. [PMID: 35905538 DOI: 10.1016/j.plrev.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 11/28/2022]
Abstract
Sunlight held the key to the origin of life on Earth. The earliest life forms, cyanobacteria, captured the sunlight to generate energy through photosynthesis. Life on Earth evolved in accordance with the circadian rhythms tied to sensitivity to sunlight patterns. A unique feature of cyanobacterial photosynthetic proteins and circadian rhythms' molecules, and later of nearly all photon-sensing molecules throughout evolution, is that the aromatic amino acid tryptophan (Trp) resides at the center of light-harvesting active sites. In this perspective, I review the literature and integrate evidence from different scientific fields to explore the role Trp plays in photon-sensing capabilities of living organisms through its resonance delocalization of π-electrons. The observations presented here are the product of apparently unrelated phenomena throughout evolution, but nevertheless share consistent patterns of photon-sensing by Trp-containing and Trp-derived molecules. I posit the unique capacity to transfer electrons during photosynthesis in the earliest life forms is conferred to Trp due to its aromaticity. I propose this ability evolved to assume more complex functions, serving as a host for mechanisms underlying mental aptitudes - a concept which provides a theoretical basis for defining the neural correlates of consciousness. The argument made here is that Trp aromaticity may have allowed for the inception of the mechanistic building blocks used to fabricate complexity in higher forms of life. More specifically, Trp aromatic non-locality may have acted as a catalyst for the emergence of consciousness by instigating long-range synchronization and stabilizing the large-scale coherence of neural networks, which mediate functional brain activity. The concepts proposed in this perspective provide a conceptual foundation that invites further interdisciplinary dialogue aimed at examining and defining the role of aromaticity (beyond Trp) in the emergence of life and consciousness.
Collapse
Affiliation(s)
- Amal Alachkar
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, CA 92697, USA; UC Irvine Center for the Neurobiology of Learning and Memory, University of California-Irvine, Irvine, CA 92697, USA; Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
4
|
Cortese D, Wan KY. Control of Helical Navigation by Three-Dimensional Flagellar Beating. PHYSICAL REVIEW LETTERS 2021; 126:088003. [PMID: 33709750 DOI: 10.1103/physrevlett.126.088003] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 12/10/2020] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
Helical swimming is a ubiquitous strategy for motile cells to generate self-gradients for environmental sensing. The model biflagellate Chlamydomonas reinhardtii rotates at a constant 1-2 Hz as it swims, but the mechanism is unclear. Here, we show unequivocally that the rolling motion derives from a persistent, nonplanar flagellar beat pattern. This is revealed by high-speed imaging and micromanipulation of live cells. We construct a fully 3D model to relate flagellar beating directly to the free-swimming trajectories. For realistic geometries, the model reproduces both the sense and magnitude of the axial rotation of live cells. We show that helical swimming requires further symmetry breaking between the two flagella. These functional differences underlie all tactic responses, particularly phototaxis. We propose a control strategy by which cells steer toward or away from light by modulating the sign of biflagellar dominance.
Collapse
Affiliation(s)
- Dario Cortese
- Living Systems Institute and College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - Kirsty Y Wan
- Living Systems Institute and College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QD, United Kingdom
| |
Collapse
|
5
|
Guo H, Man Y, Wan KY, Kanso E. Intracellular coupling modulates biflagellar synchrony. J R Soc Interface 2021; 18:20200660. [PMID: 33435844 DOI: 10.1098/rsif.2020.0660] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Beating flagella exhibit a variety of synchronization modes. This synchrony has long been attributed to hydrodynamic coupling between the flagella. However, recent work with flagellated algae indicates that a mechanism internal to the cell, through the contractile fibres connecting the flagella basal bodies, must be at play to actively modulate flagellar synchrony. Exactly how basal coupling mediates flagellar coordination remains unclear. Here, we examine the role of basal coupling in the synchronization of the model biflagellate Chlamydomonas reinhardtii using a series of mathematical models of decreasing levels of complexity. We report that basal coupling is sufficient to achieve inphase, antiphase and bistable synchrony, even in the absence of hydrodynamic coupling and flagellar compliance. These modes can be reached by modulating the activity level of the individual flagella or the strength of the basal coupling. We observe a slip mode when allowing for differential flagellar activity, just as in experiments with live cells. We introduce a dimensionless ratio of flagellar activity to basal coupling that is predictive of the mode of synchrony. This ratio allows us to query biological parameters which are not yet directly measurable experimentally. Our work shows a concrete route for cells to actively control the synchronization of their flagella.
Collapse
Affiliation(s)
- Hanliang Guo
- Aerospace & Mechanical Engineering, University of Southern California, Los Angeles, CA 90089, USA.,Mathematics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yi Man
- Aerospace & Mechanical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Kirsty Y Wan
- Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK
| | - Eva Kanso
- Aerospace & Mechanical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
6
|
de Maleprade H, Moisy F, Ishikawa T, Goldstein RE. Motility and phototaxis of Gonium, the simplest differentiated colonial alga. Phys Rev E 2020. [PMID: 32168596 DOI: 10.1101/845891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Green algae of the Volvocine lineage, spanning from unicellular Chlamydomonas to vastly larger Volvox, are models for the study of the evolution of multicellularity, flagellar dynamics, and developmental processes. Phototactic steering in these organisms occurs without a central nervous system, driven solely by the response of individual cells. All such algae spin about a body-fixed axis as they swim; directional photosensors on each cell thus receive periodic signals when that axis is not aligned with the light. The flagella of Chlamydomonas and Volvox both exhibit an adaptive response to such signals in a manner that allows for accurate phototaxis, but in the former the two flagella have distinct responses, while the thousands of flagella on the surface of spherical Volvox colonies have essentially identical behavior. The planar 16-cell species Gonium pectorale thus presents a conundrum, for its central 4 cells have a Chlamydomonas-like beat that provide propulsion normal to the plane, while its 12 peripheral cells generate rotation around the normal through a Volvox-like beat. Here we combine experiment, theory, and computations to reveal how Gonium, perhaps the simplest differentiated colonial organism, achieves phototaxis. High-resolution cell tracking, particle image velocimetry of flagellar driven flows, and high-speed imaging of flagella on micropipette-held colonies show how, in the context of a recently introduced model for Chlamydomonas phototaxis, an adaptive response of the peripheral cells alone leads to photoreorientation of the entire colony. The analysis also highlights the importance of local variations in flagellar beat dynamics within a given colony, which can lead to enhanced reorientation dynamics.
Collapse
Affiliation(s)
- Hélène de Maleprade
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
| | - Frédéric Moisy
- Université Paris-Saclay, CNRS, FAST, 91405, Orsay, France
| | - Takuji Ishikawa
- Department of Finemechanics, Graduate School of Engineering, Tohoku University, 6-6-01 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Raymond E Goldstein
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
| |
Collapse
|
7
|
de Maleprade H, Moisy F, Ishikawa T, Goldstein RE. Motility and phototaxis of Gonium, the simplest differentiated colonial alga. Phys Rev E 2020; 101:022416. [PMID: 32168596 PMCID: PMC7616084 DOI: 10.1103/physreve.101.022416] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/05/2020] [Indexed: 11/07/2022]
Abstract
Green algae of the Volvocine lineage, spanning from unicellular Chlamydomonas to vastly larger Volvox, are models for the study of the evolution of multicellularity, flagellar dynamics, and developmental processes. Phototactic steering in these organisms occurs without a central nervous system, driven solely by the response of individual cells. All such algae spin about a body-fixed axis as they swim; directional photosensors on each cell thus receive periodic signals when that axis is not aligned with the light. The flagella of Chlamydomonas and Volvox both exhibit an adaptive response to such signals in a manner that allows for accurate phototaxis, but in the former the two flagella have distinct responses, while the thousands of flagella on the surface of spherical Volvox colonies have essentially identical behavior. The planar 16-cell species Gonium pectorale thus presents a conundrum, for its central 4 cells have a Chlamydomonas-like beat that provide propulsion normal to the plane, while its 12 peripheral cells generate rotation around the normal through a Volvox-like beat. Here we combine experiment, theory, and computations to reveal how Gonium, perhaps the simplest differentiated colonial organism, achieves phototaxis. High-resolution cell tracking, particle image velocimetry of flagellar driven flows, and high-speed imaging of flagella on micropipette-held colonies show how, in the context of a recently introduced model for Chlamydomonas phototaxis, an adaptive response of the peripheral cells alone leads to photoreorientation of the entire colony. The analysis also highlights the importance of local variations in flagellar beat dynamics within a given colony, which can lead to enhanced reorientation dynamics.
Collapse
Affiliation(s)
- Hélène de Maleprade
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
| | - Frédéric Moisy
- Université Paris-Saclay, CNRS, FAST, 91405, Orsay, France
| | - Takuji Ishikawa
- Department of Finemechanics, Graduate School of Engineering, Tohoku University, 6-6-01 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Raymond E. Goldstein
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
| |
Collapse
|
8
|
Häder DP, Hemmersbach R. Gravitaxis in Euglena. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 979:237-266. [DOI: 10.1007/978-3-319-54910-1_12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
9
|
Häder DP, Iseki M. Photomovement in Euglena. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 979:207-235. [DOI: 10.1007/978-3-319-54910-1_11] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Bennett RR, Golestanian R. A steering mechanism for phototaxis in Chlamydomonas. J R Soc Interface 2015; 12:20141164. [PMID: 25589576 PMCID: PMC4345482 DOI: 10.1098/rsif.2014.1164] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 12/16/2014] [Indexed: 11/12/2022] Open
Abstract
Chlamydomonas shows both positive and negative phototaxis. It has a single eyespot near its equator, and as the cell rotates during the forward motion, the light signal received by the eyespot varies. We use a simple mechanical model of Chlamydomonas that couples the flagellar beat pattern to the light intensity at the eyespot to demonstrate a mechanism for phototactic steering that is consistent with observations. The direction of phototaxis is controlled by a parameter in our model, and the steering mechanism is robust to noise. Our model shows switching between directed phototaxis when the light is on and run-and-tumble behaviour in the dark.
Collapse
Affiliation(s)
- Rachel R Bennett
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3NP, UK
| | - Ramin Golestanian
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3NP, UK
| |
Collapse
|
11
|
Goldberg JI, Rich DR, Muruganathan SP, Liu MB, Pon JR, Tam R, Diefenbach TJ, Kuang S. Identification and evolutionary implications of neurotransmitter-ciliary interactions underlying the behavioral response to hypoxia in Lymnaea stagnalis embryos. ACTA ACUST UNITED AC 2011; 214:2660-70. [PMID: 21795561 DOI: 10.1242/jeb.053009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Acceleration of embryonic rotation is a common response to hypoxia among pond snails. It was first characterized in Helisoma trivolvis embryos, which have a pair of sensorimotor neurons that detect hypoxia and release serotonin onto postsynaptic ciliary cells. The objective of the present study was to determine how the hypoxia response is mediated in Lymnaea stagnalis, which differ from H. trivolvis by having both serotonergic and dopaminergic neurons, and morphologically distinct ciliated structures at comparative stages of embryonic development. Time-lapse video recordings of the rotational behavior in L. stagnalis revealed similar rotational features to those previously observed in H. trivolvis, including rotational surges and rotational responses to hypoxia. Serotonin and dopamine increased the rate of rotation with similar potency. In contrast, serotonin was more potent than dopamine in stimulating the ciliary beat frequency of isolated pedal cilia. Isolated apical plate cilia displayed an irregular pattern of ciliary beating that precluded the measurement of ciliary beat frequency. A qualitative assessment of ciliary beating revealed that both serotonin and dopamine were able to stimulate apical plate cilia. The ciliary responses to dopamine were reversible in both pedal and apical plate cilia, whereas the responses to serotonin were only reversible at concentrations below 100 μmol l(-1). Mianserin, a serotonin receptor antagonist, and SKF83566, a dopamine receptor antagonist, effectively blocked the rotational responses to serotonin and dopamine, respectively. The rotational response to hypoxia was only partially blocked by mianserin, but was fully blocked by SKF83566. These data suggest that, despite the ability of serotonin to stimulate ciliary beating in L. stagnalis embryos, the rotational response to hypoxia is primarily mediated by the transient apical catecholaminergic neurons that innervate the ciliated apical plate.
Collapse
Affiliation(s)
- Jeffrey I Goldberg
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Reduction-oxidation poise regulates the sign of phototaxis in Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 2011; 108:11280-4. [PMID: 21690384 DOI: 10.1073/pnas.1100592108] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In many phototrophic microorganisms and plants, chloroplasts change their positions relative to the incident light to achieve optimal photosynthesis. In the case of motile green algae, cells change their swimming direction by switching between positive and negative phototaxis, i.e., swimming toward or away from the light source, depending on environmental and internal conditions. However, little is known about the molecular signals that determine the phototactic direction. Using the green alga Chlamydomonas reinhardtii, we found that cellular reduction-oxidation (redox) poise plays a key role: Cells always exhibited positive phototaxis after treatment with reactive oxygen species (ROS) and always displayed negative phototaxis after treatment with ROS quenchers. The redox-dependent switching of the sign of phototaxis may contribute in turn to the maintenance of cellular redox homeostasis.
Collapse
|
13
|
Abstract
Eukaryotic flagella and cilia are alternative names, for the slender cylindrical protrusions of a cell (240nm diameter, approximately 12,800nm-long in Chlamydomonas reinhardtii) that propel a cell or move fluid. Cilia are extraordinarily successful complex organelles abundantly found in animals performing many tasks. They play a direct or developmental role in the sensors of fluid flow, light, sound, gravity, smells, touch, temperature, and taste in mammals. The failure of cilia can lead to hydrocephalus, infertility, and blindness. However, in spite of their large role in human function and pathology, there is as yet no consensus on how cilia beat and perform their many functions, such as moving fluids in brain ventricles and lungs and propelling and steering sperm, larvae, and many microorganisms. One needs to understand and analyze ciliary beating and its hydrodynamic interactions. This chapter provides a guide for measuring, analyzing, and interpreting ciliary behavior in various contexts studied in the model system of Chlamydomonas. It describes: (1) how cilia work as self-organized beating structures (SOBSs), (2) the overlaid control in the cilia that optimizes the SOBS to achieve cell dispersal, phototaxis steering, and avoidance of obstacles, (3) the assay of a model intracellular signal processing system that responds to multiple external and internal inputs, choosing mode of behavior and then controlling the cilia, (4) how cilia sense their environment, and (5) potentially an assay of ciliary performance for toxicology or medical assessment.
Collapse
Affiliation(s)
- Kenneth W Foster
- Department of Physics, Syracuse University, Syracuse, New York 13244-1130, USA
| |
Collapse
|
14
|
Abstract
Phototaxis in the broadest sense means positive or negative displacement along a light gradient or vector. Prokaryotes most often use a biased random walk strategy, employing type I sensory rhodopsin photoreceptors and two-component signalling to regulate flagellar reversal. This strategy only allows phototaxis along steep light gradients, as found in microbial mats or sediments. Some filamentous cyanobacteria evolved the ability to steer towards a light vector. Even these cyanobacteria, however, can only navigate in two dimensions, gliding on a surface. In contrast, eukaryotes evolved the capacity to follow a light vector in three dimensions in open water. This strategy requires a polarized organism with a stable form, helical swimming with cilia and a shading or focusing body adjacent to a light sensor to allow for discrimination of light direction. Such arrangement and the ability of three-dimensional phototactic navigation evolved at least eight times independently in eukaryotes. The origin of three-dimensional phototaxis often followed a transition from a benthic to a pelagic lifestyle and the acquisition of chloroplasts either via primary or secondary endosymbiosis. Based on our understanding of the mechanism of phototaxis in single-celled eukaryotes and animal larvae, it is possible to define a series of elementary evolutionary steps, each of potential selective advantage, which can lead to pelagic phototactic navigation. We can conclude that it is relatively easy to evolve phototaxis once cell polarity, ciliary swimming and a stable cell shape are present.
Collapse
Affiliation(s)
- Gáspár Jékely
- Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany.
| |
Collapse
|
15
|
Mechanism of phototaxis in marine zooplankton. Nature 2008; 456:395-9. [DOI: 10.1038/nature07590] [Citation(s) in RCA: 214] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Accepted: 10/27/2008] [Indexed: 11/08/2022]
|
16
|
Abstract
We develop a theoretical description of sperm chemotaxis. Sperm cells of many species are guided to the egg by chemoattractants, a process called chemotaxis. Motor proteins in the flagellum of the sperm generate a regular beat of the flagellum, which propels the sperm in a fluid. In the absence of a chemoattractant, sperm swim in circles in two dimensions and along helical paths in three dimensions. Chemoattractants stimulate a signaling system in the flagellum, which regulates the motors to control sperm swimming. Our theoretical description of sperm chemotaxis in two and three dimensions is based on a generic signaling module that regulates the curvature and torsion of the swimming path. In the presence of a chemoattractant, swimming paths are drifting circles in two dimensions and deformed helices in three dimensions. The swimming paths can be described by a dynamical system that exhibits different dynamic regimes, which correspond to different chemotactic behaviours. We conclude that sampling a concentration field of chemoattractant along circular and helical swimming paths is a robust strategy for chemotaxis that works reliably for a vast range of parameters.
Collapse
Affiliation(s)
- Benjamin M. Friedrich
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187 Dresden, Germany
- *To whom correspondence may be addressed. E-mail: or
| | - Frank Jülicher
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187 Dresden, Germany
- *To whom correspondence may be addressed. E-mail: or
| |
Collapse
|
17
|
Wakabayashi KI, King SM. Modulation of Chlamydomonas reinhardtii flagellar motility by redox poise. J Cell Biol 2006; 173:743-54. [PMID: 16754958 PMCID: PMC3207151 DOI: 10.1083/jcb.200603019] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2006] [Accepted: 05/01/2006] [Indexed: 11/28/2022] Open
Abstract
Redox-based regulatory systems are essential for many cellular activities. Chlamydomonas reinhardtii exhibits alterations in motile behavior in response to different light conditions (photokinesis). We hypothesized that photokinesis is signaled by variations in cytoplasmic redox poise resulting from changes in chloroplast activity. We found that this effect requires photosystem I, which generates reduced NADPH. We also observed that photokinetic changes in beat frequency and duration of the photophobic response could be obtained by altering oxidative/reductive stress. Analysis of reactivated cell models revealed that this redox poise effect is mediated through the outer dynein arms (ODAs). Although the global redox state of the thioredoxin-related ODA light chains LC3 and LC5 and the redox-sensitive Ca2+ -binding subunit of the docking complex DC3 did not change upon light/dark transitions, we did observe significant alterations in their interactions with other flagellar components via mixed disulfides. These data indicate that redox poise directly affects ODAs and suggest that it may act in the control of flagellar motility.
Collapse
Affiliation(s)
- Ken-ichi Wakabayashi
- Department of Molecular, Microbial, and Structural Biology, University of Connecticut Health Center, Farmington, CT 06030
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Stephen M. King
- Department of Molecular, Microbial, and Structural Biology, University of Connecticut Health Center, Farmington, CT 06030
| |
Collapse
|
18
|
Foster KW, Josef K, Saranak J, Tuck N. Dynamics of a sensory signaling network in a unicellular eukaryote. CONFERENCE PROCEEDINGS : ... ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL CONFERENCE 2006; 2006:252-255. [PMID: 17946810 DOI: 10.1109/iembs.2006.259451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The processing components and the dynamic signaling network that an individual cell uses to do signal integration and make decisions based on multiple sensory inputs are being identified in a well studied free-swimming unicellular green algal model organism, Chlamydomonas. It has many sensory photoreceptors and measurable behavior associated with its orienting and swimming with respect to light sources in its environment. Study of the dynamics of the beating of its two steering cilia reveals their complex specialization.
Collapse
|
19
|
Josef K, Saranak J, Foster KW. Linear systems analysis of the ciliary steering behavior associated with negative-phototaxis inChlamydomonas reinhardtii. ACTA ACUST UNITED AC 2006; 63:758-77. [PMID: 16986140 DOI: 10.1002/cm.20158] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In response to light stimulation Chlamydomonas reinhardtii changes the beating frequency, beating pattern, and beating synchrony of the trans and cis cilia to steer the freely-swimming cell relative to light sources. To understand the cell steering behavior the impulse responses of the beating frequency and stroke velocity of each cilium have been obtained with high temporal resolution on cells held with a micropipette. Interestingly the response of each cilium is quite different. The trans cilium responds with less delay than the cis cilium for both beating frequency and stroke velocity. For light stimulation at 2 Hz, the critical cell-rotation frequency, both responses of the trans and cis cilia are about 180 degrees out of phase. The trans-cilium beating frequency response peaks at a stimulus frequency of 5-6 Hz, higher than the cis at 1-2 Hz. The stroke velocities of the trans and cis cilia have the same stimulus-frequency response (2 Hz), but the trans cilium has a shorter delay than the cis. The times to maximum response are much shorter than the time for a rotation of the cell. The use of two different approaches that enable the trans cilium to respond ahead of the cis for both the beating frequency and stroke velocity responses suggests the importance of both responses to phototaxis. Internal cell processing responsible for the time course of the responses is proposed.
Collapse
Affiliation(s)
- Keith Josef
- Physics Department, Syracuse University, Syracuse, New York 13244-1130, USA
| | | | | |
Collapse
|
20
|
Josef K, Saranak J, Foster KW. An electro-optic monitor of the behavior ofChlamydomonas reinhardtii cilia. ACTA ACUST UNITED AC 2005; 61:83-96. [PMID: 15838839 DOI: 10.1002/cm.20064] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The unicellular green alga Chlamydomonas reinhardtii steers through water with a pair of cilia (eukaryotic flagella). Long-term observation of the beating of its cilia with controlled stimulation is improving our understanding of how a cell responds to sensory inputs. Here we describe how to record ciliary motion continuously for long periods. We also report experiments on the network of intracellular signaling that connects the environment inputs with response outputs. Local spatial changes in ciliary response on the time scale of the underlying biochemical dynamics are observed. Near-infrared light monitors the cells held by a micropipette. This condition is tolerated well for hours, not interfering with ciliary beating or sensory transduction. A computer integrates the light stimulation of the eye of Chlamydomonas with the ciliary motion making possible long-term correlations. Measures of ciliary responses include the beating frequency, stroke velocity, and stroke duration of each cilium, and the relative phase of the cis and trans cilia. The stationarity and dependence of the system on light intensity was investigated. About 150,000,000 total beat cycles and up to 8 h on one cell have been recorded. Each beat cycle is resolved so that each asynchronous beat is detected. Responses extend only a few hundred milliseconds, but there is a persistence of momentary changes that last much longer. Interestingly, we see a response that is linear with absolute light intensity as well as different kinds of response that are clearly nonlinear, implying two signaling pathways from the cell body to the cilia.
Collapse
Affiliation(s)
- Keith Josef
- Physics Department, Syracuse University, Syracuse, New York 13244-1130, USA
| | | | | |
Collapse
|