1
|
Hartig EI, Day M, Jarysta A, Tarchini B. Proteins required for stereocilia elongation during mammalian hair cell development ensure precise and steady heights during adult life. Proc Natl Acad Sci U S A 2024; 121:e2405455121. [PMID: 39320919 PMCID: PMC11459194 DOI: 10.1073/pnas.2405455121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/05/2024] [Indexed: 09/26/2024] Open
Abstract
The hair bundle, or stereocilia bundle, is the mechanosensory compartment of hair cells (HCs) in the inner ear. To date, most mechanistic studies have focused on stereocilia bundle morphogenesis, and it remains unclear how this organelle critical for hearing preserves its precise dimensions during life in mammals. The GPSM2-GNAI complex occupies the distal tip of stereocilia in the tallest row and is required for their elongation during development. Here, we ablate GPSM2-GNAI in adult mouse HCs after normal stereocilia elongation is completed. We observe a progressive height reduction of the tallest row stereocilia totaling ~600 nm after 12 wk in Gpsm2 mutant inner HCs. To measure GPSM2 longevity at tips, we generated a HaloTag-Gpsm2 mouse strain and performed pulse-chase experiments in vivo. Estimates using pulse-chase or tracking loss of GPSM2 immunolabeling following Gpsm2 inactivation suggest that GPSM2 is relatively long-lived at stereocilia tips with a half-life of 9 to 10 d. Height reduction coincides with dampened auditory brainstem responses evoked by low-frequency stimuli in particular. Finally, GPSM2 is required for normal tip enrichment of elongation complex (EC) partners MYO15A, WHRN, and EPS8, mirroring their established codependence during development. Taken together, our results show that the EC is also essential in mature HCs to ensure precise and stable stereocilia height and for sensitive detection of a full range of sound frequencies.
Collapse
Affiliation(s)
- Elli I. Hartig
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA02111
- The Jackson Laboratory, Bar Harbor, ME04609
| | | | | | - Basile Tarchini
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA02111
- The Jackson Laboratory, Bar Harbor, ME04609
| |
Collapse
|
2
|
Miyoshi T, Belyantseva IA, Sajeevadathan M, Friedman TB. Pathophysiology of human hearing loss associated with variants in myosins. Front Physiol 2024; 15:1374901. [PMID: 38562617 PMCID: PMC10982375 DOI: 10.3389/fphys.2024.1374901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 02/21/2024] [Indexed: 04/04/2024] Open
Abstract
Deleterious variants of more than one hundred genes are associated with hearing loss including MYO3A, MYO6, MYO7A and MYO15A and two conventional myosins MYH9 and MYH14. Variants of MYO7A also manifest as Usher syndrome associated with dysfunction of the retina and vestibule as well as hearing loss. While the functions of MYH9 and MYH14 in the inner ear are debated, MYO3A, MYO6, MYO7A and MYO15A are expressed in inner ear hair cells along with class-I myosin MYO1C and are essential for developing and maintaining functional stereocilia on the apical surface of hair cells. Stereocilia are large, cylindrical, actin-rich protrusions functioning as biological mechanosensors to detect sound, acceleration and posture. The rigidity of stereocilia is sustained by highly crosslinked unidirectionally-oriented F-actin, which also provides a scaffold for various proteins including unconventional myosins and their cargo. Typical myosin molecules consist of an ATPase head motor domain to transmit forces to F-actin, a neck containing IQ-motifs that bind regulatory light chains and a tail region with motifs recognizing partners. Instead of long coiled-coil domains characterizing conventional myosins, the tails of unconventional myosins have various motifs to anchor or transport proteins and phospholipids along the F-actin core of a stereocilium. For these myosins, decades of studies have elucidated their biochemical properties, interacting partners in hair cells and variants associated with hearing loss. However, less is known about how myosins traffic in a stereocilium using their motor function, and how each variant correlates with a clinical condition including the severity and onset of hearing loss, mode of inheritance and presence of symptoms other than hearing loss. Here, we cover the domain structures and functions of myosins associated with hearing loss together with advances, open questions about trafficking of myosins in stereocilia and correlations between hundreds of variants in myosins annotated in ClinVar and the corresponding deafness phenotypes.
Collapse
Affiliation(s)
- Takushi Miyoshi
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
- Division of Molecular and Integrative Physiology, Department of Biomedical Sciences, Southern Illinois University School of Medicine, Carbondale, IL, United States
| | - Inna A. Belyantseva
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Mrudhula Sajeevadathan
- Division of Molecular and Integrative Physiology, Department of Biomedical Sciences, Southern Illinois University School of Medicine, Carbondale, IL, United States
| | - Thomas B. Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
3
|
Park J, Bird JE. The actin cytoskeleton in hair bundle development and hearing loss. Hear Res 2023; 436:108817. [PMID: 37300948 PMCID: PMC10408727 DOI: 10.1016/j.heares.2023.108817] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/18/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023]
Abstract
Inner ear hair cells assemble mechanosensitive hair bundles on their apical surface that transduce sounds and accelerations. Each hair bundle is comprised of ∼ 100 individual stereocilia that are arranged into rows of increasing height and width; their specific and precise architecture being necessary for mechanoelectrical transduction (MET). The actin cytoskeleton is fundamental to establishing this architecture, not only by forming the structural scaffold shaping each stereocilium, but also by composing rootlets and the cuticular plate that together provide a stable foundation supporting each stereocilium. In concert with the actin cytoskeleton, a large assortment of actin-binding proteins (ABPs) function to cross-link actin filaments into specific topologies, as well as control actin filament growth, severing, and capping. These processes are individually critical for sensory transduction and are all disrupted in hereditary forms of human hearing loss. In this review, we provide an overview of actin-based structures in the hair bundle and the molecules contributing to their assembly and functional properties. We also highlight recent advances in mechanisms driving stereocilia elongation and how these processes are tuned by MET.
Collapse
Affiliation(s)
- Jinho Park
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, United States; Myology Institute, University of Florida, Gainesville, FL 32610, United States
| | - Jonathan E Bird
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, United States; Myology Institute, University of Florida, Gainesville, FL 32610, United States.
| |
Collapse
|
4
|
Wang H, Du H, Ren R, Du T, Lin L, Feng Z, Zhao D, Wei X, Zhai X, Wang H, Dong T, Sun JP, Wu H, Xu Z, Lu Q. Temporal and spatial assembly of inner ear hair cell ankle link condensate through phase separation. Nat Commun 2023; 14:1657. [PMID: 36964137 PMCID: PMC10039067 DOI: 10.1038/s41467-023-37267-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 03/09/2023] [Indexed: 03/26/2023] Open
Abstract
Stereocilia are actin-based cell protrusions of inner ear hair cells and are indispensable for mechanotransduction. Ankle links connect the ankle region of developing stereocilia, playing an essential role in stereocilia development. WHRN, PDZD7, ADGRV1 and USH2A have been identified to form the so-called ankle link complex (ALC); however, the detailed mechanism underlying the temporal emergence and degeneration of ankle links remains elusive. Here we show that WHRN and PDZD7 orchestrate ADGRV1 and USH2A to assemble the ALC through liquid-liquid phase separation (LLPS). Disruption of the ALC multivalency for LLPS largely abolishes the distribution of WHRN at the ankle region of stereocilia. Interestingly, high concentration of ADGRV1 inhibits LLPS, providing a potential mechanism for ALC disassembly. Moreover, certain deafness mutations of ALC genes weaken the multivalent interactions of ALC and impair LLPS. In conclusion, our study demonstrates that LLPS mediates ALC formation, providing essential clues for understanding the pathogenesis of deafness.
Collapse
Affiliation(s)
- Huang Wang
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Haibo Du
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, 266237, China
- Air Force Medical Center, PLA, Beijing, 100074, China
| | - Rui Ren
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, 266237, China
| | - Tingting Du
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China. Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Lin Lin
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Zhe Feng
- School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Dange Zhao
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Xiaoxi Wei
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Xiaoyan Zhai
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, 266237, China
| | - Hongyang Wang
- College of Otolaryngology, Head and Neck Surgery, Department of Audiology and Vestibular Medicine, Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, Medical School of Chinese PLA, 28 Fuxing Road, 100853, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Chinese PLA General Hospital, Medical School of Chinese PLA, 28 Fuxing Road, 100853, Beijing, China
| | - Tingting Dong
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China. Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Jin-Peng Sun
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Hao Wu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China. Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Zhigang Xu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, 266237, China.
- Shandong Provincial Collaborative Innovation Center of Cell Biology, Shandong Normal University, Jinan, Shandong, 250014, China.
| | - Qing Lu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200030, China.
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China. Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China.
- Bio-X-Renji Hospital Research Center, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
5
|
Moreland ZG, Bird JE. Myosin motors in sensory hair bundle assembly. Curr Opin Cell Biol 2022; 79:102132. [PMID: 36257241 DOI: 10.1016/j.ceb.2022.102132] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 01/31/2023]
Abstract
Mechanosensory hair bundles are assembled from actin-based stereocilia that project from the apical surface of hair cells in the inner ear. Stereocilia architecture is critical for the transduction of sound and accelerations, and structural defects in these mechano-sensors are a clinical cause of hearing and balance disorders in humans. Unconventional myosin motors are central to the assembly and shaping of stereocilia architecture. A sub-group of myosin motors with MyTH4-FERM domains (MYO7A, MYO15A) are particularly important in these processes, and hypothesized to act as transporters delivering structural and actin-regulatory cargos, in addition to generating force and tension. In this review, we summarize existing evidence for how MYO7A and MYO15A operate and how their dysfunction leads to stereocilia pathology. We further highlight emerging properties of the MyTH4/FERM myosin family and speculate how these new functions might contribute towards the acquisition and maintenance of mechano-sensitivity.
Collapse
Affiliation(s)
- Zane G Moreland
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, 32610, USA; Myology Institute, University of Florida, Gainesville, FL, 32610, USA; Graduate Program in Biomedical Sciences, University of Florida, Gainesville, FL, 32610, USA
| | - Jonathan E Bird
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, 32610, USA; Myology Institute, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
6
|
Shi Y, Lin L, Wang C, Zhu J. Promotion of row 1-specific tip complex condensates by Gpsm2-Gαi provides insights into row identity of the tallest stereocilia. SCIENCE ADVANCES 2022; 8:eabn4556. [PMID: 35687681 PMCID: PMC9187228 DOI: 10.1126/sciadv.abn4556] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 04/26/2022] [Indexed: 06/12/2023]
Abstract
The mechanosensory stereocilia in hair cells are organized into rows of graded height, a property crucial for auditory perception. Gpsm2-Gαi-Whirlin-Myo15-Eps8 complex at tips of the tallest stereocilia is proposed to define hair bundle row identity, although the underlying mechanism remains elusive. Here, we find that Gpsm2 could undergo phase separation. Moreover, row 1-specific Gpsm2-Gαi complex significantly promotes the formation of the five-component tip complex density (5xTCD) condensates. The 5xTCD condensates display much stronger actin-bundling ability than those without Gpsm2-Gαi, which may provide critical insights into how Gpsm2-Gαi specifies the tallest stereocilia. A deafness-associated mutation of Gpsm2 leads to impaired formation of the 5xTCD condensates and consequently reduced actin bundling, providing possible clues for etiology of hearing loss in patients with Chudley-McCullough syndrome.
Collapse
Affiliation(s)
- Yingdong Shi
- Department of Neurology, the First Affiliated Hospital of USTC, Ministry of Education Key Laboratory for Cellular Dynamics, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Lin Lin
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chao Wang
- Department of Neurology, the First Affiliated Hospital of USTC, Ministry of Education Key Laboratory for Cellular Dynamics, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Jinwei Zhu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
7
|
Miyoshi T, Belyantseva IA, Kitajiri SI, Miyajima H, Nishio SY, Usami SI, Kim BJ, Choi BY, Omori K, Shroff H, Friedman TB. Human deafness-associated variants alter the dynamics of key molecules in hair cell stereocilia F-actin cores. Hum Genet 2022; 141:363-382. [PMID: 34232383 PMCID: PMC11351816 DOI: 10.1007/s00439-021-02304-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/15/2021] [Indexed: 12/16/2022]
Abstract
Stereocilia protrude up to 100 µm from the apical surface of vertebrate inner ear hair cells and are packed with cross-linked filamentous actin (F-actin). They function as mechanical switches to convert sound vibration into electrochemical neuronal signals transmitted to the brain. Several genes encode molecular components of stereocilia including actin monomers, actin regulatory and bundling proteins, motor proteins and the proteins of the mechanotransduction complex. A stereocilium F-actin core is a dynamic system, which is continuously being remodeled while maintaining an outwardly stable architecture under the regulation of F-actin barbed-end cappers, severing proteins and crosslinkers. The F-actin cores of stereocilia also provide a pathway for motor proteins to transport cargos including components of tip-link densities, scaffolding proteins and actin regulatory proteins. Deficiencies and mutations of stereocilia components that disturb this "dynamic equilibrium" in stereocilia can induce morphological changes and disrupt mechanotransduction causing sensorineural hearing loss, best studied in mouse and zebrafish models. Currently, at least 23 genes, associated with human syndromic and nonsyndromic hearing loss, encode proteins involved in the development and maintenance of stereocilia F-actin cores. However, it is challenging to predict how variants associated with sensorineural hearing loss segregating in families affect protein function. Here, we review the functions of several molecular components of stereocilia F-actin cores and provide new data from our experimental approach to directly evaluate the pathogenicity and functional impact of reported and novel variants of DIAPH1 in autosomal-dominant DFNA1 hearing loss using single-molecule fluorescence microscopy.
Collapse
Affiliation(s)
- Takushi Miyoshi
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Porter Neuroscience Research Center, Room 1F-143A, Bethesda, MD, 20892, USA.
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan.
| | - Inna A Belyantseva
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Porter Neuroscience Research Center, Room 1F-143A, Bethesda, MD, 20892, USA
| | - Shin-Ichiro Kitajiri
- Department of Hearing Implant Sciences, Shinshu University School of Medicine, 390-8621, Matsumoto, Japan
| | - Hiroki Miyajima
- Department of Otolaryngology, Shinshu University School of Medicine, Matsumoto, 390-8621, Japan
- Department of Otolaryngology, Aizawa Hospital, Matsumoto, 390-8510, Japan
| | - Shin-Ya Nishio
- Department of Hearing Implant Sciences, Shinshu University School of Medicine, 390-8621, Matsumoto, Japan
| | - Shin-Ichi Usami
- Department of Hearing Implant Sciences, Shinshu University School of Medicine, 390-8621, Matsumoto, Japan
| | - Bong Jik Kim
- Department of Otolaryngology-Head and Neck Surgery, Chungnam National University College of Medicine, Chungnam National University Sejong Hospital, Sejong, 30099, South Korea
- Brain Research Institute, Chungnam National University College of Medicine, Daejeon, 35015, South Korea
| | - Byung Yoon Choi
- Department of Otorhinolaryngology, Seoul National University Bundang Hospital, Seongnam, 13620, South Korea
| | - Koichi Omori
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Hari Shroff
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Thomas B Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Porter Neuroscience Research Center, Room 1F-143A, Bethesda, MD, 20892, USA
| |
Collapse
|
8
|
Ivanchenko MV, Indzhykulian AA, Corey DP. Electron Microscopy Techniques for Investigating Structure and Composition of Hair-Cell Stereociliary Bundles. Front Cell Dev Biol 2021; 9:744248. [PMID: 34746139 PMCID: PMC8569945 DOI: 10.3389/fcell.2021.744248] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/28/2021] [Indexed: 11/18/2022] Open
Abstract
Hair cells—the sensory cells of the vertebrate inner ear—bear at their apical surfaces a bundle of actin-filled protrusions called stereocilia, which mediate the cells’ mechanosensitivity. Hereditary deafness is often associated with morphological disorganization of stereocilia bundles, with the absence or mislocalization within stereocilia of specific proteins. Thus, stereocilia bundles are closely examined to understand most animal models of hereditary hearing loss. Because stereocilia have a diameter less than a wavelength of light, light microscopy is not adequate to reveal subtle changes in morphology or protein localization. Instead, electron microscopy (EM) has proven essential for understanding stereocilia bundle development, maintenance, normal function, and dysfunction in disease. Here we review a set of EM imaging techniques commonly used to study stereocilia, including optimal sample preparation and best imaging practices. These include conventional and immunogold transmission electron microscopy (TEM) and scanning electron microscopy (SEM), as well as focused-ion-beam scanning electron microscopy (FIB-SEM), which enables 3-D serial reconstruction of resin-embedded biological structures at a resolution of a few nanometers. Parameters for optimal sample preparation, fixation, immunogold labeling, metal coating and imaging are discussed. Special attention is given to protein localization in stereocilia using immunogold labeling. Finally, we describe the advantages and limitations of these EM techniques and their suitability for different types of studies.
Collapse
Affiliation(s)
- Maryna V Ivanchenko
- Department of Neurobiology, Harvard Medical School, Boston, MA, United States
| | - Artur A Indzhykulian
- Department of Otolaryngology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - David P Corey
- Department of Neurobiology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
9
|
Lin L, Shi Y, Wang M, Wang C, Lu Q, Zhu J, Zhang R. Phase separation-mediated condensation of Whirlin-Myo15-Eps8 stereocilia tip complex. Cell Rep 2021; 34:108770. [PMID: 33626355 DOI: 10.1016/j.celrep.2021.108770] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 01/05/2021] [Accepted: 01/28/2021] [Indexed: 12/19/2022] Open
Abstract
Stereocilia, the mechanosensory organelles on the apical surface of hair cells, are necessary to detect sound and carry out mechano-electrical transduction. An electron-dense matrix is located at the distal tips of stereocilia and plays crucial roles in the regulation of stereocilia morphology. Mutations of the components in this tip complex density (TCD) have been associated with profound deafness. However, the mechanism underlying the formation of the TCD is largely unknown. Here, we discover that the specific multivalent interactions among the Whirlin-myosin 15 (Myo15)-Eps8 complex lead to the formation of the TCD-like condensates through liquid-liquid phase separation. The reconstituted TCD-like condensates effectively promote actin bundling. A deafness-associated mutation of Myo15 interferes with the condensates formation and consequently impairs actin bundling. Therefore, our study not only suggests that the TCD in hair cell stereocilia may form via phase separation but it also provides important clues for the possible mechanism underlying hearing loss.
Collapse
Affiliation(s)
- Lin Lin
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yingdong Shi
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Mengli Wang
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Chao Wang
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Qing Lu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jinwei Zhu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Rongguang Zhang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
10
|
Myosin-XVa Controls Both Staircase Architecture and Diameter Gradation of Stereocilia Rows in the Auditory Hair Cell Bundles. J Assoc Res Otolaryngol 2020; 21:121-135. [PMID: 32152769 DOI: 10.1007/s10162-020-00745-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 02/04/2020] [Indexed: 02/08/2023] Open
Abstract
Mammalian hair cells develop their mechanosensory bundles through consecutive phases of stereocilia elongation, thickening, and retraction of supernumerary stereocilia. Many molecules involved in stereocilia elongation have been identified, including myosin-XVa. Significantly less is known about molecular mechanisms of stereocilia thickening and retraction. Here, we used scanning electron microscopy (SEM) to quantify postnatal changes in number and diameters of the auditory hair cell stereocilia in shaker-2 mice (Myo15sh2) that lack both "long" and "short" isoforms of myosin-XVa, and in mice lacking only the "long" myosin-XVa isoform (Myo15∆N). Previously, we observed large mechanotransduction current in young postnatal inner (IHC) and outer (OHC) hair cells of both these strains. Stereocilia counts showed nearly identical developmental retraction of supernumerary stereocilia in control heterozygous, Myo15sh2/sh2, and Myo15∆N/∆N mice, suggesting that this retraction is largely unaffected by myosin-XVa deficiency. However, myosin-XVa deficiency does affect stereocilia diameters. In control, the first (tallest) and second row stereocilia grow in diameter simultaneously. However, the third row stereocilia in IHCs grow only until postnatal day 1-2 and then become thinner. In OHCs, they also grow slower than taller stereocilia, forming a stereocilia diameter gradation within a hair bundle. The sh2 mutation disrupts this gradation and makes all stereocilia nearly identical in thickness in both IHCs and OHCs, with only subtle residual diameter differences. All Myo15sh2/sh2 stereocilia grow postnatally including the third row, which is not a part of normal development. Serial sections with focused ion beam (FIB)-SEM confirmed that diameter changes of Myo15sh2/sh2 IHC and OHC stereocilia resulted from corresponding changes of their actin cores. In contrast to Myo15sh2/sh2, Myo15∆N/∆N hair cells develop prominent stereocilia diameter gradation. Thus, besides building the staircase, the short isoform of myosin-XVa is essential for controlling the diameter of the third row stereocilia and formation of the stereocilia diameter gradation in a hair bundle.
Collapse
|
11
|
Friedman TB, Belyantseva IA, Frolenkov GI. Myosins and Hearing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1239:317-330. [DOI: 10.1007/978-3-030-38062-5_13] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
12
|
Tadenev ALD, Akturk A, Devanney N, Mathur PD, Clark AM, Yang J, Tarchini B. GPSM2-GNAI Specifies the Tallest Stereocilia and Defines Hair Bundle Row Identity. Curr Biol 2019; 29:921-934.e4. [PMID: 30827920 DOI: 10.1016/j.cub.2019.01.051] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 12/12/2018] [Accepted: 01/21/2019] [Indexed: 12/12/2022]
Abstract
The transduction compartment of inner ear hair cells, the hair bundle, is composed of stereocilia rows of graded height, a property essential for sensory function that remains poorly understood at the molecular level. We previously showed that GPSM2-GNAI is enriched at stereocilia distal tips and required for their postnatal elongation and bundle morphogenesis-two characteristics shared with MYO15A (short isoform), WHRN, and EPS8 proteins. Here we first performed a comprehensive genetic analysis of the mouse auditory epithelium to show that GPSM2, GNAI, MYO15A, and WHRN operate in series within the same pathway. To understand how these functionally disparate proteins act as an obligate complex, we then systematically analyzed their distribution in normal and mutant bundles over time. We discovered that WHRN-GPSM2-GNAI is an extra module recruited by and added to a pre-existing MYO15A-EPS8 stereocilia tip complex. This extended complex is only present in the first, tallest row, and is required to stabilize larger amounts of MYO15A-EPS8 than in shorter rows, which at tips harbor only MYO15A-EPS8. In the absence of GPSM2 or GNAI function, including in the epistatic Myo15a and Whrn mutants, bundles retain an embryonic-like organization that coincides with generic stereocilia at the molecular level. We propose that GPSM2-GNAI confers on the first row its unique tallest identity and participates in generating differential row identity across the hair bundle.
Collapse
Affiliation(s)
| | - Anil Akturk
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | | | - Pranav Dinesh Mathur
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah, Salt Lake City, UT 84132, USA
| | - Anna M Clark
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah, Salt Lake City, UT 84132, USA
| | - Jun Yang
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah, Salt Lake City, UT 84132, USA; Department of Neurobiology and Anatomy, University of Utah, 20 North 1900 East, Salt Lake City, UT 84132, USA; Division of Otolaryngology, Department of Surgery, University of Utah, 50 North Medical Drive, Salt Lake City, UT 84132, USA
| | - Basile Tarchini
- The Jackson Laboratory, Bar Harbor, ME 04609, USA; Department of Medicine, Tufts University, Boston, MA 02111, USA; Graduate School of Biomedical Science and Engineering (GSBSE), University of Maine, Orono, ME 04469, USA.
| |
Collapse
|
13
|
Vélez-Ortega AC, Frolenkov GI. Building and repairing the stereocilia cytoskeleton in mammalian auditory hair cells. Hear Res 2019; 376:47-57. [PMID: 30638948 DOI: 10.1016/j.heares.2018.12.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/19/2018] [Accepted: 12/28/2018] [Indexed: 10/27/2022]
Abstract
Despite all recent achievements in identification of the molecules that are essential for the structure and mechanosensory function of stereocilia bundles in the auditory hair cells of mammalian species, we still have only a rudimentary understanding of the mechanisms of stereocilia formation, maintenance, and repair. Important molecular differences distinguishing mammalian auditory hair cells from hair cells of other types and species have been recently revealed. In addition, we are beginning to solve the puzzle of the apparent life-long stability of the stereocilia bundles in these cells. New data link the stability of the cytoskeleton in the mammalian auditory stereocilia with the normal activity of mechanotransduction channels. These data suggest new ideas on how a terminally-differentiated non-regenerating hair cell in the mammalian cochlea may repair and tune its stereocilia bundle throughout the life span of the organism.
Collapse
Affiliation(s)
- A Catalina Vélez-Ortega
- Department of Physiology, University of Kentucky, 800 Rose St., Lexington, KY, 40536-0298, USA.
| | - Gregory I Frolenkov
- Department of Physiology, University of Kentucky, 800 Rose St., Lexington, KY, 40536-0298, USA.
| |
Collapse
|
14
|
Forge A, Taylor RR, Dawson SJ, Lovett M, Jagger DJ. Disruption of SorCS2 reveals differences in the regulation of stereociliary bundle formation between hair cell types in the inner ear. PLoS Genet 2017; 13:e1006692. [PMID: 28346477 PMCID: PMC5386298 DOI: 10.1371/journal.pgen.1006692] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 04/10/2017] [Accepted: 03/14/2017] [Indexed: 12/24/2022] Open
Abstract
Behavioural anomalies suggesting an inner ear disorder were observed in a colony of transgenic mice. Affected animals were profoundly deaf. Severe hair bundle defects were identified in all outer and inner hair cells (OHC, IHC) in the cochlea and in hair cells of vestibular macular organs, but hair cells in cristae were essentially unaffected. Evidence suggested the disorder was likely due to gene disruption by a randomly inserted transgene construct. Whole-genome sequencing identified interruption of the SorCS2 (Sortilin-related VPS-10 domain containing protein) locus. Real-time-qPCR demonstrated disrupted expression of SorCS2 RNA in cochlear tissue from affected mice and this was confirmed by SorCS2 immuno-labelling. In all affected hair cells, stereocilia were shorter than normal, but abnormalities of bundle morphology and organisation differed between hair cell types. Bundles on OHC were grossly misshapen with significantly fewer stereocilia than normal. However, stereocilia were organised in rows of increasing height. Bundles on IHC contained significantly more stereocilia than normal with some longer stereocilia towards the centre, or with minimal height differentials. In early postnatal mice, kinocilia (primary cilia) of IHC and of OHC were initially located towards the lateral edge of the hair cell surface but often became surrounded by stereocilia as bundle shape and apical surface contour changed. In macular organs the kinocilium was positioned in the centre of the cell surface throughout maturation. There was disruption of the signalling pathway controlling intrinsic hair cell apical asymmetry. LGN and Gαi3 were largely absent, and atypical Protein Kinase C (aPKC) lost its asymmetric distribution. The results suggest that SorCS2 plays a role upstream of the intrinsic polarity pathway and that there are differences between hair cell types in the deployment of the machinery that generates a precisely organised hair bundle.
Collapse
MESH Headings
- Age Factors
- Animals
- Gene Expression Regulation
- Hair Cells, Auditory, Inner/metabolism
- Hair Cells, Auditory, Inner/pathology
- Hearing Loss/genetics
- Hearing Loss/metabolism
- Hearing Loss/physiopathology
- Immunohistochemistry
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Microscopy, Confocal
- Microscopy, Electron, Scanning
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Organ of Corti/metabolism
- Organ of Corti/physiopathology
- Organ of Corti/ultrastructure
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Stereocilia/genetics
- Stereocilia/metabolism
- Stereocilia/pathology
Collapse
Affiliation(s)
- Andrew Forge
- UCL Ear Institute, University College London, London, United Kingdom
- * E-mail:
| | - Ruth R. Taylor
- UCL Ear Institute, University College London, London, United Kingdom
| | - Sally J. Dawson
- UCL Ear Institute, University College London, London, United Kingdom
| | - Michael Lovett
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Daniel J. Jagger
- UCL Ear Institute, University College London, London, United Kingdom
| |
Collapse
|
15
|
Gene Therapy Restores Balance and Auditory Functions in a Mouse Model of Usher Syndrome. Mol Ther 2017; 25:780-791. [PMID: 28254438 DOI: 10.1016/j.ymthe.2017.01.007] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 01/03/2017] [Accepted: 01/06/2017] [Indexed: 12/15/2022] Open
Abstract
Dizziness and hearing loss are among the most common disabilities. Many forms of hereditary balance and hearing disorders are caused by abnormal development of stereocilia, mechanosensory organelles on the apical surface of hair cells in the inner ear. The deaf whirler mouse, a model of human Usher syndrome (manifested by hearing loss, dizziness, and blindness), has a recessive mutation in the whirlin gene, which renders hair cell stereocilia short and dysfunctional. In this study, wild-type whirlin cDNA was delivered to the inner ears of neonatal whirler mice using adeno-associated virus serotype 2/8 (AAV8-whirlin) by injection into the posterior semicircular canal. Unilateral whirlin gene therapy injection was able to restore balance function as well as improve hearing in whirler mice for at least 4 months. Our data indicate that gene therapy is likely to become a treatment option for hereditary disorders of balance and hearing.
Collapse
|
16
|
Krey JF, Krystofiak ES, Dumont RA, Vijayakumar S, Choi D, Rivero F, Kachar B, Jones SM, Barr-Gillespie PG. Plastin 1 widens stereocilia by transforming actin filament packing from hexagonal to liquid. J Cell Biol 2016; 215:467-482. [PMID: 27811163 PMCID: PMC5119939 DOI: 10.1083/jcb.201606036] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 09/29/2016] [Accepted: 10/11/2016] [Indexed: 11/24/2022] Open
Abstract
With their essential role in inner ear function, stereocilia of sensory hair cells demonstrate the importance of cellular actin protrusions. Actin packing in stereocilia is mediated by cross-linkers of the plastin, fascin, and espin families. Although mice lacking espin (ESPN) have no vestibular or auditory function, we found that mice that either lacked plastin 1 (PLS1) or had nonfunctional fascin 2 (FSCN2) had reduced inner ear function, with double-mutant mice most strongly affected. Targeted mass spectrometry indicated that PLS1 was the most abundant cross-linker in vestibular stereocilia and the second most abundant protein overall; ESPN only accounted for ∼15% of the total cross-linkers in bundles. Mouse utricle stereocilia lacking PLS1 were shorter and thinner than wild-type stereocilia. Surprisingly, although wild-type stereocilia had random liquid packing of their actin filaments, stereocilia lacking PLS1 had orderly hexagonal packing. Although all three cross-linkers are required for stereocilia structure and function, PLS1 biases actin toward liquid packing, which allows stereocilia to grow to a greater diameter.
Collapse
Affiliation(s)
- Jocelyn F Krey
- Oregon Hearing Research Center, Oregon Health and Science University, Portland, OR 97239
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239
| | - Evan S Krystofiak
- Laboratory of Cell Structure and Dynamics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892
| | - Rachel A Dumont
- Oregon Hearing Research Center, Oregon Health and Science University, Portland, OR 97239
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239
| | - Sarath Vijayakumar
- Department of Special Education and Communication Disorders, University of Nebraska-Lincoln, Lincoln, NE 68583
| | - Dongseok Choi
- Oregon Health and Science University-Portland State University School of Public Health, Oregon Health and Science University, Portland, OR 97239
- Graduate School of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Francisco Rivero
- Centre for Cardiovascular and Metabolic Research, The Hull York Medical School, University of Hull, Hull HU6 7RX, England, UK
| | - Bechara Kachar
- Laboratory of Cell Structure and Dynamics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892
| | - Sherri M Jones
- Department of Special Education and Communication Disorders, University of Nebraska-Lincoln, Lincoln, NE 68583
| | - Peter G Barr-Gillespie
- Oregon Hearing Research Center, Oregon Health and Science University, Portland, OR 97239
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239
| |
Collapse
|
17
|
Jin Y, Ren N, Li S, Fu X, Sun X, Men Y, Xu Z, Zhang J, Xie Y, Xia M, Gao J. Deletion of Brg1 causes abnormal hair cell planer polarity, hair cell anchorage, and scar formation in mouse cochlea. Sci Rep 2016; 6:27124. [PMID: 27255603 PMCID: PMC4891731 DOI: 10.1038/srep27124] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 05/12/2016] [Indexed: 12/28/2022] Open
Abstract
Hair cells (HCs) are mechanosensors that play crucial roles in perceiving sound, acceleration, and fluid motion. The precise architecture of the auditory epithelium and its repair after HC loss is indispensable to the function of organ of Corti (OC). In this study, we showed that Brg1 was highly expressed in auditory HCs. Specific deletion of Brg1 in postnatal HCs resulted in rapid HC degeneration and profound deafness in mice. Further experiments showed that cell-intrinsic polarity of HCs was abolished, docking of outer hair cells (OHCs) by Deiter’s cells (DCs) failed, and scar formation in the reticular lamina was deficient. We demonstrated that Brg1 ablation disrupted the Gαi/Insc/LGN and aPKC asymmetric distributions, without overt effects on the core planer cell polarity (PCP) pathway. We also demonstrated that Brg1-deficient HCs underwent apoptosis, and that leakage in the reticular lamina caused by deficient scar formation shifted the mode of OHC death from apoptosis to necrosis. Together, these data demonstrated a requirement for Brg1 activity in HC development and suggested a role for Brg1 in the proper cellular structure formation of HCs.
Collapse
Affiliation(s)
- Yecheng Jin
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan 250100, China
| | - Naixia Ren
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan 250100, China
| | - Shiwei Li
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan 250100, China
| | - Xiaolong Fu
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan 250100, China
| | - Xiaoyang Sun
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan 250100, China
| | - Yuqin Men
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan 250100, China
| | - Zhigang Xu
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan 250100, China
| | - Jian Zhang
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan 250100, China
| | - Yue Xie
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan 250100, China
| | - Ming Xia
- Department of Otolaryngology-Head and Neck Surgery, The Second Hospital of Shandong University, Jinan 250033, China
| | - Jiangang Gao
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan 250100, China
| |
Collapse
|
18
|
Alternative Splice Forms Influence Functions of Whirlin in Mechanosensory Hair Cell Stereocilia. Cell Rep 2016; 15:935-943. [PMID: 27117407 PMCID: PMC4859837 DOI: 10.1016/j.celrep.2016.03.081] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 02/18/2016] [Accepted: 03/22/2016] [Indexed: 11/23/2022] Open
Abstract
WHRN (DFNB31) mutations cause diverse hearing disorders: profound deafness (DFNB31) or variable hearing loss in Usher syndrome type II. The known role of WHRN in stereocilia elongation does not explain these different pathophysiologies. Using spontaneous and targeted Whrn mutants, we show that the major long (WHRN-L) and short (WHRN-S) isoforms of WHRN have distinct localizations within stereocilia and also across hair cell types. Lack of both isoforms causes abnormally short stereocilia and profound deafness and vestibular dysfunction. WHRN-S expression, however, is sufficient to maintain stereocilia bundle morphology and function in a subset of hair cells, resulting in some auditory response and no overt vestibular dysfunction. WHRN-S interacts with EPS8, and both are required at stereocilia tips for normal length regulation. WHRN-L localizes midway along the shorter stereocilia, at the level of inter-stereociliary links. We propose that differential isoform expression underlies the variable auditory and vestibular phenotypes associated with WHRN mutations. Major WHRN isoforms WHRN-S and WHRN-L have distinct localizations within stereocilia Lack of WHRN-S and WHRN-L causes short stereocilia bundles and profound deafness In absence of WHRN-L, WHRN-S can preserve stereocilia length in certain hair cells Differential isoform expression underlies distinct phenotypes of known Whrn mutations
Collapse
|
19
|
Mathur PD, Zou J, Zheng T, Almishaal A, Wang Y, Chen Q, Wang L, Vashist D, Brown S, Park A, Yang J. Distinct expression and function of whirlin isoforms in the inner ear and retina: an insight into pathogenesis of USH2D and DFNB31. Hum Mol Genet 2015; 24:6213-28. [PMID: 26307081 PMCID: PMC4599678 DOI: 10.1093/hmg/ddv339] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 08/17/2015] [Indexed: 11/13/2022] Open
Abstract
Usher syndrome (USH) is the most common inherited deaf-blindness with the majority of USH causative genes also involved in nonsyndromic recessive deafness (DFNB). The mechanism underlying this disease variation of USH genes is unclear. Here, we addressed this issue by investigating the DFNB31 gene, whose mutations cause USH2D or DFNB31 depending on their position. We found that the mouse DFNB31 ortholog (Dfnb31) expressed different mRNA variants and whirlin protein isoforms in the cochlea and retina, where these isoforms played different roles spatially and temporally. Full-length (FL-) whirlin in photoreceptors and hair cell stereociliary bases is important for the USH type 2 protein complex, while FL- and C-terminal (C-) whirlins in hair cell stereociliary tips participate in stereociliary elongation. Mutations in the whirlin N-terminal region disrupted FL-whirlin isoform in the inner ear and retina but not C-whirlin in the inner ear, and led to retinal degeneration as well as moderate to severe hearing loss. By contrast, a mutation in the whirlin C-terminal region eliminated all normal whirlin isoforms but generated a truncated N-terminal whirlin protein fragment, which was partially functional in the retina and thus prevented retinal degeneration. Mice with this mutation had profound hearing loss. In summary, disruption of distinct whirlin isoforms by Dfnb31 mutations leads to a variety of phenotype configurations and may explain the mechanism underlying the different disease manifestations of human DFNB31 mutations. Our findings have a potential to improve diagnosis and treatment of USH disease and quality of life in USH patients.
Collapse
Affiliation(s)
- Pranav Dinesh Mathur
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA, Department of Neurobiology and Anatomy, University of Utah, 20 North 1900 East, Salt Lake City, UT 84132, USA
| | - Junhuang Zou
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA
| | - Tihua Zheng
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA
| | - Ali Almishaal
- Department of Communication Sciences and Disorders, University of Utah, 390 South 1530 East, Salt Lake City, UT 84112, USA
| | - Yong Wang
- Division of Otolaryngology, Department of Surgery, University of Utah, 50 North Medical Drive, Salt Lake City, UT 84132, USA
| | - Qian Chen
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA
| | - Le Wang
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA, The First Affiliated Hospital, Jilin University, Changchun, Jilin 130061, China and
| | - Deepti Vashist
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA
| | - Steve Brown
- Mammalian Genetics Unit, Medical Research Council, Harwell, Oxfordshire OX11 ORD, UK
| | - Albert Park
- Division of Otolaryngology, Department of Surgery, University of Utah, 50 North Medical Drive, Salt Lake City, UT 84132, USA
| | - Jun Yang
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA, Department of Neurobiology and Anatomy, University of Utah, 20 North 1900 East, Salt Lake City, UT 84132, USA, Division of Otolaryngology, Department of Surgery, University of Utah, 50 North Medical Drive, Salt Lake City, UT 84132, USA,
| |
Collapse
|
20
|
Mathur PD, Vijayakumar S, Vashist D, Jones SM, Jones TA, Yang J. A study of whirlin isoforms in the mouse vestibular system suggests potential vestibular dysfunction in DFNB31-deficient patients. Hum Mol Genet 2015; 24:7017-30. [PMID: 26420843 DOI: 10.1093/hmg/ddv403] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 09/21/2015] [Indexed: 11/12/2022] Open
Abstract
The DFNB31 gene plays an indispensable role in the cochlea and retina. Mutations in this gene disrupt its various isoforms and lead to non-syndromic deafness, blindness and deaf-blindness. However, the known expression of Dfnb31, the mouse ortholog of DFNB31, in vestibular organs and the potential vestibular-deficient phenotype observed in one Dfnb31 mutant mouse (Dfnb31(wi/wi)) suggest that DFNB31 may also be important for vestibular function. In this study, we find that full-length (FL-) and C-terminal (C-) whirlin isoforms are expressed in the vestibular organs, where their stereociliary localizations are similar to those of developing cochlear inner hair cells. No whirlin is detected in Dfnb31(wi/wi) vestibular organs, while only C-whirlin is expressed in Dfnb31(neo/neo) vestibular organs. Both FL- and C-whirlin isoforms are required for normal vestibular stereociliary growth, although they may play slightly different roles in the central and peripheral zones of the crista ampullaris. Vestibular sensory-evoked potentials demonstrate severe to profound vestibular deficits in Dfnb31(neo/neo) and Dfnb31(wi/wi) mice. Swimming and rotarod tests demonstrate that the two Dfnb31 mutants have balance problems, with Dfnb31(wi/wi) mice being more affected than Dfnb31(neo/neo) mice. Because Dfnb31(wi/wi) and Dfnb31(neo/neo) mice faithfully recapitulate hearing and vision symptoms in patients, our findings of vestibular dysfunction in these Dfnb31 mutants raise the question of whether DFNB31-deficient patients may acquire vestibular as well as hearing and vision loss.
Collapse
Affiliation(s)
- Pranav Dinesh Mathur
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA, Department of Neurobiology and Anatomy, University of Utah, 20 North 1900 East, Salt Lake City, UT 84132, USA
| | - Sarath Vijayakumar
- Department of Special Education and Communication Disorders, University of Nebraska-Lincoln, 304 Barkley Memorial Center, Lincoln, NE 68583, USA and
| | - Deepti Vashist
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA
| | - Sherri M Jones
- Department of Special Education and Communication Disorders, University of Nebraska-Lincoln, 304 Barkley Memorial Center, Lincoln, NE 68583, USA and
| | - Timothy A Jones
- Department of Special Education and Communication Disorders, University of Nebraska-Lincoln, 304 Barkley Memorial Center, Lincoln, NE 68583, USA and
| | - Jun Yang
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA, Department of Neurobiology and Anatomy, University of Utah, 20 North 1900 East, Salt Lake City, UT 84132, USA, Division of Otolaryngology, Department of Surgery, University of Utah, 50 North Medical Drive, Salt Lake City, UT 84132, USA
| |
Collapse
|
21
|
Zou J, Mathur PD, Zheng T, Wang Y, Almishaal A, Park AH, Yang J. Individual USH2 proteins make distinct contributions to the ankle link complex during development of the mouse cochlear stereociliary bundle. Hum Mol Genet 2015; 24:6944-57. [PMID: 26401052 DOI: 10.1093/hmg/ddv398] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 09/21/2015] [Indexed: 11/14/2022] Open
Abstract
Usher syndrome (USH) is the leading cause of inherited deaf-blindness, with type 2 (USH2) being the most common clinical form. Studies suggest that proteins encoded by USH2 causative genes assemble into the ankle link complex (ALC) at the hair cell stereociliary bundle; however, little is known about the in vivo assembly and function of this complex. Using various USH2 mutant mice, we showed by immunofluorescence that USH2 proteins play different roles in cochlear ALC assembly, with G protein-coupled receptor 98 being the most important protein. Complex assembly likely occurs at the stereociliary bundle but not along the protein transport route in the cell body. Stereociliary morphological defects in USH2 mutant mice suggest roles for the ALC in regulating inner hair cell stereociliary growth and differentiation as well as outer hair cell stereociliary rigidity and organization during development. These roles are unique from the bundle cohesion role of Usher syndrome type 1 protein complexes. Loss of individual USH2 gene expressions leads to variable morphological and functional consequences, correlating with the severity of ALC disruption. This finding suggests a potential genotype-phenotype correlation in USH2 patients. In summary, this study provides novel insights into the molecular mechanism underlying cochlear stereociliary bundle development and hearing loss pathogenesis of various USH2 subtypes. Our thorough phenotypical characterization of USH2 mouse models is essential for future use of these animal models in therapeutic development.
Collapse
Affiliation(s)
- Junhuang Zou
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA
| | - Pranav D Mathur
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA, Department of Neurobiology and Anatomy, University of Utah, 20 North 1900 East, Salt Lake City, UT 84132, USA
| | - Tihua Zheng
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA
| | - Yong Wang
- Division of Otolaryngology, Department of Surgery, University of Utah, 30 North 1900 East, Salt Lake City, UT 84132, USA and
| | - Ali Almishaal
- Department of Communication Sciences and Disorders, University of Utah, 390 South 1530 East, Salt Lake City, UT 84112, USA
| | - Albert H Park
- Division of Otolaryngology, Department of Surgery, University of Utah, 30 North 1900 East, Salt Lake City, UT 84132, USA and
| | - Jun Yang
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA, Department of Neurobiology and Anatomy, University of Utah, 20 North 1900 East, Salt Lake City, UT 84132, USA, Division of Otolaryngology, Department of Surgery, University of Utah, 30 North 1900 East, Salt Lake City, UT 84132, USA and
| |
Collapse
|
22
|
Gene Therapy Restores Hair Cell Stereocilia Morphology in Inner Ears of Deaf Whirler Mice. Mol Ther 2015; 24:17-25. [PMID: 26307667 DOI: 10.1038/mt.2015.150] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 08/10/2015] [Indexed: 01/09/2023] Open
Abstract
Hereditary deafness is one of the most common disabilities affecting newborns. Many forms of hereditary deafness are caused by morphological defects of the stereocilia bundles on the apical surfaces of inner ear hair cells, which are responsible for sound detection. We explored the effectiveness of gene therapy in restoring the hair cell stereocilia architecture in the whirlin mouse model of human deafness, which is deaf due to dysmorphic, short stereocilia. Wild-type whirlin cDNA was delivered via adeno-associated virus (AAV8) by injection through the round window of the cochleas in neonatal whirler mice. Subsequently, whirlin expression was detected in infected hair cells (IHCs), and normal stereocilia length and bundle architecture were restored. Whirlin gene therapy also increased inner hair cell survival in the treated ears compared to the contralateral nontreated ears. These results indicate that a form of inherited deafness due to structural defects in cochlear hair cells is amenable to restoration through gene therapy.
Collapse
|
23
|
Jahan I, Pan N, Kersigo J, Fritzsch B. Neurog1 can partially substitute for Atoh1 function in hair cell differentiation and maintenance during organ of Corti development. Development 2015. [PMID: 26209643 DOI: 10.1242/dev.123091] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Atoh1, a basic helix-loop-helix (bHLH) transcription factor (TF), is essential for the differentiation of hair cells (HCs), mechanotransducers that convert sound into auditory signals in the mammalian organ of Corti (OC). Previous work demonstrated that replacing mouse Atoh1 with the fly ortholog atonal rescues HC differentiation, indicating functional replacement by other bHLH genes. However, replacing Atoh1 with Neurog1 resulted in reduced HC differentiation compared with transient Atoh1 expression in a 'self-terminating' Atoh1 conditional null mouse (Atoh1-Cre; Atoh1(f/f)). We now show that combining Neurog1 in one allele with removal of floxed Atoh1 in a self-terminating conditional mutant (Atoh1-Cre; Atoh1(f/kiNeurog1)) mouse results in significantly more differentiated inner HCs and outer HCs that have a prolonged longevity of 9 months compared with Atoh1 self-terminating littermates. Stereocilia bundles are partially disorganized, disoriented and not HC type specific. Replacement of Atoh1 with Neurog1 maintains limited expression of Pou4f3 and Barhl1 and rescues HCs quantitatively, but not qualitatively. OC patterning and supporting cell differentiation are also partially disrupted. Diffusible factors involved in patterning are reduced (Fgf8) and factors involved in cell-cell interactions are affected (Jag1, Hes5). Despite the presence of many HCs with stereocilia these mice are deaf, possibly owing to HC and OC patterning defects. This study provides a novel approach to disrupt OC development through modulating the HC-specific intracellular TF network. The resulting disorganized OC indicates that normally differentiated HCs act as 'self-organizers' for OC development and that Atoh1 plays a crucial role to initiate HC stereocilia differentiation independently of HC viability.
Collapse
Affiliation(s)
- Israt Jahan
- Department of Biology, College of Liberal Arts & Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - Ning Pan
- Department of Biology, College of Liberal Arts & Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - Jennifer Kersigo
- Department of Biology, College of Liberal Arts & Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - Bernd Fritzsch
- Department of Biology, College of Liberal Arts & Sciences, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
24
|
Abstract
Cochlear hair cell bundles, made up of 10s to 100s of individual stereocilia, are essential for hearing, and even relatively minor structural changes, due to mutations or injuries, can result in total deafness. Consistent with its specialized role, the staircase geometry (SCG) of hair cell bundles presents one of the most striking, intricate, and precise organizations of actin-based cellular shapes. Composed of rows of actin-filled stereocilia with increasing lengths, the hair cell’s staircase-shaped bundle is formed from a progenitor field of smaller, thinner, and uniformly spaced microvilli with relatively invariant lengths. While recent genetic studies have provided a significant increase in information on the multitude of stereocilia protein components, there is currently no model that integrates the basic physical forces and biochemical processes necessary to explain the emergence of the SCG. We propose such a model derived from the biophysical and biochemical characteristics of actin-based protrusions. We demonstrate that polarization of the cell’s apical surface, due to the lateral polarization of the entire epithelial layer, plays a key role in promoting SCG formation. Furthermore, our model explains many distinct features of the manifestations of SCG in different species and in the presence of various deafness-associated mutations.
Collapse
|
25
|
Toms M, Bitner-Glindzicz M, Webster A, Moosajee M. Usher syndrome: a review of the clinical phenotype, genes and therapeutic strategies. EXPERT REVIEW OF OPHTHALMOLOGY 2015. [DOI: 10.1586/17469899.2015.1033403] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
26
|
Eggers S, DeBoer KD, van den Bergen J, Gordon L, White SJ, Jamsai D, McLachlan RI, Sinclair AH, O'Bryan MK. Copy number variation associated with meiotic arrest in idiopathic male infertility. Fertil Steril 2015; 103:214-9. [DOI: 10.1016/j.fertnstert.2014.09.030] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 09/23/2014] [Accepted: 09/23/2014] [Indexed: 12/15/2022]
|
27
|
Mathur P, Yang J. Usher syndrome: Hearing loss, retinal degeneration and associated abnormalities. Biochim Biophys Acta Mol Basis Dis 2014; 1852:406-20. [PMID: 25481835 DOI: 10.1016/j.bbadis.2014.11.020] [Citation(s) in RCA: 222] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 11/25/2014] [Accepted: 11/26/2014] [Indexed: 02/06/2023]
Abstract
Usher syndrome (USH), clinically and genetically heterogeneous, is the leading genetic cause of combined hearing and vision loss. USH is classified into three types, based on the hearing and vestibular symptoms observed in patients. Sixteen loci have been reported to be involved in the occurrence of USH and atypical USH. Among them, twelve have been identified as causative genes and one as a modifier gene. Studies on the proteins encoded by these USH genes suggest that USH proteins interact among one another and function in multiprotein complexes in vivo. Although their exact functions remain enigmatic in the retina, USH proteins are required for the development, maintenance and function of hair bundles, which are the primary mechanosensitive structure of inner ear hair cells. Despite the unavailability of a cure, progress has been made to develop effective treatments for this disease. In this review, we focus on the most recent discoveries in the field with an emphasis on USH genes, protein complexes and functions in various tissues as well as progress toward therapeutic development for USH.
Collapse
Affiliation(s)
- Pranav Mathur
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, UT 84132, USA; Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84132, USA
| | - Jun Yang
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, UT 84132, USA; Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84132, USA; Department of Otolaryngology Head and Neck Surgery, University of Utah, Salt Lake City, UT 84132, USA.
| |
Collapse
|
28
|
Taylor R, Bullen A, Johnson SL, Grimm-Günter EM, Rivero F, Marcotti W, Forge A, Daudet N. Absence of plastin 1 causes abnormal maintenance of hair cell stereocilia and a moderate form of hearing loss in mice. Hum Mol Genet 2014; 24:37-49. [PMID: 25124451 PMCID: PMC4262491 DOI: 10.1093/hmg/ddu417] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Hearing relies on the mechanosensory inner and outer hair cells (OHCs) of the organ of Corti, which convert mechanical deflections of their actin-rich stereociliary bundles into electrochemical signals. Several actin-associated proteins are essential for stereocilia formation and maintenance, and their absence leads to deafness. One of the most abundant actin-bundling proteins of stereocilia is plastin 1, but its function has never been directly assessed. Here, we found that plastin 1 knock-out (Pls1 KO) mice have a moderate and progressive form of hearing loss across all frequencies. Auditory hair cells developed normally in Pls1 KO, but in young adult animals, the stereocilia of inner hair cells were reduced in width and length. The stereocilia of OHCs were comparatively less affected; however, they also showed signs of degeneration in ageing mice. The hair bundle stiffness and the acquisition of the electrophysiological properties of hair cells were unaffected by the absence of plastin 1, except for a significant change in the adaptation properties, but not the size of the mechanoelectrical transducer currents. These results show that in contrast to other actin-bundling proteins such as espin, harmonin or Eps8, plastin 1 is dispensable for the initial formation of stereocilia. However, the progressive hearing loss and morphological defects of hair cells in adult Pls1 KO mice point at a specific role for plastin 1 in the preservation of adult stereocilia and optimal hearing. Hence, mutations in the human PLS1 gene may be associated with relatively mild and progressive forms of hearing loss.
Collapse
Affiliation(s)
- Ruth Taylor
- Centre for Auditory Research, UCL Ear Institute, University College London, London, UK
| | - Anwen Bullen
- Centre for Auditory Research, UCL Ear Institute, University College London, London, UK
| | - Stuart L Johnson
- Department of Biomedical Science, University of Sheffield, Sheffield, UK and
| | - Eva-Maria Grimm-Günter
- Centre for Cardiovascular and Metabolic Research, The Hull York Medical School, University of Hull, Hull, UK
| | - Francisco Rivero
- Centre for Cardiovascular and Metabolic Research, The Hull York Medical School, University of Hull, Hull, UK
| | - Walter Marcotti
- Department of Biomedical Science, University of Sheffield, Sheffield, UK and
| | - Andrew Forge
- Centre for Auditory Research, UCL Ear Institute, University College London, London, UK
| | - Nicolas Daudet
- Centre for Auditory Research, UCL Ear Institute, University College London, London, UK
| |
Collapse
|
29
|
Abstract
The 10 different genes associated with the deaf/blind disorder, Usher syndrome, encode a number of structurally and functionally distinct proteins, most expressed as multiple isoforms/protein variants. Functional characterization of these proteins suggests a role in stereocilia development in cochlear hair cells, likely owing to adhesive interactions in hair bundles. In mature hair cells, homodimers of the Usher cadherins, cadherin 23 and protocadherin 15, interact to form a structural fiber, the tip link, and the linkages that anchor the taller stereocilia's actin cytoskeleton core to the shorter adjacent stereocilia and the elusive mechanotransduction channels, explaining the deafness phenotype when these molecular interactions are perturbed. The conundrum is that photoreceptors lack a synonymous mechanotransduction apparatus, and so a common theory for Usher protein function in the two neurosensory cell types affected in Usher syndrome is lacking. Recent evidence linking photoreceptor cell dysfunction in the shaker 1 mouse model for Usher syndrome to light-induced protein translocation defects, combined with localization of an Usher protein interactome at the periciliary region of the photoreceptors suggests Usher proteins might regulate protein trafficking between the inner and outer segments of photoreceptors. A distinct Usher protein complex is trafficked to the ribbon synapses of hair cells, and synaptic defects have been reported in Usher mutants in both hair cells and photoreceptors. This review aims to clarify what is known about Usher protein function at the synaptic and apical poles of hair cells and photoreceptors and the prospects for identifying a unifying pathobiological mechanism to explain deaf/blindness in Usher syndrome.
Collapse
|
30
|
|
31
|
Manor U, Grati M, Yengo CM, Kachar B, Gov NS. Competition and compensation: dissecting the biophysical and functional differences between the class 3 myosin paralogs, myosins 3a and 3b. BIOARCHITECTURE 2012; 2:171-4. [PMID: 22954581 PMCID: PMC3696061 DOI: 10.4161/bioa.21733] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Stereocilia are actin protrusions with remarkably well-defined lengths and organization. A flurry of recent papers has reported multiple myosin motor proteins involved in regulating stereocilia structures by transporting actin-regulatory cargo to the tips of stereocilia.1-13 In our recent paper, we show that two paralogous class 3 myosins — Myo3a and Myo3b — both transport the actin-regulatory protein Espin 1 (Esp1) to stereocilia and filopodia tips in a remarkably similar, albeit non-identical fashion.1 Here we present experimental and computational data that suggests that subtle differences between these two proteins’ biophysical and biochemical properties can help us understand how these myosin species target and regulate the lengths of actin protrusions.
Collapse
Affiliation(s)
- Uri Manor
- Laboratory of Cell Structure and Dynamics; National Institute on Deafness and Other Communication Disorders; National Institutes of Health; Bethesda, MD USA
| | - M'hamed Grati
- Laboratory of Cell Structure and Dynamics; National Institute on Deafness and Other Communication Disorders; National Institutes of Health; Bethesda, MD USA
| | - Christopher M Yengo
- Department of Cellular and Molecular Physiology; Penn State College of Medicine; Hershey, PA USA
| | - Bechara Kachar
- Laboratory of Cell Structure and Dynamics; National Institute on Deafness and Other Communication Disorders; National Institutes of Health; Bethesda, MD USA
| | - Nir S Gov
- Department of Chemical Physics; Weizmann Institute of Science; Rehovot, Israel
| |
Collapse
|
32
|
Abstract
Hereditary deafness is genetically heterogeneous such that mutations of many different genes can cause hearing loss. This review focuses on the evidence and implications that several of these deafness genes encode actin-interacting proteins or actin itself. There is a growing appreciation of the contribution of the actin interactome in stereocilia development, maintenance, mechanotransduction and malfunction of the auditory system.
Collapse
|
33
|
Wang L, Zou J, Shen Z, Song E, Yang J. Whirlin interacts with espin and modulates its actin-regulatory function: an insight into the mechanism of Usher syndrome type II. Hum Mol Genet 2011; 21:692-710. [PMID: 22048959 DOI: 10.1093/hmg/ddr503] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Whirlin mutations cause retinal degeneration and hearing loss in Usher syndrome type II (USH2) and non-syndromic deafness, DFNB31. Its protein recruits other USH2 causative proteins to form a complex at the periciliary membrane complex in photoreceptors and the ankle link of the stereocilia in hair cells. However, the biological function of this USH2 protein complex is largely unknown. Using a yeast two-hybrid screen, we identified espin, an actin-binding/bundling protein involved in human deafness when defective, as a whirlin-interacting protein. The interaction between these two proteins was confirmed by their coimmunoprecipitation and colocalization in cultured cells. This interaction involves multiple domains of both proteins and only occurs when espin does not bind to actin. Espin was partially colocalized with whirlin in the retina and the inner ear. In whirlin knockout mice, espin expression changed significantly in these two tissues. Further studies found that whirlin increased the mobility of espin and actin at the actin bundles cross-linked by espin and, eventually, affected the dimension of these actin bundles. In whirlin knockout mice, the stereocilia were thickened in inner hair cells. We conclude that the interaction between whirlin and espin and the balance between their expressions are required to maintain the actin bundle network in photoreceptors and hair cells. Disruption of this actin bundle network contributes to the pathogenic mechanism of hearing loss and retinal degeneration caused by whirlin and espin mutations. Espin is a component of the USH2 protein complex and could be a candidate gene for Usher syndrome.
Collapse
Affiliation(s)
- Le Wang
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah, Salt Lake City, UT 84132, USA
| | | | | | | | | |
Collapse
|
34
|
Integrating the biophysical and molecular mechanisms of auditory hair cell mechanotransduction. Nat Commun 2011; 2:523. [PMID: 22045002 DOI: 10.1038/ncomms1533] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Mechanosensation is a primitive and somewhat ubiquitous sense. At the inner ear, sensory hair cells are refined to enhance sensitivity, dynamic range and frequency selectivity. Thirty years ago, mechanisms of mechanotransduction and adaptation were well accounted for by simple mechanical models that incorporated physiological and morphological properties of hair cells. Molecular and genetic tools, coupled with new optical techniques, are now identifying and localizing specific components of the mechanotransduction machinery. These new findings challenge long-standing theories, and require modification of old and development of new models. Future advances require the integration of molecular and physiological data to causally test these new hypotheses.
Collapse
|
35
|
Lenz M, Prost J, Joanny JF. Actin cross-linkers and the shape of stereocilia. Biophys J 2011; 99:2423-33. [PMID: 20959082 DOI: 10.1016/j.bpj.2010.07.065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 07/22/2010] [Accepted: 07/28/2010] [Indexed: 01/02/2023] Open
Abstract
Stereocilia are actin-based cellular protrusions essential for hearing. We propose that they are shaped by the detachment dynamics of actin cross-linkers, in particular espin. We account for experimentally observed stereocilium shapes, treadmilling velocity to length relationship, espin 1 localization profile, and microvillus length to espin level relationship. If the cross-linkers are allowed to reattach, our model yields a dynamical phase transition toward unbounded growth. Considering the simplified case of a noninteracting, one-filament system, we calculate the length probability distribution in the growing phase and its stationary form in a continuum approximation of the finite-length phase. Numerical simulations of interacting filaments suggest an anomalous power-law divergence of the protrusion length at the growth transition, which could be a universal feature of cross-linked depolymerizing systems.
Collapse
Affiliation(s)
- Martin Lenz
- Institut Curie, Centre de Recherche, Paris, France.
| | | | | |
Collapse
|
36
|
Mburu P, Romero MR, Hilton H, Parker A, Townsend S, Kikkawa Y, Brown SDM. Gelsolin plays a role in the actin polymerization complex of hair cell stereocilia. PLoS One 2010; 5:e11627. [PMID: 20661277 PMCID: PMC2905391 DOI: 10.1371/journal.pone.0011627] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Accepted: 06/15/2010] [Indexed: 01/05/2023] Open
Abstract
A complex of proteins scaffolded by the PDZ protein, whirlin, reside at the stereocilia tip and are critical for stereocilia development and elongation. We have shown that in outer hair cells (OHCs) whirlin is part of a larger complex involving the MAGUK protein, p55, and protein 4.1R. Whirlin interacts with p55 which is expressed exclusively in outer hair cells (OHC) in both the long stereocilia that make up the stereocilia bundle proper as well as surrounding shorter microvilli that will eventually regress. In erythrocytes, p55 forms a tripartite complex with protein 4.1R and glycophorin C promoting the assembly of actin filaments and the interaction of whirlin with p55 indicates that it plays a similar role in OHC stereocilia. However, the components directly involved in actin filament regulation in stereocilia are unknown. We have investigated additional components of the whirlin interactome by identifying interacting partners to p55. We show that the actin capping and severing protein, gelsolin, is a part of the whirlin complex. Gelsolin is detected in OHC where it localizes to the tips of the shorter rows but not to the longest row of stereocilia and the pattern of localisation at the apical hair cell surface is strikingly similar to p55. Like p55, gelsolin is ablated in the whirler and shaker2 mutants. Moreover, in a gelsolin mutant, stereocilia in the apex of the cochlea become long and straggly indicating defects in the regulation of stereocilia elongation. The identification of gelsolin provides for the first time a link between the whirlin scaffolding protein complex involved in stereocilia elongation and a known actin regulatory molecule.
Collapse
Affiliation(s)
- Philomena Mburu
- Medical Research Council Mammalian Genetics Unit, Harwell Science and Innovation Campus, Oxfordshire, United Kingdom
| | - María Rosario Romero
- Medical Research Council Mammalian Genetics Unit, Harwell Science and Innovation Campus, Oxfordshire, United Kingdom
| | - Helen Hilton
- Medical Research Council Mammalian Genetics Unit, Harwell Science and Innovation Campus, Oxfordshire, United Kingdom
| | - Andrew Parker
- Medical Research Council Mammalian Genetics Unit, Harwell Science and Innovation Campus, Oxfordshire, United Kingdom
| | - Stuart Townsend
- Medical Research Council Mammalian Genetics Unit, Harwell Science and Innovation Campus, Oxfordshire, United Kingdom
| | - Yoshiaki Kikkawa
- Department of Bioproduction, Tokyo University of Agriculture, Abashiri, Japan
| | - Steve D. M. Brown
- Medical Research Council Mammalian Genetics Unit, Harwell Science and Innovation Campus, Oxfordshire, United Kingdom
- * E-mail:
| |
Collapse
|
37
|
Yang J, Liu X, Zhao Y, Adamian M, Pawlyk B, Sun X, McMillan DR, Liberman MC, Li T. Ablation of whirlin long isoform disrupts the USH2 protein complex and causes vision and hearing loss. PLoS Genet 2010; 6:e1000955. [PMID: 20502675 PMCID: PMC2873905 DOI: 10.1371/journal.pgen.1000955] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 04/19/2010] [Indexed: 12/25/2022] Open
Abstract
Mutations in whirlin cause either Usher syndrome type II (USH2), a deafness-blindness disorder, or nonsyndromic deafness. The molecular basis for the variable disease expression is unknown. We show here that only the whirlin long isoform, distinct from a short isoform by virtue of having two N-terminal PDZ domains, is expressed in the retina. Both long and short isoforms are expressed in the inner ear. The N-terminal PDZ domains of the long whirlin isoform mediates the formation of a multi-protein complex that includes usherin and VLGR1, both of which are also implicated in USH2. We localized this USH2 protein complex to the periciliary membrane complex (PMC) in mouse photoreceptors that appears analogous to the frog periciliary ridge complex. The latter is proposed to play a role in photoreceptor protein trafficking through the connecting cilium. Mice carrying a targeted disruption near the N-terminus of whirlin manifest retinal and inner ear defects, reproducing the clinical features of human USH2 disease. This is in contrast to mice with mutations affecting the C-terminal portion of whirlin in which the phenotype is restricted to the inner ear. In mice lacking any one of the USH2 proteins, the normal localization of all USH2 proteins is disrupted, and there is evidence of protein destabilization. Taken together, our findings provide new insights into the pathogenic mechanism of Usher syndrome. First, the three USH2 proteins exist as an obligatory functional complex in vivo, and loss of one USH2 protein is functionally close to loss of all three. Second, defects in the three USH2 proteins share a common pathogenic process, i.e., disruption of the PMC. Third, whirlin mutations that ablate the N-terminal PDZ domains lead to Usher syndrome, but non-syndromic hearing loss will result if they are spared.
Collapse
Affiliation(s)
- Jun Yang
- The Berman-Gund Laboratory for the Study of Retinal Degenerations, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, United States of America
| | - Xiaoqing Liu
- The Berman-Gund Laboratory for the Study of Retinal Degenerations, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, United States of America
| | - Yun Zhao
- The Berman-Gund Laboratory for the Study of Retinal Degenerations, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, United States of America
| | - Michael Adamian
- The Berman-Gund Laboratory for the Study of Retinal Degenerations, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, United States of America
| | - Basil Pawlyk
- The Berman-Gund Laboratory for the Study of Retinal Degenerations, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, United States of America
| | - Xun Sun
- The Berman-Gund Laboratory for the Study of Retinal Degenerations, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, United States of America
| | - D. Randy McMillan
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - M. Charles Liberman
- Department of Otology and Laryngology, Harvard Medical School and Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, United States of America
| | - Tiansen Li
- The Berman-Gund Laboratory for the Study of Retinal Degenerations, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, United States of America
| |
Collapse
|
38
|
Abstract
Hearing loss (HL), or deafness in its most severe form, affects an estimated 28 and 22.5 million Americans and Europeans, respectively. The numbers are higher in regions such as India and the Middle East, where consanguinity contributes to larger numbers of recessively inherited hearing impairment (HI). As a result of work-related difficulties, educational and developmental delays, and social stigmas and exclusion, the economic impact of HL is very high. At the other end of the spectrum, a rich deaf culture, particularly for individuals whose parents and even grandparents were deaf, is a social movement that believes that deafness is a difference in human experience rather than a disability. This review attempts to cover the remarkable progress made in the field of the genetics of HL over the past 20 years. Mutations in a significant number of genes have been discovered over the years that contribute to clinically heterogeneous forms of HL, enabling genetic counseling and prediction of progression of HL. Cell biological assays, protein localization in the inner ear, and detailed analysis of spontaneous and transgenic mouse models have provided an incredibly rich resource for elucidating mechanisms of hereditary hearing loss (HHL). This knowledge is providing answers for the families with HL, who contribute a great deal to the research being performed worldwide.
Collapse
Affiliation(s)
- Amiel A Dror
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | | |
Collapse
|
39
|
MyosinVIIa interacts with Twinfilin-2 at the tips of mechanosensory stereocilia in the inner ear. PLoS One 2009; 4:e7097. [PMID: 19774077 PMCID: PMC2743196 DOI: 10.1371/journal.pone.0007097] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2009] [Accepted: 08/14/2009] [Indexed: 11/19/2022] Open
Abstract
In vertebrates hearing is dependent upon the microvilli-like mechanosensory stereocilia and their length gradation. The staircase-like organization of the stereocilia bundle is dynamically maintained by variable actin turnover rates. Two unconventional myosins were previously implicated in stereocilia length regulation but the mechanisms of their action remain unknown. MyosinXVa is expressed in stereocilia tips at levels proportional to stereocilia length and its absence produces staircase-like bundles of very short stereocilia. MyosinVIIa localizes to the tips of the shorter stereocilia within bundles, and when absent, the stereocilia are abnormally long. We show here that myosinVIIa interacts with twinfilin-2, an actin binding protein, which inhibits actin polymerization at the barbed end of the filament, and that twinfilin localization in stereocilia overlaps with myosinVIIa. Exogenous expression of myosinVIIa in fibroblasts results in a reduced number of filopodia and promotes accumulation of twinfilin-2 at the filopodia tips. We hypothesize that the newly described interaction between myosinVIIa and twinfilin-2 is responsible for the establishment and maintenance of slower rates of actin turnover in shorter stereocilia, and that interplay between complexes of myosinVIIa/twinfilin-2 and myosinXVa/whirlin is responsible for stereocilia length gradation within the bundle staircase.
Collapse
|
40
|
Tian G, Zhou Y, Hajkova D, Miyagi M, Dinculescu A, Hauswirth WW, Palczewski K, Geng R, Alagramam KN, Isosomppi J, Sankila EM, Flannery JG, Imanishi Y. Clarin-1, encoded by the Usher Syndrome III causative gene, forms a membranous microdomain: possible role of clarin-1 in organizing the actin cytoskeleton. J Biol Chem 2009; 284:18980-93. [PMID: 19423712 DOI: 10.1074/jbc.m109.003160] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Clarin-1 is the protein product encoded by the gene mutated in Usher syndrome III. Although the molecular function of clarin-1 is unknown, its primary structure predicts four transmembrane domains similar to a large family of membrane proteins that include tetraspanins. Here we investigated the role of clarin-1 by using heterologous expression and in vivo model systems. When expressed in HEK293 cells, clarin-1 localized to the plasma membrane and concentrated in low density compartments distinct from lipid rafts. Clarin-1 reorganized actin filament structures and induced lamellipodia. This actin-reorganizing function was absent in the modified protein encoded by the most prevalent North American Usher syndrome III mutation, the N48K form of clarin-1 deficient in N-linked glycosylation. Proteomics analyses revealed a number of clarin-1-interacting proteins involved in cell-cell adhesion, focal adhesions, cell migration, tight junctions, and regulation of the actin cytoskeleton. Consistent with the hypothesized role of clarin-1 in actin organization, F-actin-enriched stereocilia of auditory hair cells evidenced structural disorganization in Clrn1(-/-) mice. These observations suggest a possible role for clarin-1 in the regulation and homeostasis of actin filaments, and link clarin-1 to the interactive network of Usher syndrome gene products.
Collapse
Affiliation(s)
- Guilian Tian
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106-4965, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Gov NS. Packing defects and the width of biopolymer bundles. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2008; 78:011916. [PMID: 18763991 DOI: 10.1103/physreve.78.011916] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Revised: 03/09/2008] [Indexed: 05/26/2023]
Abstract
The formation of bundles composed of actin filaments and cross-linking proteins is an essential process in the maintenance of the cells' cytoskeleton. It has also been recreated by in-vitro experiments, where actin networks are routinely produced to mimic and study the cellular structures. It has been observed that these bundles seem to have a well-defined width distribution, which has not been adequately described theoretically. We propose here that packing defects of the filaments, quenched and random, contribute an effective repulsion that counters the cross-linking adhesion energy and leads to a well-defined bundle width. This is a two-dimensional strain-field version of the classic Rayleigh instability of charged droplets.
Collapse
Affiliation(s)
- Nir S Gov
- Department of Chemical Physics, The Weizmann Institute of Science, POB 26, Rehovot, Israel
| |
Collapse
|
42
|
Quiet as a mouse: dissecting the molecular and genetic basis of hearing. Nat Rev Genet 2008; 9:277-90. [PMID: 18283275 DOI: 10.1038/nrg2309] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Mouse genetics has made crucial contributions to the understanding of the molecular mechanisms of hearing. With the help of a plethora of mouse mutants, many of the key genes that are involved in the development and functioning of the auditory system have been elucidated. Mouse mutants continue to shed light on the genetic and physiological bases of human hearing impairment, including both early- and late-onset deafness. A combination of genetic and physiological studies of mouse mutant lines, allied to investigations into the protein networks of the stereocilia bundle in the inner ear, are identifying key complexes that are crucial for auditory function and for providing profound insights into the underlying causes of hearing loss.
Collapse
|
43
|
Abstract
Primary cilia are essential components of diverse cellular processes. Many of the requirements can be linked to the apparent signaling function of primary cilia. Recent studies have also uncovered a role for primary cilia in planar cell polarity (PCP) signaling. PCP refers to the coordinated orientation of cells along an axis parallel to the plane of the cell sheet. In vertebrates, the inner ear sensory organs display distinctive forms of PCP. One of the inner ear PCP characteristics is the coordinated positioning of a primary cilium eccentrically in every sensory hair cell within each organ. The inner ear, therefore, provides an opportunity to explore the cellular role of primary cilia in PCP signaling. In this chapter, we will introduce the PCP of the inner ear sensory organs, describe the conserved mechanism underlying the establishment of the planar polarity axis in invertebrates and vertebrates, and highlight a unique requirement for primary cilia in PCP regulation in vertebrates. Additionally, we will discuss a potentially ubiquitous role for cilia in cellular polarization in general.
Collapse
|