1
|
Sun ZG, Murrell M. Cofilin-Mediated Filament Softening and Crosslinking Counterbalance to Enhance Actin Network Flexibility. PHYSICAL REVIEW LETTERS 2024; 133:218402. [PMID: 39642486 DOI: 10.1103/physrevlett.133.218402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 09/30/2024] [Indexed: 12/09/2024]
Abstract
Filamentous-actin (F-actin) crosslinking within the cell cytoskeleton mediates the transmission of mechanical forces, enabling changes in cell shape, as occurs during cell division and cell migration. Crosslinking by actin binding proteins (ABPs) generally increases the connectivity of the F-actin network, but also increases network rigidity. As a result, there is a narrow range in the concentration of crosslinker protein at which F-actin networks are both connected and labile. Another ABP, cofilin, severs F-actin filaments at high pH through increasing their bending flexibility and concentrating mechanical stress, inducing fragmentation. By contrast, at lower pH, cofilin increases filament flexibility yet does not sever. Instead, it forms disulfide bonds, which crosslink F-actin into bundles, and bundles into networks. Here, we combine light microscopy and rheology to determine the impact of two potentially opposing effects on the mechanics of F-actin networks-increased flexibility at the filament level, and increased connectivity at the network level. Indeed, by linear rheology, we find that these mechanisms are counterbalanced, such that cofilactin network moduli are only weakly dependent on cofilin concentration over a broad range, in contrast to the dramatic stiffening that occurs with F-actin crosslinking protein. Further, by nonlinear rheology, the network stiffens at a higher stress than crosslinking protein, indicative of a broader range in which the material remains flexible. These results may enable F-actin networks to increase connectivity without heavy penalties to rigidity, and thus provide a new route to modulating active polymer mechanics unseen using traditional F-actin accessory proteins.
Collapse
Affiliation(s)
- Zachary Gao Sun
- Department of Physics, Yale University, 217 Prospect Street, New Haven, Connecticut 06511, USA
- Systems Biology Institute, Yale University, West Haven, Connecticut 06516, USA
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, Connecticut 06520, USA
| | - Michael Murrell
- Department of Physics, Yale University, 217 Prospect Street, New Haven, Connecticut 06511, USA
- Systems Biology Institute, Yale University, West Haven, Connecticut 06516, USA
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, Connecticut 06520, USA
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06511, USA
| |
Collapse
|
2
|
Ding J, Ding X, Liao W, Lu Z. Red blood cell-derived materials for cancer therapy: Construction, distribution, and applications. Mater Today Bio 2024; 24:100913. [PMID: 38188647 PMCID: PMC10767221 DOI: 10.1016/j.mtbio.2023.100913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/02/2023] [Accepted: 12/11/2023] [Indexed: 01/09/2024] Open
Abstract
Cancer has become an increasingly important public health issue owing to its high morbidity and mortality rates. Although traditional treatment methods are relatively effective, they have limitations such as highly toxic side effects, easy drug resistance, and high individual variability. Meanwhile, emerging therapies remain limited, and their actual anti-tumor effects need to be improved. Nanotechnology has received considerable attention for its development and application. In particular, artificial nanocarriers have emerged as a crucial approach for tumor therapy. However, certain deficiencies persist, including immunogenicity, permeability, targeting, and biocompatibility. The application of erythrocyte-derived materials will help overcome the above problems and enhance therapeutic effects. Erythrocyte-derived materials can be acquired via the application of physical and chemical techniques from natural erythrocyte membranes, or through the integration of these membranes with synthetic inner core materials using cell membrane biomimetic technology. Their natural properties such as biocompatibility and long circulation time make them an ideal choice for drug delivery or nanoparticle biocoating. Thus, red blood cell-derived materials are widely used in the field of biomedicine. However, further studies are required to evaluate their efficacy, in vivo metabolism, preparation, design, and clinical translation. Based on the latest research reports, this review summarizes the biology, synthesis, characteristics, and distribution of red blood cell-derived materials. Furthermore, we provide a reference for further research and clinical transformation by comprehensively discussing the applications and technical challenges faced by red blood cell-derived materials in the treatment of malignant tumors.
Collapse
Affiliation(s)
- Jianghua Ding
- Department of Hematology & Oncology, Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, 332005, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, 332005, China
| | - Xinjing Ding
- Oncology of Department, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 332000, China
| | - Weifang Liao
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, 332005, China
- Department of Medical Laboratory, Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, 332005, China
| | - Zhihui Lu
- Oncology of Department, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 332000, China
| |
Collapse
|
3
|
Abstract
Actin cytoskeleton force generation, sensing, and adaptation are dictated by the bending and twisting mechanics of filaments. Here, we use magnetic tweezers and microfluidics to twist and pull individual actin filaments and evaluate their response to applied loads. Twisted filaments bend and dissipate torsional strain by adopting a supercoiled plectoneme. Pulling prevents plectoneme formation, which causes twisted filaments to sever. Analysis over a range of twisting and pulling forces and direct visualization of filament and single subunit twisting fluctuations yield an actin filament torsional persistence length of ~10 µm, similar to the bending persistence length. Filament severing by cofilin is driven by local twist strain at boundaries between bare and decorated segments and is accelerated by low pN pulling forces. This work explains how contractile forces generated by myosin motors accelerate filament severing by cofilin and establishes a role for filament twisting in the regulation of actin filament stability and assembly dynamics.
Collapse
|
4
|
Wang HQ, Meng XY, Zhang JM, Chen JY, Zhang BH, Wu FX. Alterations of actin cytoskeleton and arterial protein level in patients with obstructive jaundice. Genet Mol Biol 2022; 45:e20210419. [PMID: 36098487 PMCID: PMC9469107 DOI: 10.1590/1678-4685-gmb-2021-0419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 06/03/2022] [Indexed: 11/21/2022] Open
Abstract
Vascular hypo-responsiveness to vasopressors in patients with obstructive jaundice (OJ) is a common anesthetic event, which leads to perioperative complications and increased mortality. The cause of this clinical issue remains unclear. In this study, we estimated the actin cytoskeleton and arterial protein level in the artery of OJ patients by proteomic analysis. Ten patients with OJ due to bile duct diseases or pancreatic head carcinoma were enrolled, while another ten non-jaundice patients with chronic cholecystitis or liver hemangioma as the control group. Vascular reactivity to noradrenaline was measured before anesthesia on the day of surgery. Artery samples in adjacent tissues of removed tumor were collected and evaluated by 2-dimensional electrophoresis. Proteins with differential expression were detected by MALDI-TOF mass spectrometry with immunoblot confirmation. The results confirmed the phenomenon of vascular hypo-reactivity in OJ patients as suppressed aortic response to noradrenaline were existed in these patients. We also found that actin cytoskeleton and several actin-binding proteins were up- or down-regulated in the artery of OJ patients. These proteins changed in OJ patents might be the basic mechanism of vascular hypo-reactivity, further studies to uncover the role of these proteins in OJ is critical for clinical treatment of these patients.
Collapse
Affiliation(s)
- Hong-Qian Wang
- Naval Medical University, Shanghai Eastern Hepatobiliary Surgery Hospital, Department of Critical Care Medicine, Shanghai, China
- First Medical University, Shandong Provincial Hospital Affiliated to Shandong Jinan, Department of Anesthesiology, Shandong, China
| | - Xiao-Yan Meng
- Naval Medical University, Shanghai Eastern Hepatobiliary Surgery Hospital, Department of Critical Care Medicine, Shanghai, China
| | - Jin-Min Zhang
- Naval Medical University, Shanghai Eastern Hepatobiliary Surgery Hospital, Department of Critical Care Medicine, Shanghai, China
| | - Jia-Ying Chen
- Naval Medical University, Shanghai Eastern Hepatobiliary Surgery Hospital, Department of Anesthesiology, Shanghai, China
| | - Bao-Hua Zhang
- Naval Medical University, The Eastern Hepatobiliary Surgery Hospital, Department of Biliary Tract Surgery, Shanghai, China
| | - Fei-Xiang Wu
- Naval Medical University, Shanghai Eastern Hepatobiliary Surgery Hospital, Department of Critical Care Medicine, Shanghai, China
| |
Collapse
|
5
|
Wioland H, Frémont S, Guichard B, Echard A, Jégou A, Romet-Lemonne G. Actin filament oxidation by MICAL1 suppresses protections from cofilin-induced disassembly. EMBO Rep 2021; 22:e50965. [PMID: 33393173 DOI: 10.15252/embr.202050965] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 11/18/2020] [Accepted: 11/27/2020] [Indexed: 02/01/2023] Open
Abstract
Proteins of the ADF/cofilin family play a central role in the disassembly of actin filaments, and their activity must be tightly regulated in cells. Recently, the oxidation of actin filaments by the enzyme MICAL1 was found to amplify the severing action of cofilin through unclear mechanisms. Using single filament experiments in vitro, we found that actin filament oxidation by MICAL1 increases, by several orders of magnitude, both cofilin binding and severing rates, explaining the dramatic synergy between oxidation and cofilin for filament disassembly. Remarkably, we found that actin oxidation bypasses the need for cofilin activation by dephosphorylation. Indeed, non-activated, phosphomimetic S3D-cofilin binds and severs oxidized actin filaments rapidly, in conditions where non-oxidized filaments are unaffected. Finally, tropomyosin Tpm1.8 loses its ability to protect filaments from cofilin severing activity when actin is oxidized by MICAL1. Together, our results show that MICAL1-induced oxidation of actin filaments suppresses their physiological protection from the action of cofilin. We propose that, in cells, direct post-translational modification of actin filaments by oxidation is a way to trigger their disassembly.
Collapse
Affiliation(s)
- Hugo Wioland
- Université de Paris, CNRS, Institut Jacques Monod, Paris, France
| | - Stéphane Frémont
- Membrane Traffic and Cell Division Lab, Institut Pasteur, UMR3691, CNRS, Paris, France
| | | | - Arnaud Echard
- Membrane Traffic and Cell Division Lab, Institut Pasteur, UMR3691, CNRS, Paris, France
| | - Antoine Jégou
- Université de Paris, CNRS, Institut Jacques Monod, Paris, France
| | | |
Collapse
|
6
|
Xia S, Lim YB, Zhang Z, Wang Y, Zhang S, Lim CT, Yim EKF, Kanchanawong P. Nanoscale Architecture of the Cortical Actin Cytoskeleton in Embryonic Stem Cells. Cell Rep 2020; 28:1251-1267.e7. [PMID: 31365868 DOI: 10.1016/j.celrep.2019.06.089] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/24/2019] [Accepted: 06/25/2019] [Indexed: 12/15/2022] Open
Abstract
Mechanical cues influence pluripotent stem cell differentiation, but the underlying mechanisms are not well understood. Mouse embryonic stem cells (mESCs) exhibit unusual cytomechanical properties, including low cell stiffness and attenuated responses to substrate rigidity, but the underlying structural basis remains obscure. Using super-resolution microscopy to investigate the actin cytoskeleton in mESCs, we observed that the actin cortex consists of a distinctively sparse and isotropic network. Surprisingly, the architecture and mechanics of the mESC actin cortex appear to be largely myosin II-independent. The network density can be modulated by perturbing Arp2/3 and formin, whereas capping protein (CP) negatively regulates cell stiffness. Transient Arp2/3-containing aster-like structures are implicated in the organization and mechanical homeostasis of the cortical network. By generating a low-density network that physically excludes myosin II, the interplay between Arp2/3, formin, and CP governs the nanoscale architecture of the actin cortex and prescribes the cytomechanical properties of mESCs.
Collapse
Affiliation(s)
- Shumin Xia
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - Ying Bena Lim
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Zhen Zhang
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - Yilin Wang
- Department of Biology, South University of Science and Technology of China, Shenzhen 518055, China
| | - Shan Zhang
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Chwee Teck Lim
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore; Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore; Institute for Health Innovation & Technology (iHealthtech), National University of Singapore, Singapore 117599, Singapore
| | - Evelyn K F Yim
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Pakorn Kanchanawong
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore; Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore.
| |
Collapse
|
7
|
Matusovsky OS, Mansson A, Persson M, Cheng YS, Rassier DE. High-speed AFM reveals subsecond dynamics of cardiac thin filaments upon Ca 2+ activation and heavy meromyosin binding. Proc Natl Acad Sci U S A 2019; 116:16384-16393. [PMID: 31358631 PMCID: PMC6697793 DOI: 10.1073/pnas.1903228116] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
High-speed atomic force microscopy (HS-AFM) can be used to study dynamic processes with real-time imaging of molecules within 1- to 5-nm spatial resolution. In the current study, we evaluated the 3-state model of activation of cardiac thin filaments (cTFs) isolated as a complex and deposited on a mica-supported lipid bilayer. We studied this complex for dynamic conformational changes 1) at low and high [Ca2+] (pCa 9.0 and 4.5), and 2) upon myosin binding to the cTF in the nucleotide-free state or in the presence of ATP. HS-AFM was used to directly visualize the tropomyosin-troponin complex and Ca2+-induced tropomyosin movements accompanied by structural transitions of actin monomers within cTFs. Our data show that cTFs at relaxing or activating conditions are not ultimately in a blocked or activated state, respectively, but rather the combination of states with a prevalence that is dependent on the [Ca2+] and the presence of weakly or strongly bound myosin. The weakly and strongly bound myosin induce similar changes in the structure of cTFs as confirmed by the local dynamical displacement of individual tropomyosin strands in the center of a regulatory unit of cTF at the relaxed and activation conditions. The displacement of tropomyosin at the relaxed conditions had never been visualized directly and explains the ability of myosin binding to TF at the relaxed conditions. Based on the ratios of nonactivated and activated segments within cTFs, we proposed a mechanism of tropomyosin switching from different states that includes both weakly and strongly bound myosin.
Collapse
Affiliation(s)
- Oleg S Matusovsky
- Department of Kinesiology and Physical Education, McGill University, Montreal, QC H2W 1S4, Canada
| | - Alf Mansson
- Department of Chemistry and Biomedical Sciences, Linnaeus University, SE-391 82 Kalmar, Sweden
| | - Malin Persson
- Department of Kinesiology and Physical Education, McGill University, Montreal, QC H2W 1S4, Canada
- Department of Chemistry and Biomedical Sciences, Linnaeus University, SE-391 82 Kalmar, Sweden
| | - Yu-Shu Cheng
- Department of Kinesiology and Physical Education, McGill University, Montreal, QC H2W 1S4, Canada
| | - Dilson E Rassier
- Department of Kinesiology and Physical Education, McGill University, Montreal, QC H2W 1S4, Canada;
| |
Collapse
|
8
|
The Primary Causes of Muscle Dysfunction Associated with the Point Mutations in Tpm3.12; Conformational Analysis of Mutant Proteins as a Tool for Classification of Myopathies. Int J Mol Sci 2018; 19:ijms19123975. [PMID: 30544720 PMCID: PMC6321504 DOI: 10.3390/ijms19123975] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/29/2018] [Accepted: 12/07/2018] [Indexed: 12/28/2022] Open
Abstract
Point mutations in genes encoding isoforms of skeletal muscle tropomyosin may cause nemaline myopathy, cap myopathy (Cap), congenital fiber-type disproportion (CFTD), and distal arthrogryposis. The molecular mechanisms of muscle dysfunction in these diseases remain unclear. We studied the effect of the E173A, R90P, E150A, and A155T myopathy-causing substitutions in γ-tropomyosin (Tpm3.12) on the position of tropomyosin in thin filaments, and the conformational state of actin monomers and myosin heads at different stages of the ATPase cycle using polarized fluorescence microscopy. The E173A, R90P, and E150A mutations produced abnormally large displacement of tropomyosin to the inner domains of actin and an increase in the number of myosin heads in strong-binding state at low and high Ca2+, which is characteristic of CFTD. On the contrary, the A155T mutation caused a decrease in the amount of such heads at high Ca2+ which is typical for mutations associated with Cap. An increase in the number of the myosin heads in strong-binding state at low Ca2+ was observed for all mutations associated with high Ca2+-sensitivity. Comparison between the typical conformational changes in mutant proteins associated with different myopathies observed with α-, β-, and γ-tropomyosins demonstrated the possibility of using such changes as tests for identifying the diseases.
Collapse
|
9
|
Watabe E, Ono S, Kuroyanagi H. Alternative splicing of the Caenorhabditis elegans lev-11 tropomyosin gene is regulated in a tissue-specific manner. Cytoskeleton (Hoboken) 2018; 75:427-436. [PMID: 30155988 DOI: 10.1002/cm.21489] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/02/2018] [Accepted: 08/22/2018] [Indexed: 01/14/2023]
Abstract
Tropomyosin isoforms contribute to generation of functionally divergent actin filaments. In the nematode Caenorhabditis elegans, multiple isoforms are produced from lev-11, the single tropomyosin gene, by combination of two separate promoters and alternative pre-mRNA splicing. In this study, we report that alternative splicing of lev-11 is regulated in a tissue-specific manner so that a particular tropomyosin isoform is expressed in each tissue. Reverse-transcription polymerase chain reaction analysis of lev-11 mRNAs confirms five previously reported isoforms (LEV-11A, LEV-11C, LEV-11D, LEV-11E and LEV-11O) and identifies a new sixth isoform LEV-11T. Using transgenic alternative-splicing reporter minigenes, we find distinct patterns of preferential exon selections in the pharynx, body wall muscles, intestine and neurons. The body wall muscles preferentially process splicing to produce high-molecular-weight isoforms, LEV-11A, LEV-11D and LEV-11O. The pharynx specifically processes splicing to express a low-molecular-weight isoform LEV-11E, whereas the intestine and neurons process splicing to express another low-molecular-weight isoform LEV-11C. The splicing pattern of LEV-11T was not predominant in any of these tissues, suggesting that this is a minor isoform. Our results suggest that regulation of alternative splicing is an important mechanism to express proper tropomyosin isoforms in particular tissue and/or cell types in C. elegans.
Collapse
Affiliation(s)
- Eichi Watabe
- Laboratory of Gene Expression, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shoichiro Ono
- Department of Pathology, Department of Cell Biology, and Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Hidehito Kuroyanagi
- Laboratory of Gene Expression, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
10
|
Atomic insights into the genesis of cellular filaments by globular proteins. Nat Struct Mol Biol 2018; 25:705-714. [PMID: 30076408 PMCID: PMC6185745 DOI: 10.1038/s41594-018-0096-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 06/21/2018] [Indexed: 02/04/2023]
Abstract
Self-assembly of proteins into filaments, such as actin and tubulin filaments, underlies essential cellular processes in all three domains of life. The early emergence of filaments in evolutionary history suggests that filament genesis might be a robust process. Here we describe the fortuitous construction of GFP fusion proteins that self-assemble as fluorescent polar filaments in Escherichia coli. Filament formation is achieved by appending as few as 12 residues. Crystal structures reveal that the protomers each donate an appendage to fill a groove between two following protomers along the filament. This exchange of appendages resembles runaway domain swapping but is distinguished by higher efficiency because monomers cannot competitively bind their own appendages. Ample evidence of this “runaway domain coupling” mechanism in nature suggests it could facilitate the evolutionary pathway from globular protein to polar filament, requiring a minimal extension of protein sequence and no significant refolding.
Collapse
|
11
|
Riquelme M, Aguirre J, Bartnicki-García S, Braus GH, Feldbrügge M, Fleig U, Hansberg W, Herrera-Estrella A, Kämper J, Kück U, Mouriño-Pérez RR, Takeshita N, Fischer R. Fungal Morphogenesis, from the Polarized Growth of Hyphae to Complex Reproduction and Infection Structures. Microbiol Mol Biol Rev 2018; 82:e00068-17. [PMID: 29643171 PMCID: PMC5968459 DOI: 10.1128/mmbr.00068-17] [Citation(s) in RCA: 201] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Filamentous fungi constitute a large group of eukaryotic microorganisms that grow by forming simple tube-like hyphae that are capable of differentiating into more-complex morphological structures and distinct cell types. Hyphae form filamentous networks by extending at their tips while branching in subapical regions. Rapid tip elongation requires massive membrane insertion and extension of the rigid chitin-containing cell wall. This process is sustained by a continuous flow of secretory vesicles that depends on the coordinated action of the microtubule and actin cytoskeletons and the corresponding motors and associated proteins. Vesicles transport cell wall-synthesizing enzymes and accumulate in a special structure, the Spitzenkörper, before traveling further and fusing with the tip membrane. The place of vesicle fusion and growth direction are enabled and defined by the position of the Spitzenkörper, the so-called cell end markers, and other proteins involved in the exocytic process. Also important for tip extension is membrane recycling by endocytosis via early endosomes, which function as multipurpose transport vehicles for mRNA, septins, ribosomes, and peroxisomes. Cell integrity, hyphal branching, and morphogenesis are all processes that are largely dependent on vesicle and cytoskeleton dynamics. When hyphae differentiate structures for asexual or sexual reproduction or to mediate interspecies interactions, the hyphal basic cellular machinery may be reprogrammed through the synthesis of new proteins and/or the modification of protein activity. Although some transcriptional networks involved in such reprogramming of hyphae are well studied in several model filamentous fungi, clear connections between these networks and known determinants of hyphal morphogenesis are yet to be established.
Collapse
Affiliation(s)
- Meritxell Riquelme
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico
| | - Jesús Aguirre
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Salomon Bartnicki-García
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico
| | - Gerhard H Braus
- Department of Molecular Microbiology and Genetics and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany
| | - Michael Feldbrügge
- Institute for Microbiology, Heinrich Heine University Düsseldorf, Cluster of Excellence on Plant Sciences, Düsseldorf, Germany
| | - Ursula Fleig
- Institute for Functional Genomics of Microorganisms, Heinrich Heine University Düsseldorf, Cluster of Excellence on Plant Sciences, Düsseldorf, Germany
| | - Wilhelm Hansberg
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Alfredo Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Mexico
| | - Jörg Kämper
- Karlsruhe Institute of Technology-South Campus, Institute for Applied Biosciences, Karlsruhe, Germany
| | - Ulrich Kück
- Ruhr University Bochum, Lehrstuhl für Allgemeine und Molekulare Botanik, Bochum, Germany
| | - Rosa R Mouriño-Pérez
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico
| | - Norio Takeshita
- University of Tsukuba, Faculty of Life and Environmental Sciences, Tsukuba, Japan
| | - Reinhard Fischer
- Karlsruhe Institute of Technology-South Campus, Institute for Applied Biosciences, Karlsruhe, Germany
| |
Collapse
|
12
|
The molecular basis of thin filament activation: from single molecule to muscle. Sci Rep 2017; 7:1822. [PMID: 28500282 PMCID: PMC5431769 DOI: 10.1038/s41598-017-01604-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/30/2017] [Indexed: 11/24/2022] Open
Abstract
For muscles to effectively power locomotion, trillions of myosin molecules must rapidly attach and detach from the actin thin filament. This is accomplished by precise regulation of the availability of the myosin binding sites on actin (i.e. activation). Both calcium (Ca++) and myosin binding contribute to activation, but both mechanisms are simultaneously active during contraction, making their relative contributions difficult to determine. Further complicating the process, myosin binding accelerates the attachment rate of neighboring myosin molecules, adding a cooperative element to the activation process. To de-convolve these two effects, we directly determined the effect of Ca++ on the rate of attachment of a single myosin molecule to a single regulated actin thin filament, and separately determined the distance over which myosin binding increases the attachment rate of neighboring molecules. Ca++ alone increases myosin’s attachment rate ~50-fold, while myosin binding accelerates attachment of neighboring molecules 400 nm along the actin thin filament.
Collapse
|
13
|
Abnormal movement of tropomyosin and response of myosin heads and actin during the ATPase cycle caused by the Arg167His, Arg167Gly and Lys168Glu mutations in TPM1 gene. Arch Biochem Biophys 2016; 606:157-66. [PMID: 27480605 DOI: 10.1016/j.abb.2016.07.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 07/27/2016] [Accepted: 07/28/2016] [Indexed: 01/10/2023]
Abstract
Amino acid substitutions: Arg167His, Arg167Gly and Lys168Glu, located in a consensus actin-binding site of the striated muscle tropomyosin Tpm1.1 (TM), were used to investigate mechanisms of the thin filament regulation. The azimuthal movement of TM strands on the actin filament and the responses of the myosin heads and actin subunits during the ATPase cycle were studied using fluorescence polarization of muscle fibres. The recombinant wild-type and mutant TMs labelled with 5-IAF, 1,5-IAEDANS-labelled S1and FITC-phalloidin F-actin were incorporated into the ghost muscle fibres to acquire information on the orientation of the probes relative to the fibre axis. The substitutions Arg167Gly and Lys168Glu shifted TM strands into the actin filament centre, whereas Arg167His moved TM towards the periphery of the filament. In the presence of Arg167Gly-TM and Lys168Glu-TM the fraction of actin monomers that were switched on and the number of the myosin heads strongly bound to F-actin were abnormally high even under conditions close to relaxation. In contrast, Arg167His-TM decreased the fraction of switched on actin and reduced the formation of strongly bound myosin heads throughout the ATPase cycle. We concluded that the altered TM-actin contacts destabilized the thin filament and affected the actin-myosin interactions.
Collapse
|
14
|
Nabiev SR, Ovsyannikov DA, Kopylova GV, Shchepkin DV, Matyushenko AM, Koubassova NA, Levitsky DI, Tsaturyan AK, Bershitsky SY. Stabilizing the central part of tropomyosin increases the bending stiffness of the thin filament. Biophys J 2016. [PMID: 26200873 DOI: 10.1016/j.bpj.2015.06.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
A two-beam optical trap was used to measure the bending stiffness of F-actin and reconstructed thin filaments. A dumbbell was formed by a filament segment attached to two beads that were held in the two optical traps. One trap was static and held a bead used as a force transducer, whereas an acoustooptical deflector moved the beam holding the second bead, causing stretch of the dumbbell. The distance between the beads was measured using image analysis of micrographs. An exact solution to the problem of bending of an elastic filament attached to two beads and subjected to a stretch was used for data analysis. Substitution of noncanonical residues in the central part of tropomyosin with canonical ones, G126R and D137L, and especially their combination, caused an increase in the bending stiffness of the thin filaments. The data confirm that the effect of these mutations on the regulation of actin-myosin interactions may be caused by an increase in tropomyosin stiffness.
Collapse
Affiliation(s)
- Salavat R Nabiev
- Institute of Immunology and Physiology, Russian Academy of Sciences, Yekaterinburg, Russia
| | - Denis A Ovsyannikov
- Institute of Immunology and Physiology, Russian Academy of Sciences, Yekaterinburg, Russia
| | - Galina V Kopylova
- Institute of Immunology and Physiology, Russian Academy of Sciences, Yekaterinburg, Russia
| | - Daniil V Shchepkin
- Institute of Immunology and Physiology, Russian Academy of Sciences, Yekaterinburg, Russia
| | - Alexander M Matyushenko
- A.N. Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, Russia; Department of Biochemistry, School of Biology, Moscow State University, Moscow, Russia
| | | | - Dmitrii I Levitsky
- A.N. Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, Russia; A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| | | | - Sergey Y Bershitsky
- Institute of Immunology and Physiology, Russian Academy of Sciences, Yekaterinburg, Russia.
| |
Collapse
|
15
|
Abstract
Vascular smooth muscle (VSM; see Table 1 for a list of abbreviations) is a heterogeneous biomaterial comprised of cells and extracellular matrix. By surrounding tubes of endothelial cells, VSM forms a regulated network, the vasculature, through which oxygenated blood supplies specialized organs, permitting the development of large multicellular organisms. VSM cells, the engine of the vasculature, house a set of regulated nanomotors that permit rapid stress-development, sustained stress-maintenance and vessel constriction. Viscoelastic materials within, surrounding and attached to VSM cells, comprised largely of polymeric proteins with complex mechanical characteristics, assist the engine with countering loads imposed by the heart pump, and with control of relengthening after constriction. The complexity of this smart material can be reduced by classical mechanical studies combined with circuit modeling using spring and dashpot elements. Evaluation of the mechanical characteristics of VSM requires a more complete understanding of the mechanics and regulation of its biochemical parts, and ultimately, an understanding of how these parts work together to form the machinery of the vascular tree. Current molecular studies provide detailed mechanical data about single polymeric molecules, revealing viscoelasticity and plasticity at the protein domain level, the unique biological slip-catch bond, and a regulated two-step actomyosin power stroke. At the tissue level, new insight into acutely dynamic stress-strain behavior reveals smooth muscle to exhibit adaptive plasticity. At its core, physiology aims to describe the complex interactions of molecular systems, clarifying structure-function relationships and regulation of biological machines. The intent of this review is to provide a comprehensive presentation of one biomachine, VSM.
Collapse
Affiliation(s)
- Paul H Ratz
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
16
|
Borovikov YS, Avrova SV, Rysev NA, Sirenko VV, Simonyan AO, Chernev AA, Karpicheva OE, Piers A, Redwood CS. Aberrant movement of β-tropomyosin associated with congenital myopathy causes defective response of myosin heads and actin during the ATPase cycle. Arch Biochem Biophys 2015; 577-578:11-23. [PMID: 25978979 DOI: 10.1016/j.abb.2015.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 04/22/2015] [Accepted: 05/07/2015] [Indexed: 01/07/2023]
Abstract
We have investigated the effect of the E41K, R91G, and E139del β-tropomyosin (TM) mutations that cause congenital myopathy on the position of TM and orientation of actin monomers and myosin heads at different mimicked stages of the ATPase cycle in troponin-free ghost muscle fibers by polarized fluorimetry. A multi-step shifting of wild-type TM to the filament center accompanied by an increase in the amount of switched on actin monomers and the strongly bound myosin heads was observed during the ATPase cycle. The R91G mutation shifts TM further towards the inner and outer domains of actin at the strong- and weak-binding stages, respectively. The E139del mutation retains TM near the inner domains, while the E41K mutation captures it near the outer domains. The E41K and R91G mutations can induce the strong binding of myosin heads to actin, when TM is located near the outer domains. The E139del mutation inhibits the amount of strongly bound myosin heads throughout the ATPase cycle.
Collapse
Affiliation(s)
- Yurii S Borovikov
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Avenue, St. Petersburg 194064, Russia.
| | - Stanislava V Avrova
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Avenue, St. Petersburg 194064, Russia
| | - Nikita A Rysev
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Avenue, St. Petersburg 194064, Russia
| | - Vladimir V Sirenko
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Avenue, St. Petersburg 194064, Russia
| | - Armen O Simonyan
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Avenue, St. Petersburg 194064, Russia; Saint Petersburg State University, Universitetskaya nab., 7-9, Saint Petersburg 199034, Russia
| | - Aleksey A Chernev
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Avenue, St. Petersburg 194064, Russia; Saint Petersburg State University, Universitetskaya nab., 7-9, Saint Petersburg 199034, Russia
| | - Olga E Karpicheva
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Avenue, St. Petersburg 194064, Russia
| | - Adam Piers
- University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom
| | - Charles S Redwood
- University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom
| |
Collapse
|
17
|
Moore JR, Li X, Nirody J, Fischer S, Lehman W. Structural implications of conserved aspartate residues located in tropomyosin's coiled-coil core. BIOARCHITECTURE 2014; 1:250-255. [PMID: 22754618 PMCID: PMC3384579 DOI: 10.4161/bioa.18117] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Polar residues lying between adjacent α-helical chains of coiled-coils often contribute to coiled-coil curvature and flexibility, while more typical core hydrophobic residues anneal the chains together. In tropomyosins, ranging from smooth and skeletal muscle to cytoplasmic isoforms, a highly conserved Asp at residue 137 places negative charges within the tropomyosin coiled-coil core in a position which may affect the conformation needed for tropomyosin binding and regulatory movements on actin. Proteolytic susceptibility suggested that substituting a canonical Leu for the naturally occurring Asp at residue 137 increases inter-chain rigidity by stabilizing the tropomyosin coiled-coil. Using molecular dynamics, we now directly assess changes in coiled-coil curvature and flexibility caused by such mutants. Although the coiled-coil flexibility is modestly diminished near the residue 137 mutation site, as expected, a delocalized increase in flexibility along the overall coiled-coil is observed. Even though the average shape of the D137L tropomyosin is straighter than that of wild-type tropomyosin, it is still capable of binding actin due to this increase in flexibility. We conclude that the conserved, non-canonical Asp-137 destabilizes the local structure resulting in a local flexible region in the middle of tropomyosin that normally is important for tropomyosin steady-state equilibrium position on actin.
Collapse
|
18
|
Jensen MH, Morris EJ, Gallant CM, Morgan KG, Weitz DA, Moore JR. Mechanism of calponin stabilization of cross-linked actin networks. Biophys J 2014; 106:793-800. [PMID: 24559982 PMCID: PMC3944828 DOI: 10.1016/j.bpj.2013.12.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 11/11/2013] [Accepted: 12/23/2013] [Indexed: 01/06/2023] Open
Abstract
The actin-binding protein calponin has been previously implicated in actin cytoskeletal regulation and is thought to act as an actin stabilizer, but the mechanism of its function is poorly understood. To investigate this underlying physical mechanism, we studied an in vitro model system of cross-linked actin using bulk rheology. Networks with basic calponin exhibited a delayed onset of strain stiffening (10.0% without calponin, 14.9% with calponin) and were able to withstand a higher maximal strain before failing (35% without calponin, 56% with calponin). Using fluorescence microscopy to study the mechanics of single actin filaments, we found that calponin increased the flexibility of actin filaments, evident as a decrease in persistence length from 17.6 μm without to 7.7 μm with calponin. Our data are consistent with current models of affine strain behavior in semiflexible polymer networks, and suggest that calponin stabilization of actin networks can be explained purely by changes in single-filament mechanics. We propose a model in which calponin stabilizes actin networks against shear through a reduction of persistence length of individual filaments.
Collapse
Affiliation(s)
- Mikkel Herholdt Jensen
- Department of Physiology and Biophysics, Boston University, Boston, Massachusetts; School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts
| | - Eliza J Morris
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts
| | - Cynthia M Gallant
- Department of Health Sciences, Boston University, Boston, Massachusetts
| | - Kathleen G Morgan
- Department of Health Sciences, Boston University, Boston, Massachusetts
| | - David A Weitz
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts
| | - Jeffrey R Moore
- Department of Physiology and Biophysics, Boston University, Boston, Massachusetts.
| |
Collapse
|
19
|
Rysev NA, Nevzorov IA, Avrova SV, Karpicheva OE, Redwood CS, Levitsky DI, Borovikov YS. Gly126Arg substitution causes anomalous behaviour of α-skeletal and β-smooth tropomyosins during the ATPase cycle. Arch Biochem Biophys 2013; 543:57-66. [PMID: 24374033 DOI: 10.1016/j.abb.2013.12.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 12/13/2013] [Accepted: 12/16/2013] [Indexed: 12/26/2022]
Abstract
To investigate how TM stabilization induced by the Gly126Arg mutation in skeletal α-TM or in smooth muscle β-TM affects the flexibility of TMs and their position on troponin-free thin filaments, we labelled the recombinant wild type and mutant TMs with 5-IAF and F-actin with FITC-phalloidin, incorporated them into ghost muscle fibres and studied polarized fluorescence at different stages of the ATPase cycle. It has been shown that in the myosin- and troponin-free filaments the Gly126Arg mutation causes a shift of TM strands towards the outer domain of actin, reduces the number of switched on actin monomers and decreases the rigidity of the C-terminus of α-TM and increases the rigidity of the N-terminus of β-TMs. The binding of myosin subfragment-1 to the filaments shifted the wild type TMs towards the inner domain of actin, decreased the flexibility of both terminal parts of TMs, and increased the number of switched on actin monomers. Multistep alterations in the position of α- and β-TMs and actin monomers in the filaments and in the flexibility of TMs and F-actin during the ATPase cycle were observed. The Gly126Arg mutation uncouples a correlation between the position of TM and the number of the switched on actin monomers in the filaments.
Collapse
Affiliation(s)
- Nikita A Rysev
- Laboratory of Mechanisms of Cell Motility, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Avenue, St. Petersburg 194064, Russia
| | - Ilya A Nevzorov
- Institute of Biotechnology, University of Helsinki, Viikinkaari 9, 00014 Helsinki, Finland
| | - Stanislava V Avrova
- Laboratory of Mechanisms of Cell Motility, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Avenue, St. Petersburg 194064, Russia
| | - Olga E Karpicheva
- Laboratory of Mechanisms of Cell Motility, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Avenue, St. Petersburg 194064, Russia
| | - Charles S Redwood
- Department of Cardiovascular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Dmitrii I Levitsky
- A.N. Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow 119071, Russia
| | - Yurii S Borovikov
- Laboratory of Mechanisms of Cell Motility, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Avenue, St. Petersburg 194064, Russia.
| |
Collapse
|
20
|
Terra LF, Teixeira PC, Wailemann RAM, Zelanis A, Palmisano G, Cunha-Neto E, Kalil J, Larsen MR, Labriola L, Sogayar MC. Proteins differentially expressed in human beta-cells-enriched pancreatic islet cultures and human insulinomas. Mol Cell Endocrinol 2013; 381:16-25. [PMID: 23891624 DOI: 10.1016/j.mce.2013.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 06/28/2013] [Accepted: 07/04/2013] [Indexed: 02/06/2023]
Abstract
In view of the great demand for human beta-cells for physiological and medical studies, we generated cell lines derived from human insulinomas which secrete insulin, C-peptide and express neuroendocrine and islet markers. In this study, we set out to characterize their proteomes, comparing them to those of primary beta-cells using DIGE followed by MS. The results were validated by Western blotting. An average of 1800 spots was detected with less than 1% exhibiting differential abundance. Proteins more abundant in human islets, such as Caldesmon, are involved in the regulation of cell contractility, adhesion dependent signaling, and cytoskeletal organization. In contrast, almost all proteins more abundant in insulinoma cells, such as MAGE2, were first described here and could be related to cell survival and resistance to chemotherapy. Our proteomic data provides, for the first time, a molecular snapshot of the orchestrated changes in expression of proteins involved in key processes which could be correlated with the altered phenotype of human beta-cells. Collectively our observations prompt research towards the establishment of bioengineered human beta-cells providing a new and needed source of cultured human beta-cells for beta-cell research, along with the development of new therapeutic strategies for detection, characterization and treatment of insulinomas.
Collapse
Affiliation(s)
- Letícia F Terra
- Instituto de Química, Departamento de Bioquímica, Universidade de São Paulo (USP), São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Bengtsson E, Persson M, Månsson A. Analysis of flexural rigidity of actin filaments propelled by surface adsorbed myosin motors. Cytoskeleton (Hoboken) 2013; 70:718-28. [PMID: 24039103 PMCID: PMC4230416 DOI: 10.1002/cm.21138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 08/08/2013] [Accepted: 08/22/2013] [Indexed: 11/09/2022]
Abstract
Actin filaments are central components of the cytoskeleton and the contractile machinery of muscle. The filaments are known to exist in a range of conformational states presumably with different flexural rigidity and thereby different persistence lengths. Our results analyze the approaches proposed previously to measure the persistence length from the statistics of the winding paths of actin filaments that are propelled by surface-adsorbed myosin motor fragments in the in vitro motility assay. Our results suggest that the persistence length of heavy meromyosin propelled actin filaments can be estimated with high accuracy and reproducibility using this approach provided that: (1) the in vitro motility assay experiments are designed to prevent bias in filament sliding directions, (2) at least 200 independent filament paths are studied, (3) the ratio between the sliding distance between measurements and the camera pixel-size is between 4 and 12, (4) the sliding distances between measurements is less than 50% of the expected persistence length, and (5) an appropriate cut-off value is chosen to exclude abrupt large angular changes in sliding direction that are complications, e.g., due to the presence of rigor heads. If the above precautions are taken the described method should be a useful routine part of in vitro motility assays thus expanding the amount of information to be gained from these.
Collapse
Affiliation(s)
- Elina Bengtsson
- Faculty of Health and Life Sciences, Linnaeus University, Kalmar, Sweden
| | | | | |
Collapse
|
22
|
Huber F, Schnauß J, Rönicke S, Rauch P, Müller K, Fütterer C, Käs J. Emergent complexity of the cytoskeleton: from single filaments to tissue. ADVANCES IN PHYSICS 2013; 62:1-112. [PMID: 24748680 PMCID: PMC3985726 DOI: 10.1080/00018732.2013.771509] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2011] [Revised: 01/11/2013] [Indexed: 05/17/2023]
Abstract
Despite their overwhelming complexity, living cells display a high degree of internal mechanical and functional organization which can largely be attributed to the intracellular biopolymer scaffold, the cytoskeleton. Being a very complex system far from thermodynamic equilibrium, the cytoskeleton's ability to organize is at the same time challenging and fascinating. The extensive amounts of frequently interacting cellular building blocks and their inherent multifunctionality permits highly adaptive behavior and obstructs a purely reductionist approach. Nevertheless (and despite the field's relative novelty), the physics approach has already proved to be extremely successful in revealing very fundamental concepts of cytoskeleton organization and behavior. This review aims at introducing the physics of the cytoskeleton ranging from single biopolymer filaments to multicellular organisms. Throughout this wide range of phenomena, the focus is set on the intertwined nature of the different physical scales (levels of complexity) that give rise to numerous emergent properties by means of self-organization or self-assembly.
Collapse
Affiliation(s)
- F. Huber
- Institute for Experimental Physics I, University of Leipzig, Leipzig, Germany
| | - J. Schnauß
- Institute for Experimental Physics I, University of Leipzig, Leipzig, Germany
| | - S. Rönicke
- Institute for Experimental Physics I, University of Leipzig, Leipzig, Germany
| | - P. Rauch
- Institute for Experimental Physics I, University of Leipzig, Leipzig, Germany
| | - K. Müller
- Institute for Experimental Physics I, University of Leipzig, Leipzig, Germany
| | - C. Fütterer
- Institute for Experimental Physics I, University of Leipzig, Leipzig, Germany
| | - J. Käs
- Institute for Experimental Physics I, University of Leipzig, Leipzig, Germany
| |
Collapse
|
23
|
Jensen MH, Watt J, Hodgkinson J, Gallant C, Appel S, El-Mezgueldi M, Angelini TE, Morgan KG, Lehman W, Moore JR. Effects of basic calponin on the flexural mechanics and stability of F-actin. Cytoskeleton (Hoboken) 2012; 69:49-58. [PMID: 22135101 PMCID: PMC3355516 DOI: 10.1002/cm.20548] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2011] [Revised: 10/28/2011] [Accepted: 11/14/2011] [Indexed: 01/12/2023]
Abstract
The cellular actin cytoskeleton plays a central role in the ability of cells to properly sense, propagate, and respond to external stresses and other mechanical stimuli. Calponin, an actin-binding protein found both in muscle and non-muscle cells, has been implicated in actin cytoskeletal organization and regulation. In this work, we studied the mechanical and structural interaction of actin with basic calponin, a differentiation marker in smooth muscle cells, on a single filament level. We imaged fluorescently labeled thermally fluctuating actin filaments and found that at moderate calponin binding densities, actin filaments were more flexible, evident as a reduction in persistence length from 8.0 to 5.8 μm. When calponin-decorated actin filaments were subjected to shear, we observed a marked reduction of filament lengths after decoration with calponin, which we argue was due to shear-induced filament rupture rather than depolymerization. This increased shear susceptibility was exacerbated with calponin concentration. Cryo-electron microscopy results confirmed previously published negative stain electron microscopy results and suggested alterations in actin involving actin subdomain 2. A weakening of F-actin intermolecular association is discussed as the underlying cause of the observed mechanical perturbations.
Collapse
Affiliation(s)
- Mikkel Herholdt Jensen
- Boston University, School of Medicine, Boston, MA
- Boston University, Department of Physics, Boston, MA
| | - James Watt
- Boston University, School of Medicine, Boston, MA
| | - Julie Hodgkinson
- Medical School Hannover, Department of Molecular and Cell Physiology, Hannover, Germany
| | - Cynthia Gallant
- Boston University, Department of Health Sciences, Boston, MA
| | - Sarah Appel
- Boston University, Department of Health Sciences, Boston, MA
| | | | - Thomas E. Angelini
- University of Florida, Department of Mechanical and Aerospace Engineering, Gainesville, FL
| | | | | | | |
Collapse
|
24
|
McCullough BR, Grintsevich EE, Chen CK, Kang H, Hutchison AL, Henn A, Cao W, Suarez C, Martiel JL, Blanchoin L, Reisler E, De La Cruz EM. Cofilin-linked changes in actin filament flexibility promote severing. Biophys J 2011; 101:151-9. [PMID: 21723825 DOI: 10.1016/j.bpj.2011.05.049] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 05/20/2011] [Accepted: 05/24/2011] [Indexed: 11/25/2022] Open
Abstract
The actin regulatory protein, cofilin, increases the bending and twisting elasticity of actin filaments and severs them. It has been proposed that filaments partially decorated with cofilin accumulate stress from thermally driven shape fluctuations at bare (stiff) and decorated (compliant) boundaries, thereby promoting severing. This mechanics-based severing model predicts that changes in actin filament compliance due to cofilin binding affect severing activity. Here, we test this prediction by evaluating how the severing activities of vertebrate and yeast cofilactin scale with the flexural rigidities determined from analysis of shape fluctuations. Yeast actin filaments are more compliant in bending than vertebrate actin filaments. Severing activities of cofilactin isoforms correlate with changes in filament flexibility. Vertebrate cofilin binds but does not increase the yeast actin filament flexibility, and does not sever them. Imaging of filament thermal fluctuations reveals that severing events are associated with local bending and fragmentation when deformations attain a critical angle. The critical severing angle at boundaries between bare and cofilin-decorated segments is smaller than in bare or fully decorated filaments. These measurements support a cofilin-severing mechanism in which mechanical asymmetry promotes local stress accumulation and fragmentation at boundaries of bare and cofilin-decorated segments, analogous to failure of some nonprotein materials.
Collapse
Affiliation(s)
- Brannon R McCullough
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
De La Cruz EM, Roland J, McCullough BR, Blanchoin L, Martiel JL. Origin of twist-bend coupling in actin filaments. Biophys J 2011; 99:1852-60. [PMID: 20858430 DOI: 10.1016/j.bpj.2010.07.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Revised: 07/05/2010] [Accepted: 07/07/2010] [Indexed: 11/18/2022] Open
Abstract
Actin filaments are semiflexible polymers that display large-scale conformational twisting and bending motions. Modulation of filament bending and twisting dynamics has been linked to regulatory actin-binding protein function, filament assembly and fragmentation, and overall cell motility. The relationship between actin filament bending and twisting dynamics has not been evaluated. The numerical and analytical experiments presented here reveal that actin filaments have a strong intrinsic twist-bend coupling that obligates the reciprocal interconversion of bending energy and twisting stress. We developed a mesoscopic model of actin filaments that captures key documented features, including the subunit dimensions, interaction energies, helicity, and geometrical constraints coming from the double-stranded structure. The filament bending and torsional rigidities predicted by the model are comparable to experimental values, demonstrating the capacity of the model to assess the mechanical properties of actin filaments, including the coupling between twisting and bending motions. The predicted actin filament twist-bend coupling is strong, with a persistence length of 0.15-0.4 μm depending on the actin-bound nucleotide. Twist-bend coupling is an emergent property that introduces local asymmetry to actin filaments and contributes to their overall elasticity. Up to 60% of the filament subunit elastic free energy originates from twist-bend coupling, with the largest contributions resulting under relatively small deformations. A comparison of filaments with different architectures indicates that twist-bend coupling in actin filaments originates from their double protofilament and helical structure.
Collapse
Affiliation(s)
- Enrique M De La Cruz
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA.
| | | | | | | | | |
Collapse
|
26
|
Sousa D, Cammarato A, Jang K, Graceffa P, Tobacman LS, Li XE, Lehman W. Electron microscopy and persistence length analysis of semi-rigid smooth muscle tropomyosin strands. Biophys J 2010; 99:862-8. [PMID: 20682264 DOI: 10.1016/j.bpj.2010.05.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 04/13/2010] [Accepted: 05/03/2010] [Indexed: 01/14/2023] Open
Abstract
The structural mechanics of tropomyosin are essential determinants of its affinity and positioning on F-actin. Thus, tissue-specific differences among tropomyosin isoforms may influence both access of actin-binding proteins along the actin filaments and the cooperativity of actin-myosin interactions. Here, 40 nm long smooth and striated muscle tropomyosin molecules were rotary-shadowed and compared by means of electron microscopy. Electron microscopy shows that striated muscle tropomyosin primarily consists of single molecules or paired molecules linked end-to-end. In contrast, smooth muscle tropomyosin is more a mixture of varying-length chains of end-to-end polymers. Both isoforms are characterized by gradually bending molecular contours that lack obvious signs of kinking. The flexural stiffness of the tropomyosins was quantified and evaluated. The persistence lengths along the shaft of rotary-shadowed smooth and striated muscle tropomyosin molecules are equivalent to each other (approximately 100 nm) and to values obtained from molecular-dynamics simulations of the tropomyosins; however, the persistence length surrounding the end-to-end linkage is almost twofold higher for smooth compared to cardiac muscle tropomyosin. The tendency of smooth muscle tropomyosin to form semi-rigid polymers with continuous and undampened rigidity may compensate for the lack of troponin-based structural support in smooth muscles and ensure positional fidelity on smooth muscle thin filaments.
Collapse
Affiliation(s)
- Duncan Sousa
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Comparative biomechanics of thick filaments and thin filaments with functional consequences for muscle contraction. J Biomed Biotechnol 2010; 2010:473423. [PMID: 20625489 PMCID: PMC2896680 DOI: 10.1155/2010/473423] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Accepted: 03/26/2010] [Indexed: 02/02/2023] Open
Abstract
The scaffold of striated muscle is predominantly comprised of myosin and actin polymers known as thick filaments and thin filaments, respectively. The roles these filaments play in muscle contraction are well known, but the extent to which variations in filament mechanical properties influence muscle function is not fully understood. Here we review information on the material properties of thick filaments, thin filaments, and their primary constituents; we also discuss ways in which mechanical properties of filaments impact muscle performance.
Collapse
|
28
|
Shieh DB, Li RY, Liao JM, Chen GD, Liou YM. Effects of genistein on beta-catenin signaling and subcellular distribution of actin-binding proteins in human umbilical CD105-positive stromal cells. J Cell Physiol 2010; 223:423-34. [PMID: 20082305 DOI: 10.1002/jcp.22051] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This study was performed to define the roles of actin-binding proteins in the regulation of actin filament assembly associated with cellular signal transduction pathways in stromal cell proliferation. Genistein, a tyrosine protein kinase inhibitor, decreased the intracellular Ca(2+) and attenuated cell proliferation and DNA synthesis through the beta-catenin and cyclin D1 pathway in human umbilical CD105-positive cells. Immunoprecipitation studies using anti-beta-actin antibody revealed that several actin-binding proteins implicated in cells include formin-2 (FMN-2), caldesmon (CaD), tropomyosin (Tm), and profilin. Protein levels of these proteins in whole cell lysates were not significantly changed by genistein. Three Tm isoforms, Tm-1, Tm-2, and Tm-4, were found to be present in cells. Genistein caused a reduction in levels of mRNAs coding for Tm-1 and Tm-4, but had no significant effect on Tm-2 mRNA levels. Immunofluorescence confocal scanning microscopy indicated that changes in the subcellular distribution of Tm and CaD, in which the diffuse cytosolic staining was shifted to show colocalization with actin stress fibers. In contrast, genistein-induced accumulation of FMN-2 and profilin in the peri-nuclear area. Silencing of FMN-2 by small interfering RNA resulted in increases of intracellular Ca(2+) and rendered genistein resistance in decreasing intracellular Ca(2+) in cells. These results provide the novel findings that genistein acts by modulating the cellular distribution of actin-binding proteins in association with alterations of cellular signal transduction pathways in human stromal cell proliferation.
Collapse
Affiliation(s)
- Dar-Bin Shieh
- Institute of Oral Medicine, National Chung Kung University Medical College, Tainan, Taiwan
| | | | | | | | | |
Collapse
|
29
|
Visualization of F-actin localization and dynamics with live cell markers in Neurospora crassa. Fungal Genet Biol 2010; 47:573-86. [PMID: 20302965 DOI: 10.1016/j.fgb.2010.03.004] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 03/09/2010] [Accepted: 03/10/2010] [Indexed: 01/14/2023]
Abstract
Filamentous actin (F-actin) plays essential roles in filamentous fungi, as in all other eukaryotes, in a wide variety of cellular processes including cell growth, intracellular motility, and cytokinesis. We visualized F-actin organization and dynamics in living Neurospora crassa cells via confocal microscopy of growing hyphae expressing GFP fusions with homologues of the actin-binding proteins fimbrin (FIM) and tropomyosin (TPM-1), a subunit of the Arp2/3 complex (ARP-3) and a recently developed live cell F-actin marker, Lifeact (ABP140 of Saccharomyces cerevisiae). FIM-GFP, ARP-3-GFP, and Lifeact-GFP associated with small patches in the cortical cytoplasm that were concentrated in a subapical ring, which appeared similar for all three markers but was broadest in hyphae expressing Lifeact-GFP. These cortical patches were short-lived, and a subset was mobile throughout the hypha, exhibiting both anterograde and retrograde motility. TPM-1-GFP and Lifeact-GFP co-localized within the Spitzenkörper (Spk) core at the hyphal apex, and were also observed in actin cables throughout the hypha. All GFP fusion proteins studied were also transiently localized at septa: Lifeact-GFP first appeared as a broad ring during early stages of contractile ring formation and later coalesced into a sharper ring, TPM-1-GFP was observed in maturing septa, and FIM-GFP/ARP3-GFP-labeled cortical patches formed a double ring flanking the septa. Our observations suggest that each of the N. crassa F-actin-binding proteins analyzed associates with a different subset of F-actin structures, presumably reflecting distinct roles in F-actin organization and dynamics. Moreover, Lifeact-GFP marked the broadest spectrum of F-actin structures; it may serve as a global live cell marker for F-actin in filamentous fungi.
Collapse
|
30
|
Somara S, Gilmont R, Bitar KN. Role of thin-filament regulatory proteins in relaxation of colonic smooth muscle contraction. Am J Physiol Gastrointest Liver Physiol 2009; 297:G958-66. [PMID: 20501443 PMCID: PMC2777455 DOI: 10.1152/ajpgi.00201.2009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Coordinated regulation of smooth muscle contraction and relaxation is required for colonic motility. Contraction is associated with phosphorylation of myosin light chain (MLC(20)) and interaction of actin with myosin. Thin-filament regulation of actomyosin interaction is modulated by two actin-binding regulatory proteins: tropomyosin (TM) and caldesmon (CaD). TM and CaD are known to play crucial role in actomyosin interaction promoting contraction. Contraction is associated with phosphorylation of the small heat shock protein HSP27, concomitant with the phosphorylation of TM and CaD. Phosphorylation of HSP27 is attributed as being the prime modulator of thin-filament regulation of contraction. Preincubation of colonic smooth muscle cells (CSMC) with the relaxant neurotransmitter vasoactive intestinal peptide (VIP) showed inhibition in phosphorylation of HSP27 (ser78). Attenuation of HSP27 phosphorylation can result in modulation of thin-filament-mediated regulation of contraction leading to relaxation; thus the role of thin-filament regulatory proteins in a relaxation milieu was investigated. Preincubation of CSMC with VIP exhibited a decrease in phosphorylation of TM and CaD. Furthermore, CSMC preincubated with VIP showed a reduced association of TM with HSP27 and with phospho-HSP27 (ser78) whereas there was reduced dissociation of TM from CaD and from phospho-CaD. We thus propose that, in addition to alteration in phosphorylation of MLC(20), relaxation is associated with alterations in thin-filament-mediated regulation that results in termination of contraction.
Collapse
Affiliation(s)
- Sita Somara
- Department of Pediatrics-Gastroenterology, University of Michigan Medical Center, Ann Arbor, Michigan
| | - Robert Gilmont
- Department of Pediatrics-Gastroenterology, University of Michigan Medical Center, Ann Arbor, Michigan
| | - Khalil N. Bitar
- Department of Pediatrics-Gastroenterology, University of Michigan Medical Center, Ann Arbor, Michigan
| |
Collapse
|
31
|
Rao VS, Marongelli EN, Guilford WH. Phosphorylation of tropomyosin extends cooperative binding of myosin beyond a single regulatory unit. ACTA ACUST UNITED AC 2009; 66:10-23. [PMID: 18985725 DOI: 10.1002/cm.20321] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Tropomyosin (Tm) is one of the major phosphoproteins comprising the thin filament of muscle. However, the specific role of Tm phosphorylation in modulating the mechanics of actomyosin interaction has not been determined. Here we show that Tm phosphorylation is necessary for long-range cooperative activation of myosin binding. We used a novel optical trapping assay to measure the isometric stall force of an ensemble of myosin molecules moving actin filaments reconstituted with either natively phosphorylated or dephosphorylated Tm. The data show that the thin filament is cooperatively activated by myosin across regulatory units when Tm is phosphorylated. When Tm is dephosphorylated, this "long-range" cooperative activation is lost and the filament behaves identically to bare actin filaments. However, these effects are not due to dissociation of dephosphorylated Tm from the reconstituted thin filament. The data suggest that end-to-end interactions of adjacent Tm molecules are strengthened when Tm is phosphorylated, and that phosphorylation is thus essential for long range cooperative activation along the thin filament.
Collapse
Affiliation(s)
- Vijay S Rao
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|
32
|
p53 suppresses Src-induced podosome and rosette formation and cellular invasiveness through the upregulation of caldesmon. Mol Cell Biol 2009; 29:3088-98. [PMID: 19349302 DOI: 10.1128/mcb.01816-08] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The tumor-suppressive role of p53 at the level of tumor initiation is well documented. It has also been shown previously that p53 acts against tumor progression/metastasis. However, its role in modulating cell migration and invasion leading to metastasis is poorly understood. In this study, using vascular smooth muscle cells and NIH 3T3 fibroblast cells, we have shown that p53 potently suppresses Src-induced podosome/rosette formation, extracellular matrix digestion, cell migration, and invasion. The overexpression of exogenous wild-type p53 or the activation of the endogenous p53 function suppresses, while the short hairpin RNA-mediated knockdown of p53 expression or the pageing of its function exacerbates, Src-induced migratory and invasive phenotypes. We have also found that p53 expression and function are downregulated in cells stably transformed with constitutively active Src that exhibit aggressive invasive properties. Lastly, p53 upregulates the expression of caldesmon, an actin-binding protein that has been shown to be an inhibitor of podosome/invadopodium formation. The ability of p53 to suppress Src phenotypes in transformed cells was largely abolished by knocking down caldesmon. This study reports a novel molecular mechanism (caldesmon), as well as a structural basis (podosomes/rosettes), to show how p53 can act as an anti-motility/invasion/metastasis agent.
Collapse
|
33
|
Modulation of elasticity in functionally distinct domains of the tropomyosin coiled-coil. Cell Mol Bioeng 2009; 2:57-65. [PMID: 19830262 DOI: 10.1007/s12195-009-0050-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Alpha-helical coiled-coils are common protein structural motifs. Whereas vast information is available regarding their structure, folding, and stability, far less is known about their elastic properties, even though they play mechanical roles in many cases such as tropomyosin in muscle contraction or neck stalks of kinesin or myosin motor proteins. Using computer simulations, we characterized elastic properties of coiled-coils, either globally or locally. Global bending stiffness of standard leucine zipper coiled-coils was calculated using normal mode analysis. Mutations in hydrophobic residues involved in the knob-into-hole interface between the two alpha-helices affect elasticity significantly, whereas charged side chains forming inter-helical salt bridges do not. This suggests that coiled-coils with less regular heptad periodicity may have regional variations in flexibility. We show this by the flexibility map of tropomyosin, which was constructed by a local fluctuation analysis. Overall, flexibility varies by more than twofold and increases towards the C-terminal region of the molecule. Describing the coiled-coil as a twisted tape, it is generally more flexible in the splay bending than in the bending of the broad face. Actin binding sites in alpha zones show local rigidity minima. Broken core regions due to acidic residues at the hydrophobic face such as the Asp137 and the Glu218 are found to be the most labile with moduli for splay and broad face bending as 70 nm and 116 nm respectively. Such variation in flexibility could be relevant to the tropomyosin function, especially for moving across the non-uniform surface of F-actin to regulate myosin binding.
Collapse
|
34
|
Lin JJ, Li Y, Eppinga RD, Wang Q, Jin J. Chapter 1 Roles of Caldesmon in Cell Motility and Actin Cytoskeleton Remodeling. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 274:1-68. [DOI: 10.1016/s1937-6448(08)02001-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
35
|
Filament rigidity causes F-actin depletion from nonbinding surfaces. Proc Natl Acad Sci U S A 2008; 106:133-8. [PMID: 19104041 DOI: 10.1073/pnas.0804991106] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Proximity to membranes is required of actin networks for many key cell functions, including mechanics and motility. However, F-actin rigidity should hinder a filament's approach to surfaces. Using confocal microscopy, we monitor the distribution of fluorescent actin near nonadherent glass surfaces. Initially uniform, monomers polymerize to create a depletion zone where F-actin is absent at the surface but increases monotonically with distance from the surface. At its largest, depletion effects can extend >35 microm, comparable with the average, mass-weighted filament length. Increasing the rigidity of actin filaments with phalloidin increases the extent of depletion, whereas shortening filaments by using capping protein reduces it proportionally. In addition, depletion kinetics are faster with higher actin concentrations, consistent with faster polymerization and faster Brownian-ratchet-driven motion. Conversely, the extent of depletion decreases with actin concentration, suggesting that entropy is the thermodynamic driving force. Quantitatively, depletion kinetics and extent match existing actin kinetics, rigidity, and lengths. However, explaining depletion profiles and concentration dependence (power-law of -1) requires modifying the rigid rod model. Within cells, surface depletion should slow membrane-associated F-actin reactions another approximately 10-fold beyond hydrodynamically slowed diffusion of filaments (approximately 10-fold). In addition, surface depletion should cause membranes to bend spontaneously toward filaments. Such depletion principles underlie the thermodynamics of all surface-associated reactions with mechanical structures, ranging from DNA to filaments to networks. For various functions, cells must actively resist the thermodynamics of depletion.
Collapse
|
36
|
Kudryashova TV, Rutkevich PN, Shevelev AY, Vlasik TN, Vorotnikov AV. Caldesmon affects actin organization at the leading edge and inhibits cell migration. Biophysics (Nagoya-shi) 2008. [DOI: 10.1134/s0006350908060110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
37
|
Abstract
Muscle contraction and other forms of cell motility occur as a result of cyclic interactions between myosin molecules and actin filaments. Force generation is generally attributed to ATP-driven structural changes in myosin, whereas a passive role is ascribed to actin. However, some results challenge this view, predicting structural changes in actin during motor activity, e.g., when the actin filaments slide on a myosin-coated surface in vitro. Here, we analyzed statistical properties of the sliding filament paths, allowing us to detect changes of this type. It is interesting to note that evidence for substantial structural changes that led to increased bending flexibility of the filaments was found in phalloidin-stabilized, but not in phalloidin-free, actin filaments. The results are in accordance with the idea that a high-flexibility structural state of actin is a prerequisite for force production, but not the idea that a low-to-high flexibility transition of the actin filament should be an important component of the force-generating step per se. Finally, our data challenge the general view that phalloidin-stabilized filaments behave as native actin filaments in their interaction with myosin. This has important implications, since phalloidin stabilization is a routine procedure in most studies of actomyosin function.
Collapse
|
38
|
Paus R, Arck P, Tiede S. (Neuro-)endocrinology of epithelial hair follicle stem cells. Mol Cell Endocrinol 2008; 288:38-51. [PMID: 18423849 DOI: 10.1016/j.mce.2008.02.023] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 02/26/2008] [Accepted: 02/26/2008] [Indexed: 12/17/2022]
Abstract
The hair follicle is a repository of different types of somatic stem cells. However, even though the hair follicle is both a prominent target organ and a potent, non-classical site of production and/or metabolism of numerous polypetide- and steroid hormones, neuropeptides, neurotransmitters and neurotrophins, the (neuro-)endocrine controls of hair follicle epithelial stem cell (HFeSC) biology remain to be systematically explored. Focussing on HFeSCs, we attempt here to offer a "roadmap through terra incognita" by listing key open questions, by exploring endocrinologically relevant HFeSC gene profiling and mouse genomics data, and by sketching several clinically relevant pathways via which systemic and/or locally generated (neuro-)endocrine signals might impact on HFeSC. Exemplarily, we discuss, e.g. the potential roles of glucocorticoid and vitamin D receptors, the hairless gene product, thymic hormones, bone morphogenic proteins (BMPs) and their antagonists, and Skg-3 in HFeSC biology. Furthermore, we elaborate on the potential role of nerve growth factor (NGF) and substance P-dependent neurogenic inflammation in HFeSC damage, and explore how neuroendocrine signals may influence the balance between maintenance and destruction of hair follicle immune privilege, which protects these stem cells and their progeny. These considerations call for a concerted research effort to dissect the (neuro-)endocrinology of HFeSCs much more systematically than before.
Collapse
Affiliation(s)
- Ralf Paus
- Department of Dermatology, University of Lübeck, Lübeck, Germany.
| | | | | |
Collapse
|
39
|
Galińska-Rakoczy A, Engel P, Xu C, Jung H, Craig R, Tobacman LS, Lehman W. Structural basis for the regulation of muscle contraction by troponin and tropomyosin. J Mol Biol 2008; 379:929-35. [PMID: 18514658 DOI: 10.1016/j.jmb.2008.04.062] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Revised: 04/24/2008] [Accepted: 04/28/2008] [Indexed: 01/13/2023]
Abstract
The molecular switching mechanism governing skeletal and cardiac muscle contraction couples the binding of Ca2+ on troponin to the movement of tropomyosin on actin filaments. Despite years of investigation, this mechanism remains unclear because it has not yet been possible to directly assess the structural influence of troponin on tropomyosin that causes actin filaments, and hence myosin-crossbridge cycling and contraction, to switch on and off. A C-terminal domain of troponin I is thought to be intimately involved in inducing tropomyosin movement to an inhibitory position that blocks myosin-crossbridge interaction. Release of this regulatory, latching domain from actin after Ca2+ binding to TnC (the Ca2+ sensor of troponin that relieves inhibition) presumably allows tropomyosin movement away from the inhibitory position on actin, thus initiating contraction. However, the structural interactions of the regulatory domain of TnI (the "inhibitory" subunit of troponin) with tropomyosin and actin that cause tropomyosin movement are unknown, and thus, the regulatory process is not well defined. Here, thin filaments were labeled with an engineered construct representing C-terminal TnI, and then, 3D electron microscopy was used to resolve where troponin is anchored on actin-tropomyosin. Electron microscopy reconstruction showed how TnI binding to both actin and tropomyosin at low Ca2+ competes with tropomyosin for a common site on actin and drives tropomyosin movement to a constrained, relaxing position to inhibit myosin-crossbridge association. Thus, the observations reported reveal the structural mechanism responsible for troponin-tropomyosin-mediated steric interference of actin-myosin interaction that regulates muscle contraction.
Collapse
Affiliation(s)
- Agnieszka Galińska-Rakoczy
- Department of Physiology and Biophysics, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118, USA
| | | | | | | | | | | | | |
Collapse
|