1
|
Sierra-Fonseca JA, Miranda M, Das S, Roychowdhury S. The βγ subunit of heterotrimeric G proteins interacts with actin filaments during neuronal differentiation. Biochem Biophys Res Commun 2021; 549:98-104. [PMID: 33667715 DOI: 10.1016/j.bbrc.2021.02.095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 02/21/2021] [Indexed: 11/24/2022]
Abstract
The βγ subunit of heterotrimeric G proteins, a key molecule in the G protein-coupled receptors (GPCRs) signaling pathway, has been shown to be an important factor in the modulation of the microtubule cytoskeleton. Gβγ has been shown to bind to tubulin, stimulate microtubule assembly, and promote neurite outgrowth of PC12 cells. In this study, we demonstrate that in addition to microtubules, Gβγ also interacts with actin filaments, and this interaction increases during NGF-induced neuronal differentiation of PC12 cells. We further demonstrate that the Gβγ-actin interaction occurs independently of microtubules as nocodazole, a well-known microtubule depolymerizing agent did not inhibit Gβγ-actin complex formation in PC12 cells. A confocal microscopic analysis of NGF-treated PC12 cells revealed that Gβγ co-localizes with both actin and microtubule cytoskeleton along neurites, with specific co-localization of Gβγ with actin at the distal end of these neuronal processes. Furthermore, we show that Gβγ interacts with the actin cytoskeleton in primary hippocampal and cerebellar rat neurons. Our results indicate that Gβγ serves as an important modulator of the neuronal cytoskeleton by interacting with both microtubules and actin filaments, and is likely to participate in various aspects of neuronal differentiation including axon and growth cone formation.
Collapse
Affiliation(s)
| | - Manuel Miranda
- Department of Biological Sciences, University of Texas, El Paso, TX, 79968, USA; Border Biomedical Research Center, University of Texas, El Paso, TX, 79968, USA
| | - Siddhartha Das
- Department of Biological Sciences, University of Texas, El Paso, TX, 79968, USA; Border Biomedical Research Center, University of Texas, El Paso, TX, 79968, USA
| | - Sukla Roychowdhury
- Department of Biological Sciences, University of Texas, El Paso, TX, 79968, USA; Border Biomedical Research Center, University of Texas, El Paso, TX, 79968, USA.
| |
Collapse
|
2
|
Vicenzi S, Foa L, Gasperini RJ. Serotonin functions as a bidirectional guidance molecule regulating growth cone motility. Cell Mol Life Sci 2021; 78:2247-2262. [PMID: 32939562 PMCID: PMC11072016 DOI: 10.1007/s00018-020-03628-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/14/2020] [Accepted: 08/21/2020] [Indexed: 02/02/2023]
Abstract
The neurotransmitter serotonin has been implicated in a range of complex neurological disorders linked to alterations of neuronal circuitry. Serotonin is synthesized in the developing brain before most neuronal circuits become fully functional, suggesting that serotonin might play a distinct regulatory role in shaping circuits prior to its function as a classical neurotransmitter. In this study, we asked if serotonin acts as a guidance cue by examining how serotonin alters growth cone motility of rodent sensory neurons in vitro. Using a growth cone motility assay, we found that serotonin acted as both an attractive and repulsive guidance cue through a narrow concentration range. Extracellular gradients of 50 µM serotonin elicited attraction, mediated by the serotonin 5-HT2a receptor while 100 µM serotonin elicited repulsion mediated by the 5-HT1b receptor. Importantly, high resolution imaging of growth cones indicated that these receptors signalled through their canonical pathways of endoplasmic reticulum-mediated calcium release and cAMP depletion, respectively. This novel characterisation of growth cone motility in response to serotonin gradients provides compelling evidence that secreted serotonin acts at the molecular level as an axon guidance cue to shape neuronal circuit formation during development.
Collapse
Affiliation(s)
- Silvia Vicenzi
- School of Medicine, University of Tasmania, Hobart, Australia
| | - Lisa Foa
- School of Psychological Sciences, University of Tasmania, Hobart, Australia
| | | |
Collapse
|
3
|
Huang R, Xiao H, Zhao J, Ju L, Wen Y, Xu Q, Cui X. GAP-43 is involved in the orientation of cell division by interacting with GΑI during neurogenesis. Int J Neurosci 2019; 130:144-152. [PMID: 31554446 DOI: 10.1080/00207454.2019.1667782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Purpose: Recent studies have shown that growth-associated protein-43 (GAP-43) may influence the mitotic-spindle orientation of Madin-Darby Canine Kidney (MDCK) cells through interacting with G proteins in vitro. However, whether GAP-43 interacts with the G proteins under the influence of mitotic spindle positioning related to the orientation of cell division during neurogenesis remains unclear. In order to explore the molecular mechanism in vivo, the GAP-43 transgenic mice were produced and the angles of cell division in the ventricular zone (VZ) during neurogenesis (embryonic period between 13.5 and 17.5 days) were measured in both transgenic mice and wild type mice by spindle angle analysis.Materials and methods: The interaction of GAP-43 and Gαi was detected by co-immunoprecipitation (co-IP), whereas the localization of GAP-43 was determined by immunofluorescence.Results: The results obtained using co-IP and immunofluorescence showed that GAP-43 is localized on the cell membrane and interacts with Gαi. This interaction dramatically induced a significant increase in the proportion of horizontally and intermediately dividing cells during the embryonic period of 13.5 days in the transgenic mouse brain, as observed by spindle angle analysis.Conclusions: It can be concluded that GAP-43 is involved in the orientation of cell division by interacting with Gαi, and that this may be an important mechanism for neurogenesis in the mammalian brain.
Collapse
Affiliation(s)
- Rui Huang
- Institute of Central Laboratory, Capital Institute of Pediatrics, Beijing, China.,Department of Neurobiology, Beijing Institute for Brain Disorders, Beijing Center of Neural Regeneration and Repair, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Capital Medical University, Beijing, China
| | - Hui Xiao
- Institute of Central Laboratory, Capital Institute of Pediatrics, Beijing, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Junpeng Zhao
- Department of Neurobiology, Beijing Institute for Brain Disorders, Beijing Center of Neural Regeneration and Repair, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Capital Medical University, Beijing, China
| | - Lili Ju
- Department of Neurobiology, Beijing Institute for Brain Disorders, Beijing Center of Neural Regeneration and Repair, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Capital Medical University, Beijing, China
| | - Yujun Wen
- Department of Neurobiology, Beijing Institute for Brain Disorders, Beijing Center of Neural Regeneration and Repair, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Capital Medical University, Beijing, China.,Ningxia Key Laboratory of Cerebrocranial Diseases, Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Qunyuan Xu
- Department of Neurobiology, Beijing Institute for Brain Disorders, Beijing Center of Neural Regeneration and Repair, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Capital Medical University, Beijing, China
| | - Xiaodai Cui
- Institute of Central Laboratory, Capital Institute of Pediatrics, Beijing, China
| |
Collapse
|
4
|
Sierra-Fonseca JA, Bracamontes C, Saldecke J, Das S, Roychowdhury S. Activation of β- and α2-adrenergic receptors stimulate tubulin polymerization and promote the association of Gβγ with microtubules in cultured NIH3T3 cells. Biochem Biophys Res Commun 2018; 503:102-108. [PMID: 29852176 DOI: 10.1016/j.bbrc.2018.05.188] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 05/28/2018] [Indexed: 12/15/2022]
Abstract
Microtubules (MTs) constitute a crucial part of the cytoskeleton and are essential for cell division and differentiation, cell motility, intracellular transport, and cell morphology. Precise regulation of MT assembly and dynamics is essential for the performance of these functions. Although much progress has been made in identifying and characterizing the cellular factors that regulate MT assembly and dynamics, signaling events in this process is not well understood. Gβγ, an important component of the G protein-coupled receptor (GPCR) signaling pathway, has been shown to promote MT assembly in vitro and in cultured NIH3T3 and PC12 cells. Using the MT depolymerizing agent nocodazole, it has been demonstrated that the association of Gβγ with polymerized tubulin is critical for MT assembly. More recently, Gβγ has been shown to play a key role in NGF-induced neuronal differentiation of PC12 cells through its interaction with tubulin/MTs and modulation of MT assembly. Although NGF is known to exert its effect through tyrosine kinase receptor TrkA, the result suggests a possible involvement of GPCRs in this process. The present study was undertaken to determine whether agonist activation of GPCR utilizes Gβγ to promote MT assembly. We used isoproterenol and UK 14,304, agonists for two different GPCRs (β- and α2-adrenergic receptors, respectively) known to activate Gs and Gi respectively, with an opposing effect on production of cAMP. The results demonstrate that the agonist activation of β- and α2-adrenergic receptors promotes the association of Gβγ with MTs and stimulates MT assembly in NIH3T3 cells. Interestingly, the effects of these two agonists were more prominent when the cellular level of MT assembly was low (30% or less). In contrast to MT assembly, actin polymerization was not affected by isoproterenol or UK 14, 304 indicating that the effects of these agonists are limited to MTs. Thus, it appears that, upon cellular demand, GPCRs may utilize Gβγ to promote MT assembly. Stimulation of MT assembly appears to be a novel function of G protein-mediated signaling.
Collapse
Affiliation(s)
| | - Christina Bracamontes
- Department of Biological Sciences, 500 West University Avenue, 79968, El Paso, TX, USA; Department of Obstetrics and Gynecology, Texas Tech University Health Sciences Center at El Paso, TX, USA
| | - Jessica Saldecke
- Department of Biological Sciences, 500 West University Avenue, 79968, El Paso, TX, USA
| | - Siddhartha Das
- Department of Biological Sciences, 500 West University Avenue, 79968, El Paso, TX, USA; Infectious Diseases/Immunology, TX, USA
| | - Sukla Roychowdhury
- Department of Biological Sciences, 500 West University Avenue, 79968, El Paso, TX, USA; Neuromodulation Disorders Clusters, Border Biomedical Research Center, University of Texas, 79968, El Paso, TX, USA.
| |
Collapse
|
5
|
Dionisio-Vicuña MN, Gutiérrez-López TY, Adame-García SR, Vázquez-Prado J, Reyes-Cruz G. VPS28, an ESCRT-I protein, regulates mitotic spindle organization via Gβγ, EG5 and TPX2. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1012-1022. [PMID: 29548937 DOI: 10.1016/j.bbamcr.2018.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 03/09/2018] [Accepted: 03/12/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Misael Neri Dionisio-Vicuña
- Department of Cell Biology, Centro de Investigación y Estudios Avanzados del IPN (Cinvestav-IPN), Apartado postal 14-740, CDMX 07360, Mexico
| | - Tania Yareli Gutiérrez-López
- Department of Cell Biology, Centro de Investigación y Estudios Avanzados del IPN (Cinvestav-IPN), Apartado postal 14-740, CDMX 07360, Mexico
| | - Sendi Rafael Adame-García
- Department of Cell Biology, Centro de Investigación y Estudios Avanzados del IPN (Cinvestav-IPN), Apartado postal 14-740, CDMX 07360, Mexico
| | - José Vázquez-Prado
- Department of Pharmacology, Centro de Investigación y Estudios Avanzados del IPN (Cinvestav-IPN), Apartado postal 14-740, CDMX 07360, Mexico
| | - Guadalupe Reyes-Cruz
- Department of Cell Biology, Centro de Investigación y Estudios Avanzados del IPN (Cinvestav-IPN), Apartado postal 14-740, CDMX 07360, Mexico.
| |
Collapse
|
6
|
Klayman LM, Wedegaertner PB. Inducible Inhibition of Gβγ Reveals Localization-dependent Functions at the Plasma Membrane and Golgi. J Biol Chem 2016; 292:1773-1784. [PMID: 27994056 DOI: 10.1074/jbc.m116.750430] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 12/16/2016] [Indexed: 01/28/2023] Open
Abstract
Heterotrimeric G proteins signal at a variety of endomembrane locations, in addition to their canonical function at the cytoplasmic surface of the plasma membrane (PM), where they are activated by cell surface G protein-coupled receptors. Here we focus on βγ signaling at the Golgi, where βγ activates a signaling cascade, ultimately resulting in vesicle fission from the trans-Golgi network (TGN). To develop a novel molecular tool for inhibiting endogenous βγ in a spatial-temporal manner, we take advantage of a lipid association mutant of the widely used βγ inhibitor GRK2ct (GRK2ct-KERE) and the FRB/FKBP heterodimerization system. We show that GRK2ct-KERE cannot inhibit βγ function when expressed in cells, but recruitment to a specific membrane location recovers the ability of GRK2ct-KERE to inhibit βγ signaling. PM-recruited GRK2ct-KERE inhibits lysophosphatidic acid-induced phosphorylation of Akt, whereas Golgi-recruited GRK2ct-KERE inhibits cargo transport from the TGN to the PM. Moreover, we show that Golgi-recruited GRK2ct-KERE inhibits model basolaterally targeted but not apically targeted cargo delivery, for both PM-destined and secretory cargo, providing the first evidence of selectivity in terms of cargo transport regulated by βγ. Last, we show that Golgi fragmentation induced by ilimaquinone and nocodazole is blocked by βγ inhibition, demonstrating that βγ is a key regulator of multiple pathways that impact Golgi morphology. Thus, we have developed a new molecular tool, recruitable GRK2ct-KERE, to modulate βγ signaling at specific subcellular locations, and we demonstrate novel cargo selectivity for βγ regulation of TGN to PM transport and a novel role for βγ in mediating Golgi fragmentation.
Collapse
Affiliation(s)
- Lauren M Klayman
- From the Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Philip B Wedegaertner
- From the Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107.
| |
Collapse
|
7
|
Huang R, Zhao J, Ju L, Wen Y, Xu Q. The influence of GAP-43 on orientation of cell division through G proteins. Int J Dev Neurosci 2015; 47:333-9. [PMID: 26380950 DOI: 10.1016/j.ijdevneu.2015.07.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 06/25/2015] [Accepted: 07/10/2015] [Indexed: 01/09/2023] Open
Abstract
Recent studies have shown that GAP-43 is highly expressed in horizontally dividing neural progenitor cells, and G protein complex are required for proper mitotic-spindle orientation of those progenitors in the mammalian developing cortex. In order to verify the hypothesis that GAP-43 may influence the orientation of cell division through interacting with G proteins during neurogenesis, the GAP-43 RNA from adult C57 mouse was cloned into the pEGFP-N1 vector, which was then transfected into Madin-Darby Canine Kidney (MDCK) cells cultured in a three-dimensional (3D) cell culture system. The interaction of GAP-43 with Gαi was detected by co-immunoprecipitation (co-IP), while cystogenesis of 3D morphogenesis of MDCK cells and expression of GAP-43 and Gαi were determined by immunofluorescence and Western blotting. The results showed are as follows: After being transfected by pEGFP-N1-GAP-43, GAP-43 was localized on the cell membrane and co-localized with Gαi, and this dramatically induced a defective cystogenesis in 3D morphogenesis of MDCK cells. The functional interaction between GAP-43 and Gαi proteins was proven by the co-IP assay. It can be considered from the results that the GAP-43 is involved in the orientation of cell division by interacting with Gαi and this should be an important mechanism for neurogenesis in the mammalian brain.
Collapse
Affiliation(s)
- Rui Huang
- Department of Neurobiology, Beijing Institute for Brain Disorders, Beijing Center of Neural Regeneration and Repair, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Capital Medical University, Beijing, China
| | - Junpeng Zhao
- Department of Neurobiology, Beijing Institute for Brain Disorders, Beijing Center of Neural Regeneration and Repair, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Capital Medical University, Beijing, China
| | - Lili Ju
- Department of Neurobiology, Beijing Institute for Brain Disorders, Beijing Center of Neural Regeneration and Repair, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Capital Medical University, Beijing, China
| | - Yujun Wen
- Department of Neurobiology, Beijing Institute for Brain Disorders, Beijing Center of Neural Regeneration and Repair, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Capital Medical University, Beijing, China
| | - Qunyuan Xu
- Department of Neurobiology, Beijing Institute for Brain Disorders, Beijing Center of Neural Regeneration and Repair, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Capital Medical University, Beijing, China.
| |
Collapse
|
8
|
Sierra-Fonseca JA, Najera O, Martinez-Jurado J, Walker EM, Varela-Ramirez A, Khan AM, Miranda M, Lamango NS, Roychowdhury S. Nerve growth factor induces neurite outgrowth of PC12 cells by promoting Gβγ-microtubule interaction. BMC Neurosci 2014; 15:132. [PMID: 25552352 PMCID: PMC4302597 DOI: 10.1186/s12868-014-0132-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 11/27/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Assembly and disassembly of microtubules (MTs) is critical for neurite outgrowth and differentiation. Evidence suggests that nerve growth factor (NGF) induces neurite outgrowth from PC12 cells by activating the receptor tyrosine kinase, TrkA. G protein-coupled receptors (GPCRs) as well as heterotrimeric G proteins are also involved in regulating neurite outgrowth. However, the possible connection between these pathways and how they might ultimately converge to regulate the assembly and organization of MTs during neurite outgrowth is not well understood. RESULTS Here, we report that Gβγ, an important component of the GPCR pathway, is critical for NGF-induced neuronal differentiation of PC12 cells. We have found that NGF promoted the interaction of Gβγ with MTs and stimulated MT assembly. While Gβγ-sequestering peptide GRK2i inhibited neurite formation, disrupted MTs, and induced neurite damage, the Gβγ activator mSIRK stimulated neurite outgrowth, which indicates the involvement of Gβγ in this process. Because we have shown earlier that prenylation and subsequent methylation/demethylation of γ subunits are required for the Gβγ-MTs interaction in vitro, small-molecule inhibitors (L-28 and L-23) targeting prenylated methylated protein methyl esterase (PMPMEase) were tested in the current study. We found that these inhibitors disrupted Gβγ and ΜΤ organization and affected cellular morphology and neurite outgrowth. In further support of a role of Gβγ-MT interaction in neuronal differentiation, it was observed that overexpression of Gβγ in PC12 cells induced neurite outgrowth in the absence of added NGF. Moreover, overexpressed Gβγ exhibited a pattern of association with MTs similar to that observed in NGF-differentiated cells. CONCLUSIONS Altogether, our results demonstrate that βγ subunit of heterotrimeric G proteins play a critical role in neurite outgrowth and differentiation by interacting with MTs and modulating MT rearrangement.
Collapse
Affiliation(s)
- Jorge A Sierra-Fonseca
- />Neuromodulation Disorders Cluster, Border Biomedical Research Center, University of Texas, El Paso, TX 79968 USA
- />Department of Biological Sciences, University of Texas, El Paso, TX 79968 USA
- />Present Address: Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Omar Najera
- />Neuromodulation Disorders Cluster, Border Biomedical Research Center, University of Texas, El Paso, TX 79968 USA
- />Department of Biological Sciences, University of Texas, El Paso, TX 79968 USA
| | - Jessica Martinez-Jurado
- />Neuromodulation Disorders Cluster, Border Biomedical Research Center, University of Texas, El Paso, TX 79968 USA
- />Department of Biological Sciences, University of Texas, El Paso, TX 79968 USA
| | - Ellen M Walker
- />Neuromodulation Disorders Cluster, Border Biomedical Research Center, University of Texas, El Paso, TX 79968 USA
- />Department of Biological Sciences, University of Texas, El Paso, TX 79968 USA
| | - Armando Varela-Ramirez
- />Cytometry Screening and Imaging Core facility, Border Biomedical Research Center, University of Texas, El Paso, TX 79968 USA
- />Department of Biological Sciences, University of Texas, El Paso, TX 79968 USA
| | - Arshad M Khan
- />Neuromodulation Disorders Cluster, Border Biomedical Research Center, University of Texas, El Paso, TX 79968 USA
- />Department of Biological Sciences, University of Texas, El Paso, TX 79968 USA
| | - Manuel Miranda
- />Neuromodulation Disorders Cluster, Border Biomedical Research Center, University of Texas, El Paso, TX 79968 USA
- />Department of Biological Sciences, University of Texas, El Paso, TX 79968 USA
| | - Nazarius S Lamango
- />College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307 USA
| | - Sukla Roychowdhury
- />Neuromodulation Disorders Cluster, Border Biomedical Research Center, University of Texas, El Paso, TX 79968 USA
- />Department of Biological Sciences, University of Texas, El Paso, TX 79968 USA
| |
Collapse
|
9
|
Ahmed SM, Angers S. Emerging non-canonical functions for heterotrimeric G proteins in cellular signaling. J Recept Signal Transduct Res 2013; 33:177-83. [PMID: 23721574 DOI: 10.3109/10799893.2013.795972] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Classically heterotrimeric G proteins have been described as the principal signal transducing machinery for G-protein-coupled receptors. Receptor activation catalyzes nucleotide exchange on the Gα protein, enabling Gα-GTP and Gβγ-subunits to engage intracellular effectors to generate various cellular effects such as second messenger production or regulation of ion channel conductivity. Recent genetic and proteomic screens have identified novel heterotrimeric G-protein-interacting proteins and expanded their functional roles. This review highlights some examples of recently identified interacting proteins and summarizes how they functionally connect heterotrimeric G proteins to previously underappreciated cellular roles.
Collapse
Affiliation(s)
- Syed M Ahmed
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
10
|
Ludueña RF. A Hypothesis on the Origin and Evolution of Tubulin. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 302:41-185. [DOI: 10.1016/b978-0-12-407699-0.00002-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
11
|
Hewavitharana T, Wedegaertner PB. Non-canonical signaling and localizations of heterotrimeric G proteins. Cell Signal 2012; 24:25-34. [PMID: 21907280 PMCID: PMC3205251 DOI: 10.1016/j.cellsig.2011.08.014] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Accepted: 08/20/2011] [Indexed: 10/17/2022]
Abstract
Heterotrimeric G proteins typically transduce signals from G protein-coupled receptors (GPCRs) to effector proteins. In the conventional G protein signaling paradigm, the G protein is located at the cytoplasmic surface of the plasma membrane, where, after activation by an agonist-bound GPCR, the GTP-bound Gα and free Gβγ bind to and regulate a number of well-studied effectors, including adenylyl cyclase, phospholipase Cβ, RhoGEFs and ion channels. However, research over the past decade or more has established that G proteins serve non-canonical roles in the cell, whereby they regulate novel effectors, undergo activation independently of a GPCR, and/or function at subcellular locations other than the plasma membrane. This review will highlight some of these non-canonical aspects of G protein signaling, focusing on direct interactions of G protein subunits with cytoskeletal and cell adhesion proteins, the role of G proteins in cell division, and G protein signaling at diverse organelles.
Collapse
Affiliation(s)
- Thamara Hewavitharana
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | | |
Collapse
|
12
|
Sobierajska K, Głos J, Dąborowska J, Kucharska J, Bregier C, Fabczak S, Fabczak H. Visualization of the interaction between Gβγ and tubulin during light-induced cell elongation of Blepharisma japonicum. Photochem Photobiol Sci 2010; 9:1101-10. [DOI: 10.1039/c0pp00031k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
13
|
Saini DK, Chisari M, Gautam N. Shuttling and translocation of heterotrimeric G proteins and Ras. Trends Pharmacol Sci 2009; 30:278-86. [PMID: 19427041 DOI: 10.1016/j.tips.2009.04.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Revised: 04/02/2009] [Accepted: 04/02/2009] [Indexed: 12/21/2022]
Abstract
Heterotrimeric G proteins (alphabetagamma) and Ras proteins are activated by cell-surface receptors that sense extracellular signals. Both sets of proteins were traditionally thought to be constrained to the plasma membrane and some intracellular membranes. Live-cell-imaging experiments have now shown that these proteins are mobile inside a cell, shuttling continually between the plasma membrane and intracellular membranes in the basal state, maintaining these proteins in dynamic equilibrium in different membrane compartments. Furthermore, on receptor activation, a family of G protein betagamma subunits translocates rapidly and reversibly to the Golgi and endoplasmic reticulum enabling direct communication between the extracellular signal and intracellular membranes. A member of the Ras family has similarly been shown to translocate on activation. Although the impact of this unexpected intracellular movement of signaling proteins on cell physiology is likely to be distinct, there are striking similarities in the properties of these two families of signal-transducing proteins.
Collapse
Affiliation(s)
- Deepak K Saini
- Department of Anesthesiology, Box 8054, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
14
|
Dave RH, Saengsawang W, Yu JZ, Donati R, Rasenick MM. Heterotrimeric G-proteins interact directly with cytoskeletal components to modify microtubule-dependent cellular processes. Neurosignals 2009; 17:100-8. [PMID: 19212143 DOI: 10.1159/000186693] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Accepted: 11/05/2008] [Indexed: 01/07/2023] Open
Abstract
A large percentage of current drugs target G-protein-coupled receptors, which couple to well-known signaling pathways involving cAMP or calcium. G-proteins themselves may subserve a second messenger function. Here, we review the role of tubulin and microtubules in directly mediating effects of heterotrimeric G-proteins on neuronal outgrowth, shape and differentiation. G-protein-tubulin interactions appear to be regulated by neurotransmitter activity, and, in turn, regulate the location of Galpha in membrane microdomains (such as lipid rafts) or the cytosol. Tubulin binds with nanomolar affinity to Gsalpha, Gialpha1 and Gqalpha (but not other Galpha subunits) as well as Gbeta(1)gamma(2) subunits. Galpha subunits destabilize microtubules by stimulating tubulin's GTPase, while Gbetagamma subunits promote microtubule stability. The same region on Gsalpha that binds adenylyl cyclase and Gbetagamma also interacts with tubulin, suggesting that cytoskeletal proteins are novel Galpha effectors. Additionally, intracellular Gialpha-GDP, in concert with other GTPase proteins and Gbetagamma, regulates the position of the mitotic spindle in mitosis. Thus, G-protein activation modulates cell growth and differentiation by directly altering microtubule stability. Further studies are needed to fully establish a structural mechanism of this interaction and its role in synaptic plasticity.
Collapse
Affiliation(s)
- Rahul H Dave
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, Il 60612-7342, USA
| | | | | | | | | |
Collapse
|
15
|
Roychowdhury S, Rasenick MM. Submembraneous microtubule cytoskeleton: regulation of microtubule assembly by heterotrimeric Gproteins. FEBS J 2008; 275:4654-63. [PMID: 18754776 PMCID: PMC2782913 DOI: 10.1111/j.1742-4658.2008.06614.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Heterotrimeric Gproteins participate in signal transduction by transferring signals from cell surface receptors to intracellular effector molecules. Gproteins also interact with microtubules and participate in microtubule-dependent centrosome/chromosome movement during cell division, as well as neuronal differentiation. In recent years, significant progress has been made in our understanding of the biochemical/functional interactions between Gprotein subunits (alpha and betagamma) and microtubules, and the molecular details emerging from these studies suggest that alpha and betagamma subunits of Gproteins interact with tubulin/microtubules to regulate the assembly/dynamics of microtubules, providing a novel mechanism for hormone- or neurotransmitter-induced rapid remodeling of cytoskeleton, regulation of the mitotic spindle for centrosome/chromosome movements in cell division, and neuronal differentiation in which structural plasticity mediated by microtubules is important for appropriate synaptic connections and signal transmission.
Collapse
Affiliation(s)
- Sukla Roychowdhury
- Department of Biological Sciences, University of Texas, El Paso, TX, USA.
| | | |
Collapse
|