1
|
Liang Z, Dai C, He F, Wang Y, Huang Y, Li H, Wu Y, Hu Y, Xu K. AKAP3-mediated type I PKA signaling is required for mouse sperm hyperactivation and fertility†. Biol Reprod 2024; 110:684-697. [PMID: 38145487 DOI: 10.1093/biolre/ioad180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 11/14/2023] [Accepted: 12/19/2023] [Indexed: 12/27/2023] Open
Abstract
The protein kinase A (PKA) signaling pathway, which mediates protein phosphorylation, is important for sperm motility and male fertility. This process relies on A-kinase anchoring proteins that organize PKA and its signalosomes within specific subcellular compartments. Previously, it was found that the absence of A-kinase anchoring protein 3 (AKAP3) leads to multiple morphological abnormalities in mouse sperm. But how AKAP3 regulates sperm motility is yet to be elucidated. AKAP3 has two amphipathic domains, here named dual and RI, in its N-terminus. These domains are responsible for binding regulatory subunits I alpha (RIα) and II alpha (RIIα) of PKA and for RIα only, respectively. Here, we generated mutant mice lacking the dual and RI domains of AKAP3. It was found that the deletion of these domains caused male mouse infertile, accompanied by mild defects in the fibrous sheath of sperm tails. Additionally, the levels of serine/threonine phosphorylation of PKA substrates and tyrosine phosphorylation decreased in the mutant sperm, which exhibited a defect in hyperactivation under capacitation conditions. The protein levels of PKA subunits remained unchanged. But, interestingly, the regulatory subunit RIα was mis-localized from principal piece to midpiece of sperm tail, whereas this was not observed for RIIα. Further protein-protein interaction assays revealed a preference for AKAP3 to bind RIα over RIIα. Collectively, our findings suggest that AKAP3 is important for sperm hyperactivity by regulating type-I PKA signaling pathway mediated protein phosphorylation via its dual and RI domains.
Collapse
Affiliation(s)
- Zhongkun Liang
- Center for Reproductive Medicine, SunYat-Sen Memorial Hospital of SunYat-Sen University, Guangzhou 510120, China
| | - Chaowei Dai
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Fenfen He
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yu Wang
- Prenatal Diagnostic Center of Obstetrics and Gynecology Department, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Yihua Huang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Heying Li
- Analysis and Testing Center, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510535, China
| | - Yongming Wu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yafang Hu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Kaibiao Xu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
2
|
Zhang K, Xu XH, Wu J, Wang N, Li G, Hao GM, Cao JF. Decreased AKAP4/PKA signaling pathway in high DFI sperm affects sperm capacitation. Asian J Androl 2024; 26:25-33. [PMID: 37695244 PMCID: PMC10846834 DOI: 10.4103/aja202329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 06/12/2023] [Indexed: 09/12/2023] Open
Abstract
The sperm DNA fragmentation index (DFI) is a metric used to assess DNA fragmentation within sperm. During in vitro fertilization-embryo transfer (IVF-ET), high sperm DFI can lead to a low fertilization rate, poor embryo development, early miscarriage, etc. A kinase anchoring protein (AKAP) is a scaffold protein that can bind protein kinase A (PKA) to subcellular sites of specific substrates and protects the biophosphorylation reaction. Sperm protein antigen 17 (SPA17) can also bind to AKAP. This study intends to explore the reason for the decreased fertilization rate observed in high sperm DFI (H-DFI) patients during IVF-ET. In addition, the study investigates the expression of AKAP, protein kinase A regulatory subunit (PKARII), and SPA17 between H-DFI and low sperm DFI (L-DFI) patients. SPA17 at the transcriptional level is abnormal, the translational level increases in H-DFI patients, and the expression of AKAP4/PKARII protein decreases. H 2 O 2 has been used to simulate oxidative stress damage to spermatozoa during the formation of sperm DFI. It indicates that H 2 O 2 increases the expression of sperm SPA17 protein and suppresses AKAP4/PKARII protein expression. These processes inhibit sperm capacitation and reduce acrosomal reactions. Embryo culture data and IVF outcomes have been documented. The H-DFI group has a lower fertilization rate. Therefore, the results indicate that the possible causes for the decreased fertilization rate in the H-DFI patients have included loss of sperm AKAP4/PKARII proteins, blocked sperm capacitation, and reduced occurrence of acrosome reaction.
Collapse
Affiliation(s)
- Kun Zhang
- Hebei Key Laboratory of Infertility and Genetics, Department of Reproductive Medicine, Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
- Department of Reproductive Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China
| | - Xiu-Hua Xu
- Hebei Key Laboratory of Infertility and Genetics, Department of Reproductive Medicine, Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Jian Wu
- Hebei Key Laboratory of Infertility and Genetics, Department of Reproductive Medicine, Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Ning Wang
- Hebei Key Laboratory of Infertility and Genetics, Department of Reproductive Medicine, Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Gang Li
- Department of Neurology, The 980 Hospital of the People’s Liberation Army Joint Logistics Support Force (Bethune International Peace Hospital), Shijiazhuang 050000, China
| | - Gui-Min Hao
- Hebei Key Laboratory of Infertility and Genetics, Department of Reproductive Medicine, Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Jin-Feng Cao
- Hebei Key Laboratory of Infertility and Genetics, Department of Reproductive Medicine, Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| |
Collapse
|
3
|
Mohapatra T, Dixit M. IQ Motif Containing GTPase Activating Proteins (IQGAPs), A-Kinase Anchoring Proteins (AKAPs) and Kinase Suppressor of Ras Proteins (KSRs) in Scaffolding Oncogenic Pathways and Their Therapeutic Potential. ACS OMEGA 2022; 7:45837-45848. [PMID: 36570181 PMCID: PMC9773950 DOI: 10.1021/acsomega.2c05505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
Scaffolding proteins colocalize interacting partners on their surface and facilitate complex formation. They have multiple domains and motifs, which provide binding sites for various molecules. This property of scaffolding proteins helps in the orderly transduction of signals. Abnormal signal transduction is frequently observed in cancers, which can also be attributed to the altered functionality of scaffolding proteins. IQ motif containing GTPase activating proteins (IQGAPs), kinase suppressor of Ras (KSR), and A-kinase anchoring proteins (AKAPs) tether oncogenic pathways RAS/RAF/MEK/ERK, PI3K/AKT, Hippo, Wnt, and CDC42/RAC to them. Scaffolding proteins are attractive drug targets as they are the controlling hub for multiple pathways and regulate crosstalk between them. The first part of this review describes the human scaffolding proteins known to play a role in oncogenesis, pathways altered by them, and the impact on oncogenic processes. The second part provides information on the therapeutic potential of scaffolding proteins and future possibilities. The information on the explored and unexplored areas of the therapeutic potential of scaffolding proteins will be equally helpful for biologists and chemists.
Collapse
Affiliation(s)
- Talina Mohapatra
- National
Institute of Science Education and Research, School of Biological Sciences, Bhubaneswar, Odisha 752050, India
- Homi
Bhabha National Institute, Training School
Complex, Anushaktinagar, Mumbai 400094, India
| | - Manjusha Dixit
- National
Institute of Science Education and Research, School of Biological Sciences, Bhubaneswar, Odisha 752050, India
- Homi
Bhabha National Institute, Training School
Complex, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
4
|
Yogo K. Molecular basis of the morphogenesis of sperm head and tail in mice. Reprod Med Biol 2022; 21:e12466. [PMID: 35619659 PMCID: PMC9126569 DOI: 10.1002/rmb2.12466] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 11/26/2022] Open
Abstract
Background The spermatozoon has a complex molecular apparatus necessary for fertilization in its head and flagellum. Recently, numerous genes that are needed to construct the molecular apparatus of spermatozoa have been identified through the analysis of genetically modified mice. Methods Based on the literature information, the molecular basis of the morphogenesis of sperm heads and flagella in mice was summarized. Main findings (Results) The molecular mechanisms of vesicular trafficking and intraflagellar transport in acrosome and flagellum formation were listed. With the development of cryo‐electron tomography and mass spectrometry techniques, the details of the axonemal structure are becoming clearer. The fine structure and the proteins needed to form the central apparatus, outer and inner dynein arms, nexin‐dynein regulatory complex, and radial spokes were described. The important components of the formation of the mitochondrial sheath, fibrous sheath, outer dense fiber, and the annulus were also described. The similarities and differences between sperm flagella and Chlamydomonas flagella/somatic cell cilia were also discussed. Conclusion The molecular mechanism of formation of the sperm head and flagellum has been clarified using the mouse as a model. These studies will help to better understand the diversity of sperm morphology and the causes of male infertility.
Collapse
Affiliation(s)
- Keiichiro Yogo
- Department of Applied Life Sciences Faculty of Agriculture Shizuoka University Shizuoka Japan
| |
Collapse
|
5
|
Dahlin HR, Zheng N, Scott JD. Beyond PKA: Evolutionary and structural insights that define a docking and dimerization domain superfamily. J Biol Chem 2021; 297:100927. [PMID: 34256050 PMCID: PMC8339350 DOI: 10.1016/j.jbc.2021.100927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/18/2021] [Accepted: 06/28/2021] [Indexed: 01/26/2023] Open
Abstract
Protein-interaction domains can create unique macromolecular complexes that drive evolutionary innovation. By combining bioinformatic and phylogenetic analyses with structural approaches, we have discovered that the docking and dimerization (D/D) domain of the PKA regulatory subunit is an ancient and conserved protein fold. An archetypal function of this module is to interact with A-kinase-anchoring proteins (AKAPs) that facilitate compartmentalization of this key cell-signaling enzyme. Homology searching reveals that D/D domain proteins comprise a superfamily with 18 members that function in a variety of molecular and cellular contexts. Further in silico analyses indicate that D/D domains segregate into subgroups on the basis of their similarity to type I or type II PKA regulatory subunits. The sperm autoantigenic protein 17 (SPA17) is a prototype of the type II or R2D2 subgroup that is conserved across metazoan phyla. We determined the crystal structure of an extended D/D domain from SPA17 (amino acids 1-75) at 1.72 Å resolution. This revealed a four-helix bundle-like configuration featuring terminal β-strands that can mediate higher order oligomerization. In solution, SPA17 forms both homodimers and tetramers and displays a weak affinity for AKAP18. Quantitative approaches reveal that AKAP18 binding occurs at nanomolar affinity when SPA17 heterodimerizes with the ropporin-1-like D/D protein. These findings expand the role of the D/D fold as a versatile protein-interaction element that maintains the integrity of macromolecular architectures within organelles such as motile cilia.
Collapse
Affiliation(s)
- Heather R Dahlin
- Department of Pharmacology, University of Washington, Seattle, Washington, USA
| | - Ning Zheng
- Department of Pharmacology, University of Washington, Seattle, Washington, USA; Howard Hughes Medical Institute, University of Washington, Seattle, Washington, USA.
| | - John D Scott
- Department of Pharmacology, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
6
|
Fuentes-Albero MC, González-Brusi L, Cots P, Luongo C, Abril-Sánchez S, Ros-Santaella JL, Pintus E, Ruiz-Díaz S, Barros-García C, Sánchez-Calabuig MJ, García-Párraga D, Avilés M, Izquierdo Rico MJ, García-Vázquez FA. Protein Identification of Spermatozoa and Seminal Plasma in Bottlenose Dolphin ( Tursiops truncatus). Front Cell Dev Biol 2021; 9:673961. [PMID: 34336830 PMCID: PMC8323341 DOI: 10.3389/fcell.2021.673961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/28/2021] [Indexed: 01/04/2023] Open
Abstract
Proteins play an important role in many reproductive functions such as sperm maturation, sperm transit in the female genital tract or sperm-oocyte interaction. However, in general, little information concerning reproductive features is available in the case of aquatic animals. The present study aims to characterize the proteome of both spermatozoa and seminal plasma of bottlenose dolphins (Tursiops truncatus) as a model organism for cetaceans. Ejaculate samples were obtained from two trained dolphins housed in an aquarium. Spermatozoa and seminal plasma were analyzed by means of proteomic analyses using an LC-MS/MS, and a list with the gene symbols corresponding to each protein was submitted to the DAVID database. Of the 419 proteins identified in spermatozoa and 303 in seminal plasma, 111 proteins were shared by both. Furthermore, 70 proteins were identified as involved in reproductive processes, 39 in spermatozoa, and 31 in seminal plasma. The five most abundant proteins were also identified in these samples: AKAP3, ODF2, TUBB, GSTM3, ROPN1 for spermatozoa and CST11, LTF, ALB, HSP90B1, PIGR for seminal plasma. In conclusion, this study provides the first characterization of the proteome in cetacean sperm and seminal plasma, opening the way to future research into new biomarkers, the analysis of conservation capacity or possible additional applications in the field of assisted reproductive technologies.
Collapse
Affiliation(s)
- Mari-Carmen Fuentes-Albero
- Department of Biology, Avanqua-Oceanogràfic S.L, Valencia, Spain.,Department of Physiology, Faculty of Veterinary Science, University of Murcia, Murcia, Spain
| | - Leopoldo González-Brusi
- Department of Cell Biology and Histology, Faculty of Medicine, University of Murcia, Murcia, Spain
| | - Paula Cots
- Department of Cell Biology and Histology, Faculty of Medicine, University of Murcia, Murcia, Spain
| | - Chiara Luongo
- Department of Physiology, Faculty of Veterinary Science, University of Murcia, Murcia, Spain
| | - Silvia Abril-Sánchez
- Department of Physiology, Faculty of Veterinary Science, University of Murcia, Murcia, Spain
| | - José Luis Ros-Santaella
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Eliana Pintus
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Sara Ruiz-Díaz
- Department of Animal Reproduction, National Agricultural and Food Research and Technology Institute (INIA), Madrid, Spain
| | | | - María-Jesús Sánchez-Calabuig
- Department of Animal Reproduction, National Agricultural and Food Research and Technology Institute (INIA), Madrid, Spain.,Department of Medicine and Surgery, Faculty of Veterinary Science, Madrid, Spain
| | - Daniel García-Párraga
- Department of Biology, Avanqua-Oceanogràfic S.L, Valencia, Spain.,Research Department, Fundación Oceanogràfic, Valencia, Spain
| | - Manuel Avilés
- Department of Cell Biology and Histology, Faculty of Medicine, University of Murcia, Murcia, Spain
| | - Mᵃ José Izquierdo Rico
- Department of Cell Biology and Histology, Faculty of Medicine, University of Murcia, Murcia, Spain
| | | |
Collapse
|
7
|
Kinase-anchoring proteins in ciliary signal transduction. Biochem J 2021; 478:1617-1629. [PMID: 33909027 DOI: 10.1042/bcj20200869] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/23/2021] [Accepted: 03/29/2021] [Indexed: 12/16/2022]
Abstract
Historically, the diffusion of chemical signals through the cell was thought to occur within a cytoplasmic soup bounded by the plasma membrane. This theory was predicated on the notion that all regulatory enzymes are soluble and moved with a Brownian motion. Although enzyme compartmentalization was initially rebuffed by biochemists as a 'last refuge of a scoundrel', signal relay through macromolecular complexes is now accepted as a fundamental tenet of the burgeoning field of spatial biology. A-Kinase anchoring proteins (AKAPs) are prototypic enzyme-organizing elements that position clusters of regulatory proteins at defined subcellular locations. In parallel, the primary cilium has gained recognition as a subcellular mechanosensory organelle that amplifies second messenger signals pertaining to metazoan development. This article highlights advances in our understanding of AKAP signaling within the primary cilium and how defective ciliary function contributes to an increasing number of diseases known as ciliopathies.
Collapse
|
8
|
Potential therapeutic applications of AKAP disrupting peptides. Clin Sci (Lond) 2021; 134:3259-3282. [PMID: 33346357 DOI: 10.1042/cs20201244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/16/2020] [Accepted: 11/30/2020] [Indexed: 11/17/2022]
Abstract
The 3'-5'-cyclic adenosine monophosphate (cAMP)/PKA pathway represents a major target for pharmacological intervention in multiple disease conditions. Although the last decade saw the concept of highly compartmentalized cAMP/PKA signaling consolidating, current means for the manipulation of this pathway still do not allow to specifically intervene on discrete cAMP/PKA microdomains. Since compartmentalization is crucial for action specificity, identifying new tools that allow local modulation of cAMP/PKA responses is an urgent need. Among key players of cAMP/PKA signaling compartmentalization, a major role is played by A-kinase anchoring proteins (AKAPs) that, by definition, anchor PKA, its substrates and its regulators within multiprotein complexes in well-confined subcellular compartments. Different tools have been conceived to interfere with AKAP-based protein-protein interactions (PPIs), and these primarily include peptides and peptidomimetics that disrupt AKAP-directed multiprotein complexes. While these molecules have been extensively used to understand the molecular mechanisms behind AKAP function in pathophysiological processes, less attention has been devoted to their potential application for therapy. In this review, we will discuss how AKAP-based PPIs can be pharmacologically targeted by synthetic peptides and peptidomimetics.
Collapse
|
9
|
Martinez CA, Alvarez-Rodriguez M, Wright D, Rodriguez-Martinez H. Does the Pre-Ovulatory Pig Oviduct Rule Sperm Capacitation In Vivo Mediating Transcriptomics of Catsper Channels? Int J Mol Sci 2020; 21:ijms21051840. [PMID: 32155986 PMCID: PMC7084628 DOI: 10.3390/ijms21051840] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 12/16/2022] Open
Abstract
Spermatozoa need to conduct a series of biochemical changes termed capacitation in order to fertilize. In vivo, capacitation is sequentially achieved during sperm transport and interaction with the female genital tract, by mechanisms yet undisclosed in detail. However, when boar spermatozoa are stored in the tubal reservoir pre-ovulation, most appear to be in a non-capacitated state. This study aimed at deciphering the transcriptomics of capacitation-related genes in the pig pre-ovulatory oviduct, following the entry of semen or of sperm-free seminal plasma (SP). Ex-vivo samples of the utero-tubal junction (UTJ) and isthmus were examined with a microarray chip (GeneChip® Porcine Gene 1.0 ST Array, Thermo Fisher Scientific) followed by bioinformatics for enriched analysis of functional categories (GO terms) and restrictive statistics. The results confirmed that entry of semen or of relative amounts of sperm-free SP modifies gene expression of these segments, pre-ovulation. It further shows that enriched genes are differentially associated with pathways relating to sperm motility, acrosome reaction, single fertilization, and the regulation of signal transduction GO terms. In particular, the pre-ovulation oviduct stimulates the Catsper channels for sperm Ca2+ influx, with AKAPs, CATSPERs, and CABYR genes being positive regulators while PKIs and CRISP1 genes appear to be inhibitors of the process. We postulate that the stimulation of PKIs and CRISP1 genes in the pre-ovulation sperm reservoir/adjacent isthmus, mediated by SP, act to prevent premature massive capacitation prior to ovulation.
Collapse
Affiliation(s)
- Cristina A. Martinez
- Department of Biomedical and Clinical Sciences (BKV), BKH/Obstetrics and Gynecology, Faculty of Medicine and Health Sciences, Linköping University, SE-58185 Linköping, Sweden; (M.A.-R.); (H.R.-M.)
- Correspondence: ; Tel.: +34-678077708
| | - Manuel Alvarez-Rodriguez
- Department of Biomedical and Clinical Sciences (BKV), BKH/Obstetrics and Gynecology, Faculty of Medicine and Health Sciences, Linköping University, SE-58185 Linköping, Sweden; (M.A.-R.); (H.R.-M.)
| | - Dominic Wright
- Department of Physics, Chemistry and Biology, Faculty of Science and Engineering; Linköping University, SE-58183 Linköping, Sweden;
| | - Heriberto Rodriguez-Martinez
- Department of Biomedical and Clinical Sciences (BKV), BKH/Obstetrics and Gynecology, Faculty of Medicine and Health Sciences, Linköping University, SE-58185 Linköping, Sweden; (M.A.-R.); (H.R.-M.)
| |
Collapse
|
10
|
Loss-of-function mutations in QRICH2 cause male infertility with multiple morphological abnormalities of the sperm flagella. Nat Commun 2019; 10:433. [PMID: 30683861 PMCID: PMC6347614 DOI: 10.1038/s41467-018-08182-x] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 12/14/2018] [Indexed: 02/05/2023] Open
Abstract
Aberrant sperm flagella impair sperm motility and cause male infertility, yet the genes which have been identified in multiple morphological abnormalities of the flagella (MMAF) can only explain the pathogenic mechanisms of MMAF in a small number of cases. Here, we identify and functionally characterize homozygous loss-of-function mutations of QRICH2 in two infertile males with MMAF from two consanguineous families. Remarkably, Qrich2 knock-out (KO) male mice constructed by CRISPR-Cas9 technology present MMAF phenotypes and sterility. To elucidate the mechanisms of Qrich2 functioning in sperm flagellar formation, we perform proteomic analysis on the testes of KO and wild-type mice. Furthermore, in vitro experiments indicate that QRICH2 is involved in sperm flagellar development through stabilizing and enhancing the expression of proteins related to flagellar development. Our findings strongly suggest that the genetic mutations of human QRICH2 can lead to male infertility with MMAF and that QRICH2 is essential for sperm flagellar formation.
Collapse
|
11
|
Huang S, Cao S, Zhou T, Kong L, Liang G. 4-tert-octylphenol injures motility and viability of human sperm by affecting cAMP-PKA/PKC-tyrosine phosphorylation signals. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 62:234-243. [PMID: 30098580 DOI: 10.1016/j.etap.2018.07.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 07/14/2018] [Accepted: 07/18/2018] [Indexed: 06/08/2023]
Abstract
4-tert-octylphenol (4t-OP) is a well-known xenoestrogen. Our objective was to explore the effects and molecular mechanisms of 4t-OP on human sperm. Sperm samples were exposed to 0, 0.1, or 0.3 mM 4t-OP for two hours. Results showed that both sperm viability and motility were significantly injured by 0.3 mM 4t-OP. We applied comparative proteomics to explore the molecular targets affected by 4t-OP. 81 differentially expressed (DE) proteins were identified. Bioinformatic analysis showed that these proteins were highly associated with motility and apoptosis, and were mostly enriched in cAMP-PKA/PKC-phosphorylation-associated pathway. We further verified that 0.1 mM and 0.3 mM 4t-OP significantly decreased cAMP activity of sperm. Expression of RACK1 and PRDX6 were detected by western blot (WB) to verify their tendencies in gels; antiapoptotic factor BCL2 was also detected by WB. The data indicated that 4-tert-octylphenol injures the motility and viability of human sperm probably by affecting cAMP-PKA/PKC-tyrosine phosphorylation signals.
Collapse
Affiliation(s)
- Shaoping Huang
- Department of Histology and Embryology, Medical School, Southeast University, Nanjing 210009, Jiangsu, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China.
| | - Senyang Cao
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China; Center of Reproductive Medicine, Yancheng Maternity and Child Health Care Hospital, Yancheng 224002, Jiangsu, China
| | - Tao Zhou
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China; Central Laboratory, Wuxi Maternity and Child Health Care Hospital affiliated to Nanjing Medical University 214002, Jiangsu, China
| | - Lu Kong
- School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Geyu Liang
- School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| |
Collapse
|
12
|
Pelloni M, Paoli D, Majoli M, Pallotti F, Carlini T, Lenzi A, Lombardo F. Molecular study of human sperm RNA: Ropporin and CABYR in asthenozoospermia. J Endocrinol Invest 2018; 41:781-787. [PMID: 29247344 DOI: 10.1007/s40618-017-0804-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 12/02/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND Sperm motility is an essential aspect of human fertility. Sperm contain an abundance of transcripts, thought to be remnants of mRNA, which comprise a genetic fingerprint and can be considered a historic record of gene expression during spermatogenesis. The aberrant expression of numerous genes has been found to contribute to impaired sperm motility; these include ROPN1 (rhophilin associated tail protein 1), which encodes a component of the fibrous sheath of the mammalian sperm flagella, and CABYR (calcium-binding tyrosine-(Y)-phosphorylation-regulated protein), which plays an important role in calcium activation and modulation. The aim of this study was to investigate ROPN1 and CABYR gene co-expression in asthenozoospermic semen samples in comparison with normozoospermic samples. METHODS We studied 120 semen samples (60 normozoospermic and 60 asthenozoospermic) from Caucasian patients attending our centre for an andrological check-up. Total RNA was extracted from purified spermatozoa with RNeasy mini kit. ROPN1 and CABYR mRNA expression was analysed using RT-qPCR. Continuous variables were described as means ± standard deviations. RESULTS ROPN1 and CABYR mRNA were simultaneously downregulated in asthenozoospermic in comparison with normozoospermic samples. There was also a positive correlation between total progressive motility and ROPN1 and CABYR gene expression and between total motile sperm number and ROPN1 and CABYR gene expression. CONCLUSIONS The results demonstrated downregulation of both ROPN1 and CABYR in asthenozoospermic samples and importantly, a positive correlation between the expression of the two genes, suggesting that ROPN1 and CABYR co-expression is a prerequisite for normal flagellar function and sperm motility.
Collapse
Affiliation(s)
- M Pelloni
- Laboratory of Seminology-Sperm Bank "Loredana Gandini", Department of Experimental Medicine, University of Rome "La Sapienza", Viale del Policlinico 155, 00161, Rome, Italy
| | - D Paoli
- Laboratory of Seminology-Sperm Bank "Loredana Gandini", Department of Experimental Medicine, University of Rome "La Sapienza", Viale del Policlinico 155, 00161, Rome, Italy.
| | - M Majoli
- Laboratory of Seminology-Sperm Bank "Loredana Gandini", Department of Experimental Medicine, University of Rome "La Sapienza", Viale del Policlinico 155, 00161, Rome, Italy
| | - F Pallotti
- Laboratory of Seminology-Sperm Bank "Loredana Gandini", Department of Experimental Medicine, University of Rome "La Sapienza", Viale del Policlinico 155, 00161, Rome, Italy
| | - T Carlini
- Laboratory of Seminology-Sperm Bank "Loredana Gandini", Department of Experimental Medicine, University of Rome "La Sapienza", Viale del Policlinico 155, 00161, Rome, Italy
| | - A Lenzi
- Laboratory of Seminology-Sperm Bank "Loredana Gandini", Department of Experimental Medicine, University of Rome "La Sapienza", Viale del Policlinico 155, 00161, Rome, Italy
| | - F Lombardo
- Laboratory of Seminology-Sperm Bank "Loredana Gandini", Department of Experimental Medicine, University of Rome "La Sapienza", Viale del Policlinico 155, 00161, Rome, Italy
| |
Collapse
|
13
|
Stival C, Ritagliati C, Xu X, Gervasi MG, Luque GM, Baró Graf C, De la Vega-Beltrán JL, Torres N, Darszon A, Krapf D, Buffone MG, Visconti PE, Krapf D. Disruption of protein kinase A localization induces acrosomal exocytosis in capacitated mouse sperm. J Biol Chem 2018; 293:9435-9447. [PMID: 29700114 DOI: 10.1074/jbc.ra118.002286] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/19/2018] [Indexed: 11/06/2022] Open
Abstract
Protein kinase A (PKA) is a broad-spectrum Ser/Thr kinase involved in the regulation of several cellular activities. Thus, its precise activation relies on being localized at specific subcellular places known as discrete PKA signalosomes. A-Kinase anchoring proteins (AKAPs) form scaffolding assemblies that play a pivotal role in PKA regulation by restricting its activity to specific microdomains. Because one of the first signaling events observed during mammalian sperm capacitation is PKA activation, understanding how PKA activity is restricted in space and time is crucial to decipher the critical steps of sperm capacitation. Here, we demonstrate that the anchoring of PKA to AKAP is not only necessary but also actively regulated during sperm capacitation. However, we find that once capacitated, the release of PKA from AKAP promotes a sudden Ca2+ influx through the sperm-specific Ca2+ channel CatSper, starting a tail-to-head Ca2+ propagation that triggers the acrosome reaction. Three-dimensional super-resolution imaging confirmed a redistribution of PKA within the flagellar structure throughout the capacitation process, which depends on anchoring to AKAP. These results represent a new signaling event that involves CatSper Ca2+ channels in the acrosome reaction, sensitive to PKA stimulation upon release from AKAP.
Collapse
Affiliation(s)
- Cintia Stival
- From the Laboratoty of Cell Signal Transduction Networks, Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET-UNR, Rosario 2000, Argentina
| | - Carla Ritagliati
- From the Laboratoty of Cell Signal Transduction Networks, Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET-UNR, Rosario 2000, Argentina
| | - Xinran Xu
- the Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, Colorado 80523
| | - Maria G Gervasi
- the Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts 01003
| | - Guillermina M Luque
- the Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires C1428ADN, Argentina
| | - Carolina Baró Graf
- From the Laboratoty of Cell Signal Transduction Networks, Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET-UNR, Rosario 2000, Argentina
| | - José Luis De la Vega-Beltrán
- the Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos 62210, México, and
| | - Nicolas Torres
- the Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires C1428ADN, Argentina
| | - Alberto Darszon
- the Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos 62210, México, and
| | - Diego Krapf
- the Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, Colorado 80523.,the School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523
| | - Mariano G Buffone
- the Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires C1428ADN, Argentina
| | - Pablo E Visconti
- the Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts 01003
| | - Dario Krapf
- From the Laboratoty of Cell Signal Transduction Networks, Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET-UNR, Rosario 2000, Argentina,
| |
Collapse
|
14
|
Gervasi MG, Visconti PE. Chang's meaning of capacitation: A molecular perspective. Mol Reprod Dev 2018; 83:860-874. [PMID: 27256723 DOI: 10.1002/mrd.22663] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 05/31/2016] [Indexed: 02/04/2023]
Abstract
Dr. Min Chue Chang's contributions to the field of reproductive biology set the stage for the development of the contraceptive pill and in vitro fertilization. Throughout his publications, Dr. Chang was also able to transmit his view of the fertilization process in ways that organized research for newer generations of reproductive biologists. Particularly relevant for the achievement of in vitro fertilization in mammals was the discovery that the sperm required a period of residence in the female tract to become fertilization-competent; Dr. Chang and Dr. Austin, in Australia, independently reported this process, now known as sperm capacitation. This review discusses Dr. Chang's views on capacitation, and puts them in the context of recent advances in the understanding of the molecular basis of this process. Mol. Reprod. Dev. 83: 860-874, 2016 © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Maria Gracia Gervasi
- Department of Veterinary and Animal Sciences, ISB, University of Massachusetts, Amherst, Massachusetts
| | - Pablo E Visconti
- Department of Veterinary and Animal Sciences, ISB, University of Massachusetts, Amherst, Massachusetts.
| |
Collapse
|
15
|
Zhu X, Liu Y, Yang P. Radial Spokes-A Snapshot of the Motility Regulation, Assembly, and Evolution of Cilia and Flagella. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a028126. [PMID: 27940518 DOI: 10.1101/cshperspect.a028126] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Propulsive forces generated by cilia and flagella are used in events that are critical for the thriving of diverse eukaryotic organisms in their environments. Despite distinctive strokes and regulations, the majority of them adopt the 9+2 axoneme that is believed to exist in the last eukaryotic common ancestor. Only a few outliers have opted for a simpler format that forsakes the signature radial spokes and the central pair apparatus, although both are unnecessary for force generation or rhythmicity. Extensive evidence has shown that they operate as an integral system for motility control. Recent studies have made remarkable progress on the radial spoke. This review will trace how the new structural, compositional, and evolutional insights pose significant implications on flagella biology and, conversely, ciliopathy.
Collapse
Affiliation(s)
- Xiaoyan Zhu
- The Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin 53201
| | - Yi Liu
- The Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin 53201
| | - Pinfen Yang
- The Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin 53201
| |
Collapse
|
16
|
Young SAM, Miyata H, Satouh Y, Aitken RJ, Baker MA, Ikawa M. CABYR is essential for fibrous sheath integrity and progressive motility in mouse spermatozoa. J Cell Sci 2016; 129:4379-4387. [PMID: 27802166 DOI: 10.1242/jcs.193151] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 10/13/2016] [Indexed: 12/29/2022] Open
Abstract
Ca2+-binding tyrosine-phosphorylation-regulated protein (CABYR) has been implicated in sperm physiological function in several in vitro studies. It has also been implicated as a potential cause of and diagnostic tool in asthenozoospermic human males. CABYR is known to be localized to the fibrous sheath, an accessory structure in the flagellar principal piece. Utilizing the CRISPR-Cas9 technology, we have knocked out this gene in mice to understand its role in male fertility. Cabyr-knockout male mice showed severe subfertility with a defect in sperm motility as well as a significant disorganization in the fibrous sheath. Further, abnormal configuration of doublet microtubules was observed in the Cabyr-knockout spermatozoa, suggesting that the fibrous sheath is important for the correct organization of the axoneme. Our results show that it is the role of CABYR in the formation of the fibrous sheath that is essential for male fertility.
Collapse
Affiliation(s)
- Samantha A M Young
- Priority Research Centre in Reproductive Science, Discipline of Biological Sciences, Faculty of Science and IT, University of Newcastle, Callaghan, New South Wales 2308, Australia.,Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Haruhiko Miyata
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yuhkoh Satouh
- Animal Resource Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Robert John Aitken
- Priority Research Centre in Reproductive Science, Discipline of Biological Sciences, Faculty of Science and IT, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Mark A Baker
- Priority Research Centre in Reproductive Science, Discipline of Biological Sciences, Faculty of Science and IT, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Masahito Ikawa
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan .,Animal Resource Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
17
|
Rao VG, Sarafdar RB, Chowdhury TS, Sivadas P, Yang P, Dongre PM, D'Souza JS. Myc-binding protein orthologue interacts with AKAP240 in the central pair apparatus of the Chlamydomonas flagella. BMC Cell Biol 2016; 17:24. [PMID: 27287193 PMCID: PMC4901443 DOI: 10.1186/s12860-016-0103-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 06/02/2016] [Indexed: 12/20/2022] Open
Abstract
Background Flagella and cilia are fine thread-like organelles protruding from cells that harbour them. The typical ‘9 + 2’ cilia confer motility on these cells. Although the mechanistic details of motility remain elusive, the dynein-driven motility is regulated by various kinases and phosphatases. A-kinase anchoring proteins (AKAPs) are scaffolds that bind to a variety of such proteins. Usually, they are known to possess a dedicated domain that in vitro interacts with the regulatory subunits (RI and RII) present in the cAMP-dependent protein kinase (PKA) holoenzyme. These subunits conventionally harbour contiguous stretches of a.a. residues that reveal the presence of the Dimerization Docking (D/D) domain, Catalytic interface domain and cAMP-Binding domain. The Chlamydomonas reinhardtii flagella harbour two AKAPs; viz., the radial spoke AKAP97 or RSP3 and the central pair AKAP240. Both these were identified on the basis of their RII-binding property. Interestingly, AKAP97 binds in vivo to two RII-like proteins (RSP7 and RSP11) that contain only the D/D domain. Results We found a Chlamydomonas Flagellar Associated Protein (FAP174) orthologous to MYCBP-1, a protein that binds to organellar AKAPs and Myc onco-protein. An in silico analysis shows that the N-terminus of FAP174 is similar to those RII domain-containing proteins that have binding affinities to AKAPs. Binding of FAP174 was tested with the AKAP97/RSP3 using in vitro pull down assays; however, this binding was rather poor with AKAP97/RSP3. Antibodies were generated against FAP174 and the cellular localization was studied using Western blotting and immunoflourescence in wild type and various flagella mutants. We show that FAP174 localises to the central pair of the axoneme. Using overlay assays we show that FAP174 binds AKAP240 previously identified in the C2 portion of the central pair apparatus. Conclusion It appears that the flagella of Chlamydomonas reinhardtii contain proteins that bind to AKAPs and except for the D/D domain, lack the conventional a.a. stretches of PKA regulatory subunits (RSP7 and RSP11). We add FAP174 to this growing list. Electronic supplementary material The online version of this article (doi:10.1186/s12860-016-0103-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Venkatramanan G Rao
- UM-DAE Centre for Excellence in Basic Sciences, Kalina campus, Santacruz (E), Mumbai, 400098, India
| | - Ruhi B Sarafdar
- UM-DAE Centre for Excellence in Basic Sciences, Kalina campus, Santacruz (E), Mumbai, 400098, India
| | - Twinkle S Chowdhury
- UM-DAE Centre for Excellence in Basic Sciences, Kalina campus, Santacruz (E), Mumbai, 400098, India
| | - Priyanka Sivadas
- Wehr Life Sciences, Marquette University, P.O. Box 1881, Milwaukee, WI, 53201-1881, USA
| | - Pinfen Yang
- Wehr Life Sciences, Marquette University, P.O. Box 1881, Milwaukee, WI, 53201-1881, USA
| | - Prabhakar M Dongre
- Department of Biophysics, University of Mumbai, Kalina campus, Santacruz (E), Mumbai, 400098, India
| | - Jacinta S D'Souza
- UM-DAE Centre for Excellence in Basic Sciences, Kalina campus, Santacruz (E), Mumbai, 400098, India.
| |
Collapse
|
18
|
Colombo M, Mirandola L, Reidy A, Suvorava N, Konala V, Chiaramonte R, Grizzi F, Rahman RL, Jenkins MR, Nugyen DD, Dalhbeck S, Cobos E, Figueroa JA, Chiriva-Internati M. Targeting Tumor Initiating Cells through Inhibition of Cancer Testis Antigens and Notch Signaling: A Hypothesis. Int Rev Immunol 2016; 34:188-99. [PMID: 25901861 DOI: 10.3109/08830185.2015.1027629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Tumor initiating cells (TICs) differ from normal stem cells (SCs) in their ability to initiate tumorigenesis, invasive growth, metastasis and the acquisition of chemo and/or radio-resistance. Over the past years, several studies have indicated the potential role of the Notch system as a key regulator of cellular stemness and tumor development. Furthermore, the expression of cancer testis antigens (CTA) in TICs, and their role in SC differentiation and biology, has become an important area of investigation. Here, we propose a model in which CTA expression and Notch signaling interacts to maintain the sustainability of self-replicating tumor populations, ultimately leading to the development of metastasis, drug resistance and cancer progression. We hypothesize that Notch-CTA interactions in TICs offer a novel opportunity for meaningful therapeutic interventions in cancer.
Collapse
Affiliation(s)
- Michela Colombo
- Department of Health Sciences, Università degli Studi di Milano , Milano , Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Peng M, Aye TT, Snel B, van Breukelen B, Scholten A, Heck AJR. Spatial Organization in Protein Kinase A Signaling Emerged at the Base of Animal Evolution. J Proteome Res 2015; 14:2976-87. [DOI: 10.1021/acs.jproteome.5b00370] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Mao Peng
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Netherlands Proteomics Centre, Padualaan
8, 3584 CH Utrecht, The Netherlands
- Department
of Toxicogenomics, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Thin Thin Aye
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Netherlands Proteomics Centre, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Berend Snel
- Theoretical
Biology and Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Bas van Breukelen
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Netherlands Proteomics Centre, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Arjen Scholten
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Netherlands Proteomics Centre, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Albert J. R. Heck
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Netherlands Proteomics Centre, Padualaan
8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
20
|
Vizel R, Hillman P, Ickowicz D, Breitbart H. AKAP3 degradation in sperm capacitation is regulated by its tyrosine phosphorylation. Biochim Biophys Acta Gen Subj 2015; 1850:1912-20. [PMID: 26093290 DOI: 10.1016/j.bbagen.2015.06.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 05/27/2015] [Accepted: 06/16/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND The A-kinase anchoring protein (AKAP) family is essential for sperm motility, capacitation and the acrosome reaction. PKA-dependent protein tyrosine phosphorylation occurs in mammalian sperm capacitation including AKAP3. In a recent study, we showed that AKAP3 undergoes degradation under capacitation conditions. Thus, we tested here whether AKAP3 degradation might be regulated by its tyrosine phosphorylation. METHODS The intracellular levels of AKAP3 were determined by western blot (WB) analysis using specific anti-AKAP3 antibodies. Tyrosine phosphorylation of AKAP3 was tested by immunoprecipitation and WB analysis. Acrosome reaction was examined using FITC-pisum sativum agglutinin. RESULTS AKAP3 is degraded and undergoes tyrosine-dephosphorylation during sperm capacitation and the degradation was reduced by inhibition of tyrosine phosphatase and enhanced by inhibition of tyrosine kinase. Sperm starvation or inhibition of mitochondrial respiration, which reduce cellular ATP levels, significantly accelerated AKAP3 degradation. Treatment with vanadate, or Na(+) or bicarbonate depletion, reduced AKAP3-degradation and the AR rate, while antimycin A or NH4Cl elevated both AKAP3-degradation and the AR degree. Treatment of sperm with NH4Cl enhanced PKA-dependent phosphorylation of four proteins, further supporting the involvement of AKAP3-degradation in capacitation. To demonstrate more specifically that sperm capacitation requires AKAP3-degradation, we inhibited AKAP3-degradation using anti-AKAP3 antibody in permeabilized cells. The anti-AKAP3-antibody induced significant inhibition of AKAP3-degradation and of the AR rate. CONCLUSION Sperm capacitation process requires AKAP3-degradation, and the degradation degree is regulated by the level of AKAP3 tyrosine phosphorylation. GENERAL SIGNIFICANCE Better understanding of the molecular mechanisms that mediate sperm capacitation can be used for infertility diagnosis, treatment and the developing of male contraceptives.
Collapse
Affiliation(s)
- Ruth Vizel
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Pnina Hillman
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Debby Ickowicz
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Haim Breitbart
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| |
Collapse
|
21
|
Buffone MG, Wertheimer EV, Visconti PE, Krapf D. Central role of soluble adenylyl cyclase and cAMP in sperm physiology. Biochim Biophys Acta Mol Basis Dis 2014; 1842:2610-20. [PMID: 25066614 DOI: 10.1016/j.bbadis.2014.07.013] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 07/16/2014] [Accepted: 07/17/2014] [Indexed: 11/15/2022]
Abstract
Cyclic adenosine 3',5'-monophosphate (cAMP), the first second messenger to be described, plays a central role in cell signaling in a wide variety of cell types. Over the last decades, a wide body of literature addressed the different roles of cAMP in cell physiology, mainly in response to neurotransmitters and hormones. cAMP is synthesized by a wide variety of adenylyl cyclases that can generally be grouped in two types: transmembrane adenylyl cyclase and soluble adenylyl cyclases. In particular, several aspects of sperm physiology are regulated by cAMP produced by a single atypical adenylyl cyclase (Adcy10, aka sAC, SACY). The signature that identifies sAC among other ACs, is their direct stimulation by bicarbonate. The essential nature of cAMP in sperm function has been demonstrated using gain of function as well as loss of function approaches. This review unifies state of the art knowledge of the role of cAMP and those enzymes involved in cAMP signaling pathways required for the acquisition of fertilizing capacity of mammalian sperm. This article is part of a Special Issue entitled: The role of soluble adenylyl cyclase in health and disease.
Collapse
Affiliation(s)
- Mariano G Buffone
- Instituto de Biología y Medicina Experimental, National Research Council of Argentina (CONICET), Buenos Aires, Argentina
| | - Eva V Wertheimer
- Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | - Pablo E Visconti
- Department of Veterinary and Animal Sciences, ISB, University of Massachusetts, Amherst, MA 01003, USA.
| | - Dario Krapf
- Instituto de Biología Molecular y Celular de Rosario (CONICET), UNR, Rosario, Argentina; Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Rosario, Argentina
| |
Collapse
|
22
|
Xu K, Qi H. Sperm-specific AKAP3 is a dual-specificity anchoring protein that interacts with both protein kinase a regulatory subunits via conserved N-terminal amphipathic peptides. Mol Reprod Dev 2014; 81:595-607. [PMID: 24687590 DOI: 10.1002/mrd.22329] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 03/22/2014] [Indexed: 11/06/2022]
Abstract
cAMP-dependent protein kinase A (PKA) plays important regulatory roles during mouse spermatogenesis. PKA-mediated signaling has been shown to regulate gene expression, chromatin condensation, capacitation, and motility during sperm development and behavior, although how PKA is regulated in spatiotemporal manners during spermatogenesis is not fully understood. In the present study, we found that PKA subunit isoforms are expressed and localized differently in meiotic and post-meiotic mouse spermatogenic cells. Regulatory subunit I alpha (RIα) is expressed in spermatocytes and round spermatids, where it is localized diffusely throughout the cytoplasm of cells. During late spermiogenesis, RIα abundance gradually decreases. On the other hand, RIIα is expressed constantly throughout meiotic and post-meiotic stages, and is associated with cytoskeletal structures. Among several A kinase anchoring proteins (AKAPs) expressed in the testis, sperm-specific AKAP3 can be found in the cytoplasm of elongating spermatids and interacts with RIα, as demonstrated by both in vivo and in vitro experiments. In mature sperm, AKAP3 is exclusively found in the principal piece of the flagellum, coincident with only RIIα. Mutagenesis experiments further showed that the preferential interactions of AKAP3 with PKA regulatory subunits are mediated by two highly conserved amphipathic peptides located in the N-terminal region of AKAP3. Thus, AKAP3 is a dual-specificity molecule that modulates PKA isotypes in a spatiotemporal manner during mouse spermatogenesis.
Collapse
Affiliation(s)
- Kaibiao Xu
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | | |
Collapse
|
23
|
Arnaboldi F, Menon A, Menegola E, Di Renzo F, Mirandola L, Grizzi F, Figueroa JA, Cobos E, Jenkins M, Barajon I, Chiriva-Internati M. Sperm protein 17 is an oncofetal antigen: a lesson from a murine model. Int Rev Immunol 2014; 33:367-74. [PMID: 24811209 DOI: 10.3109/08830185.2014.911856] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Sperm protein 17 (Sp17) was originally identified in the flagellum of spermatozoa and subsequently included in the subfamily of tumor-associated antigens known as cancer-testes antigens (CTA). Sp17 has been associated with the motility and migratory capacity in tumor cells, representing a link between gene expression patterns in germinal and tumor cells of different histological origins. Here we review the relevance of Sp17 expression in the mouse embryo and cancerous tissues, and present additional data demonstrating Sp17 complex expression pattern in this murine model. The expression of Sp17 in embryonic as well as adult neoplastic cells, but not normal tissues, suggests this protein should be considered an "oncofetal antigen." Further investigations are necessary to elucidate the mechanisms and functional significance of Sp17 aberrant expression in human adult cells and its implication in the pathobiology of cancer.
Collapse
Affiliation(s)
- F Arnaboldi
- 1Department of Human Morphology and Biomedical Sciences, University of Milan, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Bontems F, Fish RJ, Borlat I, Lembo F, Chocu S, Chalmel F, Borg JP, Pineau C, Neerman-Arbez M, Bairoch A, Lane L. C2orf62 and TTC17 are involved in actin organization and ciliogenesis in zebrafish and human. PLoS One 2014; 9:e86476. [PMID: 24475127 PMCID: PMC3903541 DOI: 10.1371/journal.pone.0086476] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 12/09/2013] [Indexed: 11/18/2022] Open
Abstract
Vertebrate genomes contain around 20,000 protein-encoding genes, of which a large fraction is still not associated with specific functions. A major task in future genomics will thus be to assign physiological roles to all open reading frames revealed by genome sequencing. Here we show that C2orf62, a highly conserved protein with little homology to characterized proteins, is strongly expressed in testis in zebrafish and mammals, and in various types of ciliated cells during zebrafish development. By yeast two hybrid and GST pull-down, C2orf62 was shown to interact with TTC17, another uncharacterized protein. Depletion of either C2orf62 or TTC17 in human ciliated cells interferes with actin polymerization and reduces the number of primary cilia without changing their length. Zebrafish embryos injected with morpholinos against C2orf62 or TTC17, or with mRNA coding for the C2orf62 C-terminal part containing a RII dimerization/docking (R2D2) - like domain show morphological defects consistent with imperfect ciliogenesis. We provide here the first evidence for a C2orf62-TTC17 axis that would regulate actin polymerization and ciliogenesis.
Collapse
Affiliation(s)
- Franck Bontems
- Department of Human Protein Sciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Richard J. Fish
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Irene Borlat
- Department of Human Protein Sciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Frédérique Lembo
- CRCM - Inserm U1068, Marseille, France
- Institut Paoli-Calmettes, Marseille, France
- CNRS UMR7258, Marseille, France
- Aix-Marseille University, Marseille, France
| | | | | | - Jean-Paul Borg
- CRCM - Inserm U1068, Marseille, France
- Institut Paoli-Calmettes, Marseille, France
- CNRS UMR7258, Marseille, France
- Aix-Marseille University, Marseille, France
| | | | - Marguerite Neerman-Arbez
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Amos Bairoch
- Department of Human Protein Sciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- SIB-Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Lydie Lane
- Department of Human Protein Sciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- SIB-Swiss Institute of Bioinformatics, Geneva, Switzerland
| |
Collapse
|
25
|
Hillman P, Ickowicz D, Vizel R, Breitbart H. Dissociation between AKAP3 and PKARII promotes AKAP3 degradation in sperm capacitation. PLoS One 2013; 8:e68873. [PMID: 23894359 PMCID: PMC3720880 DOI: 10.1371/journal.pone.0068873] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 05/31/2013] [Indexed: 12/24/2022] Open
Abstract
Ejaculated spermatozoa must undergo a series of biochemical modifications called capacitation, prior to fertilization. Protein-kinase A (PKA) mediates sperm capacitation, although its regulation is not fully understood. Sperm contain several A-kinase anchoring proteins (AKAPs), which are scaffold proteins that anchor PKA. In this study, we show that AKAP3 is degraded in bovine sperm incubated under capacitation conditions. The degradation rate is variable in sperm from different bulls and is correlated with the capacitation ability. The degradation of AKAP3 was significantly inhibited by MG-132, a proteasome inhibitor, indicating that AKAP3 degradation occurs via the proteasomal machinery. Treatment with Ca2+-ionophore induced further degradation of AKAP3; however, this effect was found to be enhanced in the absence of Ca2+ in the medium or when intracellular Ca2+ was chelated the degradation rate of AKAP3 was significantly enhanced when intracellular space was alkalized using NH4Cl, or when sperm were treated with Ht31, a peptide that contains the PKA-binding domain of AKAPs. Moreover, inhibition of PKA activity by H89, or its activation using 8Br-cAMP, increased AKAP3 degradation rate. This apparent contradiction could be explained by assuming that binding of PKA to AKAP3 protects AKAP3 from degradation. We conclude that AKAP3 degradation is regulated by intracellular alkalization and PKARII anchoring during sperm capacitation.
Collapse
Affiliation(s)
- Pnina Hillman
- Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel.
| | | | | | | |
Collapse
|
26
|
Ivanov SV, Panaccione A, Nonaka D, Prasad ML, Boyd KL, Brown B, Guo Y, Sewell A, Yarbrough WG. Diagnostic SOX10 gene signatures in salivary adenoid cystic and breast basal-like carcinomas. Br J Cancer 2013; 109:444-51. [PMID: 23799842 PMCID: PMC3721393 DOI: 10.1038/bjc.2013.326] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Revised: 06/01/2013] [Accepted: 06/04/2013] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Salivary adenoid cystic carcinoma (ACC) is an insidious slow-growing cancer with the propensity to recur and metastasise to distant sites. Basal-like breast carcinoma (BBC) is a molecular subtype that constitutes 15-20% of breast cancers, shares histological similarities and basal cell markers with ACC, lacks expression of ER (oestrogen receptor), PR (progesterone receptor), and HER2 (human epidermal growth factor receptor 2), and, similar to ACC, metastasises predominantly to the lung and brain. Both cancers lack targeted therapies owing to poor understanding of their molecular drivers. METHODS Gene expression profiling, immunohistochemical staining, western blot, RT-PCR, and in silico analysis of massive cancer data sets were used to identify novel markers and potential therapeutic targets for ACC and BBC. For the detection and comparison of gene signatures, we performed co-expression analysis using a recently developed web-based multi-experiment matrix tool for visualisation and rank aggregation. RESULTS In ACC and BBC we identified characteristic and overlapping SOX10 gene signatures that contained a large set of novel potential molecular markers. SOX10 was validated as a sensitive diagnostic marker for both cancers and its expression was linked to normal and malignant myoepithelial/basal cells. In ACC, BBC, and melanoma (MEL), SOX10 expression strongly co-segregated with the expression of ROPN1B, GPM6B, COL9A3, and MIA. In ACC and breast cancers, SOX10 expression negatively correlated with FOXA1, a cell identity marker and major regulator of the luminal breast subtype. Diagnostic significance of several conserved elements of the SOX10 signature (MIA, TRIM2, ROPN1, and ROPN1B) was validated on BBC cell lines. CONCLUSION SOX10 expression in ACC and BBC appears to be a part of a highly coordinated transcriptional programme characteristic for cancers with basal/myoepithelial features. Comparison between ACC/BBC and other cancers, such as neuroblastomaand MEL, reveals potential molecular markers specific for these cancers that are likely linked to their cell identity. SOX10 as a novel diagnostic marker for ACC and BBC provides important molecular insight into their molecular aetiology and cell origin. Given that SOX10 was recently described as a principal driver of MEL, identification of conserved elements of the SOX10 signatures may help in better understanding of SOX10-related signalling and development of novel diagnostic and therapeutic tools.
Collapse
Affiliation(s)
- S V Ivanov
- Section of Otolaryngology, Department of Surgery, Yale School of Medicine, 800 Howard Avenue, New Haven, CT 06519-1369, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Fiedler SE, Dudiki T, Vijayaraghavan S, Carr DW. Loss of R2D2 proteins ROPN1 and ROPN1L causes defects in murine sperm motility, phosphorylation, and fibrous sheath integrity. Biol Reprod 2013; 88:41. [PMID: 23303679 DOI: 10.1095/biolreprod.112.105262] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The fibrous sheath (FS) is a flagellar cytoskeletal structure unique to sperm that surrounds the outer dense fibers and axoneme. Its primary components are A-kinase anchoring proteins (AKAPs) 3 and 4, which suggests that the FS affects flagellar beating via the scaffolding of signaling pathways necessary for motility. Sperm proteins ROPN1 and ROPN1L bind AKAP3. To determine the role of ROPN1 and ROPN1L in sperm function, we created mice deficient in ROPN1 (RKO), mice deficient in ROPN1L (RLKO), and double knockout mice (DKO). All three strains of mice had normal testicular morphology and spermatogenesis. Only the DKOs had obvious defects in sperm morphology (thinning and shredding of the principal piece), which was accompanied by a reduction in AKAP3 levels. RLKO mice had slightly reduced sperm motility and increased levels of ROPN1. RKO mice had moderately impaired motility and increased levels of ROPN1L. DKO sperm were immotile. We have previously determined that RKO male mice are subfertile, and DKO males are infertile. Together these data indicate that ROPN1L and ROPN1 compensate for each other in the absence of the opposing protein, possibly to maintain AKAP3 incorporation in the FS. Sperm from mice lacking ROPN1L exhibited reductions in both cAMP-dependent protein kinase (PKA) phosphorylation of a 270-kDa protein (perhaps FSCB), and in capacitation-induced tyrosine phosphorylation. Sperm from mice lacking ROPN1 had reduced levels of FSCB and increased tyrosine phosphorylation of noncapacitated sperm. These data demonstrate that mutations in ROPN1 and ROPN1L can cause defects in FS integrity, sperm motility, and PKA-dependent signaling processes, leading to male infertility.
Collapse
Affiliation(s)
- Sarah E Fiedler
- Portland Veterans Affairs Medical Center and Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | | | | | | |
Collapse
|
28
|
Sivadas P, Dienes JM, St Maurice M, Meek WD, Yang P. A flagellar A-kinase anchoring protein with two amphipathic helices forms a structural scaffold in the radial spoke complex. ACTA ACUST UNITED AC 2013; 199:639-51. [PMID: 23148234 PMCID: PMC3494852 DOI: 10.1083/jcb.201111042] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amphipathic helices in the A-kinase anchoring protein RSP3 bind to spoke proteins involved in the assembly and modulation of the flagellar radial spoke complex, expanding the repertoire of these versatile helical protein motifs. A-kinase anchoring proteins (AKAPs) contain an amphipathic helix (AH) that binds the dimerization and docking (D/D) domain, RIIa, in cAMP-dependent protein kinase A (PKA). Many AKAPs were discovered solely based on the AH–RIIa interaction in vitro. An RIIa or a similar Dpy-30 domain is also present in numerous diverged molecules that are implicated in critical processes as diverse as flagellar beating, membrane trafficking, histone methylation, and stem cell differentiation, yet these molecules remain poorly characterized. Here we demonstrate that an AKAP, RSP3, forms a dimeric structural scaffold in the flagellar radial spoke complex, anchoring through two distinct AHs, the RIIa and Dpy-30 domains, in four non-PKA spoke proteins involved in the assembly and modulation of the complex. Interestingly, one AH can bind both RIIa and Dpy-30 domains in vitro. Thus, AHs and D/D domains constitute a versatile yet potentially promiscuous system for localizing various effector mechanisms. These results greatly expand the current concept about anchoring mechanisms and AKAPs.
Collapse
Affiliation(s)
- Priyanka Sivadas
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53201, USA
| | | | | | | | | |
Collapse
|
29
|
The DPY-30 domain and its flanking sequence mediate the assembly and modulation of flagellar radial spoke complexes. Mol Cell Biol 2012; 32:4012-24. [PMID: 22851692 DOI: 10.1128/mcb.06602-11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
RIIa is known as the dimerization and docking (D/D) domain of the cyclic AMP (cAMP)-dependent protein kinase. However, numerous molecules, including radial spoke protein 2 (RSP2) in Chlamydomonas flagella, also contain an RIIa or a similar DPY-30 domain. To elucidate new roles of D/D domain-containing proteins, we investigated a panel of RSP2 mutants. An RSP2 mutant had paralyzed flagella defective in RSP2 and multiple subunits near the spokehead. New transgenic strains lacking only the DPY-30 domain in RSP2 were also paralyzed. In contrast, motility was restored in strains that lacked only RSP2's calmodulin-binding C-terminal region. These cells swam normally in dim light but could not maintain typical swimming trajectories under bright illumination. In both deletion transgenic strains, the subunits near the spokehead were restored, but their firm attachment to the spokestalk required the DPY-30 domain. We postulate that the DPY-30-helix dimer is a conserved two-prong linker, required for normal motility, organizing duplicated subunits in the radial spoke stalk and formation of a symmetrical spokehead. Further, the dispensable calmodulin-binding region appears to fine-tune the spokehead for regulation of "steering" motility in the green algae. Thus, in general, D/D domains may function to localize molecular modules for both the assembly and modulation of macromolecular complexes.
Collapse
|
30
|
The expression and effects the CABYR-c transcript of CABYR gene in hepatocellular carcinoma. Bull Cancer 2012; 99:E26-33. [PMID: 22285430 DOI: 10.1684/bdc.2011.1538] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIM CABYR, a calcium-binding tyrosine phosphorylation regulated fibrous sheath protein, was initially reported to be testis-specific and subsequently shown to be present in brain tumors, pancreas cancer and lung cancer. This study aimed to investigate the expression and effects of the CABYR-c transcript of CABYR gene in hepatocellular carcinoma. METHODS mRNA and protein expression of CABYR-c was examined in 20 paired hepatocellular carcinoma tissues and adjacent non-cancerous tissues by real-time quantitative RT-polymerase chain reaction (PCR) and western blot analysis respectively. HepG2 cells were treated with the antisense oligodeoxynucleotides targeting CABYR-c mRNA (CABYR-c antisense oligonucleotides [AS ODNs]) for indicated times, the AS ODNs inhibition effect was evaluated by measuring the CABYR-c mRNA expression level of HepG2 cells after treatment using real-time quantitative RT-PCR, then cell proliferation was studied using MTT assay, and cell cycle distribution and apoptosis were detected by flow cytometry as well. RESULTS CABYR-c mRNA levels in hepatocellular carcinoma tissues were significantly higher than that in the paired adjacent non-cancerous tissues (27.5 ± 1.2 versus 2.5 ± 0. 9, P < 0.01). CABYR-c protein expression level in hepatocellular carcinoma tissues was also significantly higher than that in adjacent non-cancerous tissues. CABYR-c mRNA expression in HepG2 cells was most effective down-regulated after treatment of 600 nM CABYR-c AS ODNs for 48 h, which was selected for subsequent experiments. Incubation with 600 nM CABYR-c AS ODNs inhibited the cell growth of HepG2 cells in a dose- and time-dependent manner. The maximum inhibitory effect achieved at 600 nM after 72 h treatment (30.92 ± 3.25%, P < 0.01). HepG2 cells treated 600 nM CABYR-c AS ODNs for 48 h exhibited an increasing proportion of cells in G0/G1 phase (P < 0.05) and a decreasing proportion of cells in S phase (P < 0.05), compared with untreated controls. No obvious differences were observed in G2/M phase. The fraction of apoptotic HepG2 cells in CABYR-c AS ODNs treated group was less than that of untreated control group (P < 0.05). CONCLUSION CABYR-c is highly expressed in hepatocellular carcinoma tissues and may play an oncogenic role in heptocarcinogenesis as well as its progression.
Collapse
|
31
|
Fiedler SE, Sisson JH, Wyatt TA, Pavlik JA, Gambling TM, Carson JL, Carr DW. Loss of ASP but not ROPN1 reduces mammalian ciliary motility. Cytoskeleton (Hoboken) 2011; 69:22-32. [PMID: 22021175 DOI: 10.1002/cm.20539] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 09/27/2011] [Accepted: 10/04/2011] [Indexed: 02/05/2023]
Abstract
Protein kinase A (PKA) signaling is targeted by interactions with A-kinase anchoring proteins (AKAPs) via a dimerization/docking domain on the regulatory (R) subunit of PKA. Four other mammalian proteins [AKAP-associated sperm protein (ASP), ropporin (ROPN1), sperm protein 17 (SP17) and calcium binding tyrosine-(Y)-phosphorylation regulated protein (CABYR)] share this highly conserved RII dimerization/docking (R2D2) domain. ASP and ROPN1 are 41% identical in sequence, interact with a variety of AKAPs in a manner similar to PKA, and are expressed in ciliated and flagellated human cells. To test the hypothesis that these proteins regulate motility, we developed mutant mouse lines lacking ASP or ROPN1. Both mutant lines produced normal numbers of cilia with intact ciliary ultrastructure. Lack of ROPN1 had no effect on ciliary motility. However, the beat frequency of cilia from mice lacking ASP is significantly slower than wild type, indicating that ASP signaling may regulate ciliary motility. This is the first demonstration of in vivo function for ASP. Similar localization of ASP in mice and humans indicates that these findings may translate to human physiology, and that these mice will be an excellent model for future studies related to the pathogenesis of human disease.
Collapse
Affiliation(s)
- Sarah E Fiedler
- VA Medical Center, 3710 SW US Veterans' Hospital Rd., Portland, Oregon 97239, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Chowdhury S, Howell GM, Rajput A, Teggart CA, Brattain LE, Weber HR, Chowdhury A, Brattain MG. Identification of a novel TGFβ/PKA signaling transduceome in mediating control of cell survival and metastasis in colon cancer. PLoS One 2011; 6:e19335. [PMID: 21559296 PMCID: PMC3086924 DOI: 10.1371/journal.pone.0019335] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 03/27/2011] [Indexed: 12/30/2022] Open
Abstract
Background Understanding drivers for metastasis in human cancer is important for potential development of therapies to treat metastases. The role of loss of TGFβ tumor suppressor activities in the metastatic process is essentially unknown. Methodology/Principal Findings Utilizing in vitro and in vivo techniques, we have shown that loss of TGFβ tumor suppressor signaling is necessary to allow the last step of the metastatic process - colonization of the metastatic site. This work demonstrates for the first time that TGFβ receptor reconstitution leads to decreased metastatic colonization. Moreover, we have identified a novel TGFβ/PKA tumor suppressor pathway that acts directly on a known cell survival mechanism that responds to stress with the survivin/XIAP dependent inhibition of caspases that effect apoptosis. The linkage between the TGFβ/PKA transduceome signaling and control of metastasis through induction of cell death was shown by TGFβ receptor restoration with reactivation of the TGFβ/PKA pathway in receptor deficient metastatic colon cancer cells leading to control of aberrant cell survival. Conclusion/Significance This work impacts our understanding of the possible mechanisms that are critical to the growth and maintenance of metastases as well as understanding of a novel TGFβ function as a metastatic suppressor. These results raise the possibility that regeneration of attenuated TGFβ signaling would be an effective target in the treatment of metastasis. Our work indicates the clinical potential for developing anti-metastasis therapy based on inhibition of this very important aberrant cell survival mechanism by the multifaceted TGFβ/PKA transduceome induced pathway. Development of effective treatments for metastatic disease is a pressing need since metastases are the major cause of death in solid tumors.
Collapse
Affiliation(s)
- Sanjib Chowdhury
- Eppley Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Gillian M. Howell
- Eppley Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Ashwani Rajput
- Department of Surgery, The University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Carol A. Teggart
- Eppley Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Lisa E. Brattain
- Eppley Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Hannah R. Weber
- Eppley Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Aparajita Chowdhury
- Eppley Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Michael G. Brattain
- Eppley Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
33
|
Chang H, Suarez SS. Two distinct Ca(2+) signaling pathways modulate sperm flagellar beating patterns in mice. Biol Reprod 2011; 85:296-305. [PMID: 21389347 DOI: 10.1095/biolreprod.110.089789] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Hyperactivation, a swimming pattern of mammalian sperm in the oviduct, is essential for fertilization. It is characterized by asymmetrical flagellar beating and an increase of cytoplasmic Ca(2+). We observed that some mouse sperm swimming in the oviduct produce high-amplitude pro-hook bends (bends in the direction of the hook on the head), whereas other sperm produce high-amplitude anti-hook bends. Switching direction of the major bends could serve to redirect sperm toward oocytes. We hypothesized that different Ca(2+) signaling pathways produce high-amplitude pro-hook and anti-hook bends. In vitro, sperm that hyperactivated during capacitation (because of activation of CATSPER plasma membrane Ca(2+) channels) developed high-amplitude pro-hook bends. The CATSPER activators procaine and 4-aminopyridine (4-AP) also induced high-amplitude pro-hook bends. Thimerosal, which triggers a Ca(2+) release from internal stores, induced high-amplitude anti-hook bends. Activation of CATSPER channels is facilitated by a pH rise, so both Ca(2+) and pH responses to treatments with 4-AP and thimerosal were monitored. Thimerosal triggered a Ca(2+) increase that initiated at the base of the flagellum, whereas 4-AP initiated a rise in the proximal principal piece. Only 4-AP triggered a flagellar pH rise. Proteins were extracted from sperm for examination of phosphorylation patterns induced by Ca(2+) signaling. Procaine and 4-AP induced phosphorylation of proteins on threonine and serine, whereas thimerosal primarily induced dephosphorylation of proteins. Tyrosine phosphorylation was unaffected. We concluded that hyperactivation, which is associated with capacitation, can be modulated by release of Ca(2+) from intracellular stores to reverse the direction of the dominant flagellar bend and, thus, redirect sperm.
Collapse
Affiliation(s)
- Haixin Chang
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
34
|
Li YF, He W, Mandal A, Kim YH, Digilio L, Klotz K, Flickinger CJ, Herr JC, Herr JC. CABYR binds to AKAP3 and Ropporin in the human sperm fibrous sheath. Asian J Androl 2011; 13:266-74. [PMID: 21240291 DOI: 10.1038/aja.2010.149] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Calcium-binding tyrosine phosphorylation-regulated protein (CABYR) is a highly polymorphic calcium-binding tyrosine- and serine-/threonine-phosphorylated fibrous sheath (FS) protein involved in capacitation. A putative domain (amino acids 12-48) homologous to the regulatory subunit of type II cAMP-dependent protein kinase A (RII) dimerisation and A kinase-anchoring protein (AKAP)-binding domains of protein kinase A at the N-terminus suggests that CABYR may self-assemble and bind to AKAPs. Moreover, there is evidence that CABYR has limited interaction with AKAPs. However, further evidence and new relationships between CABYR and other FS proteins, including AKAPs, will be helpful in understanding the basic physiology of FS. In this study, a new strategy for co-immunoprecipitation of insoluble proteins, as well as the standard co-immunoprecipitation method in combination with mass spectrometry and western blot, was employed to explore the relationship between CABYR, AKAP3 and Ropporin. The results showed that AKAP3 was co-immunoprecipitated with CABYR by the anti-CABYR-A polyclonal antibody, and, conversely, CABYR was also co-immunoprecipitated with AKAP3 by the anti-AKAP3 polyclonal antibody. Another RII-like domain containing protein, Ropporin, was also co-immunoprecipitated with CABYR, indicating that Ropporin is one of CABYR's binding partners. The interactions between CABYR, AKAP3 and Ropporin were confirmed by yeast two-hybrid assays. Further analysis showed that CABYR not only binds to AKAP3 by its RII domain but binds to Ropporin through other regions besides the RII-like domain. This is the first demonstration that CABYR variants form a complex not only with the scaffolding protein AKAP3 but also with another RII-like domain-containing protein in the human sperm FS.
Collapse
Affiliation(s)
- Yan-Feng Li
- Department of Urology, Daping Hospital, Institute of Surgery Research, Third Military Medical University, Chongqing 400042, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Lee L. Mechanisms of mammalian ciliary motility: Insights from primary ciliary dyskinesia genetics. Gene 2010; 473:57-66. [PMID: 21111794 DOI: 10.1016/j.gene.2010.11.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 11/10/2010] [Accepted: 11/12/2010] [Indexed: 01/01/2023]
Abstract
Motile cilia and flagella are organelles that, historically, have been poorly understood and inadequately investigated. However, cilia play critical roles in fluid clearance in the respiratory system and the brain, and flagella are required for sperm motility. Genetic studies involving human patients and mouse models of primary ciliary dyskinesia over the last decade have uncovered a number of important ciliary proteins and have begun to elucidate the mechanisms underlying ciliary motility. When combined with genetic, biochemical, and cell biological studies in Chlamydomonas reinhardtii, these mammalian genetic analyses begin to reveal the mechanisms by which ciliary motility is regulated.
Collapse
Affiliation(s)
- Lance Lee
- Sanford Children's Health Research Center, Sanford Research USD, 2301 East 60th Street, Sioux Falls, SD 57104, USA.
| |
Collapse
|
36
|
Shi LX, He YM, Fang L, Meng HB, Zheng LJ. CABYR RNAi plasmid construction and NF-κB signal transduction pathway. World J Gastroenterol 2010; 16:4980-5. [PMID: 20954286 PMCID: PMC2957608 DOI: 10.3748/wjg.v16.i39.4980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To construct the CABYR RNAi plasmid and study its relation with the nuclear factor (NF)-κB signal transduction pathway.
METHODS: Human CABYR mRNA sequence was obtained from GenBank. The structure of cDNA sequence for the short hairpin RNA was BbsI + sense + loop + antisense + transcription terminator + KpnI + BamHI. A CABYR silencing plasmid was constructed and transfected into the human embryo cell line 293T. Quantitative real-time polymerase chain reaction was used to analyze CABYR and NF-κB gene expression.
RESULTS: The CABYR and NF-κB expressions were detected in 293T cells. The oligonucleotide (5’-GCTCAGATGTTAGGTAAAG-3’) efficiently silenced the expression of CABYR. The expression of NF-κB was not significantly affected by silencing CABYR (P = 0.743).
CONCLUSION: CABYR can be found in the human embryo cell line 293T. Cabyrmid 2 can efficiently silence its target, CABYR, indicating that CABYR is not related with the NF-κB signal transduction pathway.
Collapse
|
37
|
Li YF, He W, Kim YH, Mandal A, Digilio L, Klotz K, Flickinger CJ, Herr JC. CABYR isoforms expressed in late steps of spermiogenesis bind with AKAPs and ropporin in mouse sperm fibrous sheath. Reprod Biol Endocrinol 2010; 8:101. [PMID: 20731842 PMCID: PMC3398308 DOI: 10.1186/1477-7827-8-101] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2010] [Accepted: 08/23/2010] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND CABYR is a polymorphic calcium-binding protein of the sperm fibrous sheath (FS) which gene contains two coding regions (CR-A and CR-B) and is tyrosine as well as serine/threonine phosphorylated during in vitro sperm capacitation. Thus far, the detailed information on CABYR protein expression in mouse spermatogenesis is lacking. Moreover, because of the complexity of this polymorphic protein, there are no data on how CABYR isoforms associate and assemble into the FS. METHODS The capacity of mouse CABYR isoforms to associate into dimers and oligomers, and the relationships between CABYR and other FS proteins were studied by gel electrophoresis, Western blotting, immunofluorescence, immunoprecipitation and yeast two-hybrid analyses. RESULTS The predominant form of mouse CABYR in the FS is an 80 kDa variant that contains only CABYR-A encoded by coding region A. CABYR isoforms form dimers by combining the 80 kDa CABYR-A-only variant with the 50 kDa variant that contains both CABYR-A and CABYR-B encoded by full length or truncated coding region A and B. It is proposed that this step is followed by the formation of larger oligomers, which then participate in the formation of the supramolecular structure of the FS in mouse sperm. The initial expression of CABYR occurs in the cytoplasm of spermatids at step 11 of spermiogenesis and increases progressively during steps 12-15. CABYR protein gradually migrates into the sperm flagellum and localizes to the FS of the principal piece during steps 15-16. Deletion of the CABYR RII domain abolished the interaction between CABYR and AKAP3/AKAP4 but did not abolish the interaction between CABYR and ropporin suggesting that CABYR binds to AKAP3/AKAP4 by its RII domain but binds to ropporin through another as yet undefined region. CONCLUSIONS CABYR expresses at the late stage of spermiogenesis and its isoforms oligomerize and bind with AKAPs and ropporin. These interactions strongly suggest that CABYR participates in the assembly of complexes in the FS, which may be related to calcium signaling.
Collapse
Affiliation(s)
- Yan-Feng Li
- Department of Urology, Daping Hospital, Institute of Surgery Research, Third Military Medical University, Chongqing 400042, PR China
| | - Wei He
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Young-Hwan Kim
- Center for Research in Contraceptive and Reproductive Health, Department of Cell Biology, University of Virginia, P.O. Box 800732, Charlottesville, VA 22908, USA
| | - Arabinda Mandal
- Center for Research in Contraceptive and Reproductive Health, Department of Cell Biology, University of Virginia, P.O. Box 800732, Charlottesville, VA 22908, USA
| | - Laura Digilio
- Center for Research in Contraceptive and Reproductive Health, Department of Cell Biology, University of Virginia, P.O. Box 800732, Charlottesville, VA 22908, USA
| | - Ken Klotz
- Center for Research in Contraceptive and Reproductive Health, Department of Cell Biology, University of Virginia, P.O. Box 800732, Charlottesville, VA 22908, USA
| | - Charles J Flickinger
- Center for Research in Contraceptive and Reproductive Health, Department of Cell Biology, University of Virginia, P.O. Box 800732, Charlottesville, VA 22908, USA
| | - John C Herr
- Center for Research in Contraceptive and Reproductive Health, Department of Cell Biology, University of Virginia, P.O. Box 800732, Charlottesville, VA 22908, USA
| |
Collapse
|
38
|
Chang H, Suarez SS. Rethinking the relationship between hyperactivation and chemotaxis in mammalian sperm. Biol Reprod 2010; 83:507-13. [PMID: 20463353 DOI: 10.1095/biolreprod.109.083113] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hyperactivation, a motility pattern of mammalian sperm in the oviduct, is essential to fertilization. Hyperactivation helps sperm to swim effectively through oviductal mucus, to escape from the sperm reservoir, and to penetrate the cumulus matrix and zona pellucida of the oocyte. There is some evidence that mammalian sperm can undergo chemotaxis; however, the relationship of chemotaxis to hyperactivation is unknown. Ca(2+) signaling is involved in hyperactivation and implicated in chemotaxis as well. In vivo, sperm hyperactivate in the lower oviduct, far from the cumulus-oocyte complex and possibly beyond the influence of chemotactic gradients emanating from the oocyte or cumulus. Thus, sperm are likely to be hyperactivated before sensing chemotactic gradients. Chemotactic signals might modulate hyperactivation to direct sperm toward oocytes as they reach a region of influence. Ca(2+)-directed modulation of hyperactivation is a potential mechanism of this process.
Collapse
Affiliation(s)
- Haixin Chang
- Department of Biomedical Sciences, Cornell University, Ithaca, New York, USA
| | | |
Collapse
|
39
|
Kausar T, Ahsan A, Hasan MR, Lin L, Beer DG, Ralhan R. Sperm protein 17 is a novel marker for predicting cisplatin response in esophageal squamous cancer cell lines. Int J Cancer 2010; 126:1494-503. [PMID: 19685492 DOI: 10.1002/ijc.24828] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Expression of sperm protein 17 (Sp17) mRNA has been reported in various malignancies. In an earlier study, we reported the upregulation of Sp17 transcripts in primary esophageal squamous cell carcinomas (ESCCs) using differential display and detected Sp17 transcripts in 86% of ESCCs by RT-PCR, whereas no transcripts were detected in the paired normal esophageal tissues. Herein we hypothesized that Sp17 might be used as a marker for detecting the response of anticancer therapies in ESCCs. Our results indicated that Sp17 protein levels in esophageal squamous cancer cell lines decreased in response to treatment with (i) the HSP90 activity inhibitor geldanamycin, (ii) the tyrosine kinase inhibitor erlotinib and (iii) cisplatin (chemotherapeutic agent commonly used in management of ESCC). In contrast, the Sp17 levels did not decrease in response to radiation therapy and treatment with the chemotherapeutic agent, gemcitabine. Further investigations showed that cisplatin induced decrease in Sp17 levels was due to transcriptional inhibition and cisplatin-resistant cell lines did not show this decrease in Sp17 levels in response to cisplatin treatment. In addition, we also carried our mass spectophotometric analysis to identify the binding partners of Sp17 to characterize its possible involvement in esophageal tumorigenesis and chemoresistance.
Collapse
Affiliation(s)
- Tasneem Kausar
- Department of Biochemistry, All India Institute of Medical Science, New Delhi, India
| | | | | | | | | | | |
Collapse
|
40
|
Mechanisms of protein kinase A anchoring. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 283:235-330. [PMID: 20801421 DOI: 10.1016/s1937-6448(10)83005-9] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The second messenger cyclic adenosine monophosphate (cAMP), which is produced by adenylyl cyclases following stimulation of G-protein-coupled receptors, exerts its effect mainly through the cAMP-dependent serine/threonine protein kinase A (PKA). Due to the ubiquitous nature of the cAMP/PKA system, PKA signaling pathways underlie strict spatial and temporal control to achieve specificity. A-kinase anchoring proteins (AKAPs) bind to the regulatory subunit dimer of the tetrameric PKA holoenzyme and thereby target PKA to defined cellular compartments in the vicinity of its substrates. AKAPs promote the termination of cAMP signals by recruiting phosphodiesterases and protein phosphatases, and the integration of signaling pathways by binding additional signaling proteins. AKAPs are a heterogeneous family of proteins that only display similarity within their PKA-binding domains, amphipathic helixes docking into a hydrophobic groove formed by the PKA regulatory subunit dimer. This review summarizes the current state of information on compartmentalized cAMP/PKA signaling with a major focus on structural aspects, evolution, diversity, and (patho)physiological functions of AKAPs and intends to outline newly emerging directions of the field, such as the elucidation of AKAP mutations and alterations of AKAP expression in human diseases, and the validation of AKAP-dependent protein-protein interactions as new drug targets. In addition, alternative PKA anchoring mechanisms employed by noncanonical AKAPs and PKA catalytic subunit-interacting proteins are illustrated.
Collapse
|
41
|
Yin YH, Li ZF, Zou SQ. Prokaryotic expression of ropporin and generation of its rabbit polyclonal antisera. Shijie Huaren Xiaohua Zazhi 2009; 17:3342-3345. [DOI: 10.11569/wcjd.v17.i32.3342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To prepare human ropporin (a novel cancer/testis antigen) recombinant protein using a prokaryotic expression system and generate its rabbit polyclonal antisera.
METHODS: The full-length cDNA of the human ropporin gene was subcloned into the pQE30 vector and transformed into competent Escherichia coli (E.coli) JM109 cells. After transformed E.coli was induced using IPTG (isopropyl β-D-1-thiogalactopyranoside), human recombinant ropporin protein was extracted, purified by Nickel sepharose affinity chromatography, and verified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Rabbits were immunized with the purified protein to prepare antisera. The specificity of antisera was determined by Western blot.
RESULTS: SDS-PAGE analysis showed that a protein with similar molecular weight to mouse popporin protein was purified from transformed E.coli. Western blot using anti-His tag monoclonal antibody showed that the prepared protein contained a His-tag. Polyclonal antisera were successfully generated by immunization of rabbits with human recombinant ropporin protein. The titers of antisera were more than 1:512000. Western blot analysis confirmed the specificity of the antisera obtained.
CONCLUSION: Human recombinant ropporin protein was successfully prepared using a prokaryotic expression system, and its rabbit polyclonal antisera were also successfully generated. The antisera obtained can be used to detect the expression of ropporin protein in various types of tumors and investigate its role in malignant processes.
Collapse
|